Accepted Manuscript

Copper nanoparticles catalyzed economical synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids/amides and 1,3-diketones

Xiaowen Wang, Chaolong Wu, Youwen Sun, Xiaoquan Yao

PII:	S0040-4039(17)30836-5
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.07.001
Reference:	TETL 49083
To appear in:	Tetrahedron Letters
Received Date:	2 May 2017
Revised Date:	27 June 2017
Accepted Date:	1 July 2017

Please cite this article as: Wang, X., Wu, C., Sun, Y., Yao, X., Copper nanoparticles catalyzed economical synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids/amides and 1,3-diketones, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.07.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical Abstract

Tetrahedron Letters

Copper nanoparticles catalyzed economical synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids/amides and 1,3-diketones

Xiaowen Wang, Chaolong Wu, Youwen Sun, Xiaoquan Yao*

Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: 3-Substituted isocoumarins Copper nanoparticles catalyzed 2-Chlorobenzoic acids 2-Chlorobenzoic amides

1,3-Diketones

Copper nanoparticles were utilized as a highly efficient catalyst for a facile and economical synthesis of 3-substituted isocoumarins with 2-chlorobenzoic acids and 1,3-diketones as starting materials. The copper nanoparticles catalyst showed highly catalytic activity for the 2-chlorosubstituted substrates to afford 3-substituted isocoumarins in good to excellent yields. Further more, good catalytic activity was also observed when 2-chlorobenzoic amides were utilized as substrates instead of the benzoic acids.

Isocoumarins, as an important natural lactone,¹ show a variety of pharmacologyical and biological activities,² such as immunomodulatory, antifungal, cytotoxic etc., in which 3substituted isocoumarins have a great influence on their biological activities respect to other substituted isocoumarins. Moreover, they are important organic synthetic intermediates, especially for biologically heterocylic³ and carbocyclic compounds.⁴ Therefore, the synthesis of 3-substituted isocoumarins has attracted great attention of researchers.

Till now, various approaches for the synthesis of 3-substituted isocoumarins have been reported,⁵⁻⁸ in which *o*-halobenzoic acid and its derivatives were the very popular starting materials with 1-alkynes or 1,3-diketones together. There are many examples on the transition metal-catalyzed tandem reaction of *o*-halobenzoic acid and 1-alkynes reported to afford 3-substituted isocoumarins.^{6,9} However, the methodology is usually nagged by regioselectivities: there are 5-exo and 6-endo cyclization combined products obtained during the domino Sonogashira coupling-intramolecular cyclization process, which restrain its application to a great extent.

Recently, Xi and coworkers¹⁰ reported a domino process of 2halobenzoic acids and 1,3-diketones for the corresponding 3substituted isocoumarins with CuI as catalyst, which exhibited high regioselectivity and good to excellent yields were achieved. However, there are some limits on the scope of substrates: 2chlorobenzoic acids usually give much lower reactivities than 2iodo and 2-bromo-benzoic acids. On the other hand, Yao¹¹ et al also reported an approach for the synthesis of 3-substituted isocoumarins with 2-halobenzoic amides and 1,3-diketones as substrates, and the same limit on substrate was observed. Therefore, to develop a facile, efficient and more economical strategy for the synthesis of isocoumarins is still under investigation.

In recent years, much attention has been attracted to the use of nanoparticles as catalysts in organic reactions.¹² Because of their easy preparation and relative stabilities in air, the nanoparticles of coinage metals, such as copper, silver and gold, were widely reported, and there are many excellent examples on their applications as catalysts in organic reactions.¹³ Recently, our group also developed some reactions catalyzed by copper nanoparticles, and in most cases, the nanoparticle catalysts show much higher catalytic activities than salts.¹⁴

Herein, we would like to report a copper nanoparticles catalyzed coupling reaction of 2-halobenzoic acids/amides with 1,3-diketones to 3-substituted isocoumarins. In this approach, 2-chlorobenzoic acids or amide can be utilized efficiently, and good to excellent yields were achieved.

Initially, the reaction of 2-chlorobenzoic acid (1a) and pentane-2,4-dione (2a) was selected as the prototype to start our investigation for the optimized reaction conditions, and the data were summarized in Table 1.

When **1a** (0.2 mmol) and 2 equiv of **2a** were treated with 10 mol % of Cu NPs¹⁵ in 1.5 mL of DMSO at 100 °C with 2 equiv of K₂CO₃ as the base under nitrogen for 2 h, **3a** was achieved in 92% yield (entry 1, Table 1). Some copper salts, such as CuI, Cu(OAc)₂, and CuSO₄ were then examined, and only *ca*. 55% yields were observed (entries 2-4). On the other hand, a blanket reaction was carried out in the absence of Cu NPs catalyst, and no reaction occurred (entry 5). Increasing or decreasing the loading of the catalyst were all led to worse yields (entries 6 and 7), and higher or lower temperature could result in the same thing (entries 8 and 9).

2

ACCEPTED MANUSCRIPT

Tetrahedron Letters

Different solvents, such as DMF, toluene, MeCN, 1,4dioxane and DCE, were then evaluated in the reaction, and DMSO was found as the best of choices (entry 1 *vs.* 10-14). Some other bases, such as Na₂CO₃, K₃PO₄, NaOH, KOH and *i*-Pr₂NEt, were also screened. It was found that the expected product was obtained only in moderated yields in the presence of inorganic bases except K₂CO₃ (entries 15-18 *vs.* entry 1), while *i*- Pr_2NEt inhibited the reaction at all (entry 19). Further more, a base-free condition was also tried, and no reaction occurred (entry 20). On the other hand, shortening or extending the reaction time could not improve the yields either (entries 21, 22).

Thus, the optimal conditions involved the following parameters: 10 mol % of Cu NPs and 2 equiv of K₂CO₃ in 1.5mL of DMSO at 100 °C under nitrogen.

Table 1. The reaction of 2-chlorobenzoic actu and pentane-2,4-dione						
	COOH 4	COOH O O catalyst, base + C C C C C C C C C C C C C C C C C C				
	1a	2a		3a		
Entry	Catalyst	Solvent	Base	Temp (°C)	Time (h)	Yield ^b (%)
1	Cu NPs	DMSO	K ₂ CO ₃	100	2	92
2	CuI	DMSO	K_2CO_3	100	2	56
3	Cu(OAc) ₂	DMSO	K ₂ CO ₃	100	2	55
4	CuSO ₄	DMSO	K_2CO_3	100	2	58
5	_	DMSO	K_2CO_3	100	2	N.D.
6 ^c	Cu NPs	DMSO	K_2CO_3	100	2	81
7^d	Cu NPs	DMSO	K_2CO_3	100	2	77
8	Cu NPs	DMSO	K_2CO_3	90	2	82
9	Cu NPs	DMSO	K_2CO_3	110	2	80
10	Cu NPs	DMF	K ₂ CO ₃	100	2	84
11	Cu NPs	Toluene	K ₂ CO ₃	100	2	N.D.
12	Cu NPs	MeCN	K ₂ CO ₃	100	2	29
13	Cu NPs	1,4-dioxane	K ₂ CO ₃	100	2	8
14	Cu NPs	DCE	K ₂ CO ₃	100	2	N.D.
15	Cu NPs	DMSO	Na ₂ CO ₃	100	2	40
16	Cu NPs	DMSO	K_3PO_4	100	2	65
17	Cu NPs	DMSO	NaOH	100	2	62
18	Cu NPs	DMSO	КОН	100	2	70
19	Cu NPs	DMSO	<i>i</i> -Pr ₂ NEt	100	2	N.D.
20	Cu NPs	DMSO	—	100	2	N.D.
21	Cu NPs	DMSO	K_2CO_3	100	1	73
22	Cu NPs	DMSO	K_2CO_3	100	4	84

Table 1. The reaction of 2-chlorobenzoic acid and pentane-2,4-dione ^a

^a The reaction was performed with 1a (0.2 mmol), 2a (0.4 mmol), Cu NPs (0.02 mmol), and base (0.4 mmol) in solvent (1.5 mL) under N₂.

^b Isolated yields; N.D. = no reaction.

^c Cu NPs (0.0 1mmol).

^d Cu NPs (0.03 mmol).

With the optimized reaction conditions, various substituted 2chlorobenzoic acids and 1,3-diketones were explored.¹⁶ The results were listed in Table 2. As can be seen, 2-chlorobenzoic acids with 3-CH₃, 4-CH₃, 6-CH₃, 4-OCH₃, and 4-F groups reacted with pentane-2,4-dione (2a) to give the products 3b-3f in moderate to excellent yields while 2,4-dichlorobenzoic acid gave the product 3g in a low yield. Then, 1,3-diphenylpropane-1,3-dione (2b) was used to react with the 2-chlorobenzioc acids

ACCEPTED MANUSCRIPT

instead of 2a, and the corresponding products 3h-3l were formed in good to excellent yields. When heptane-3,5-dione (2c) was examined, the desired products 3m-3r were achieved in 41-87% yields. From these results above, it demonstrated that electrondonating substitutes on 2-chlorobenzoic acids seemed to be favored to the reaction compared with electron-withdrawing groups (**3m-3p** *vs.* **3q-3r**). Subsequently, an unsymmetrical 1,3diketone, 6-methylheptane-2,4-dione (**2d**), was utilized in the reaction. It can be seen that only the mixture of two isomeric products were obtained in all of four examples with good combined yields. The 3-isopropylisocoumarins were obtained as the major products.

^a Reaction conditions: nitrogen atmosphere, 1 (0.2mmol), 2 (2 equiv), copper nanoparticles (10 mol %), K₂CO₃ (2 equiv), DMSO (1.5mL), stirred at 100 °C under N₂.

^b Isolated yields.

- ^c Reaction performed in 8 h
- ^d Combined yield.

In order to detect the adaptability of the Cu NPs catalyst, 2bromobenzoic acid was tested in the reaction under the optimized conditions, and the desired products were isolated in an excellent yield (Scheme 1). Obviously, Cu NPs catalyst shows almost same catalytic activities on both 2-bromo and 2-cholo benzoic acid substrates.

Scheme 1 Cu NPs-catalyzed reaction of 2-bromobenzoic acid (4) and pentane-2,4- dione (2a).

The successful utilization of the Cu NPs catalyst in the reaction of 2-cholobenzoic acids and 1,3-diketones encouraged us to explore its catalytic ability in the coupling reaction of 2-chlorobenzoic amides and 1,3-diketones. Under similar

conditions (10 mol % of Cu NPs, 2 equiv of K_3PO_4 in DMF at 100 °C under nitrogen), several kinds of amides were utilized to react with pentane-2,4-dione (**2a**), and the results were summarized in Scheme 2.

5a, X = Br, R = Ph, 91% of **3a 5b**, X = Cl, R = Ph, 84% of **3a 5c**, X = Br, R = *p*-Br-C₆H₄, 92% of **3a 5d**, X = Cl, R = *p*-Br-C₆H₄, 89% of **3a Scheme 2** Cu NPs-catalyzed reaction of 2-halobenzoic amide (5) and pentane-2,4- dione (**2a**).

It can be seen from Scheme 2, the Cu NPs catalyst showed excellent catalytic activity to both 2-bromo- and 2-chloro-substituted benzoic amide in the coupling reaction. It is also worthy to mention that all of the reactions finished in 0.5 h.

3

Tetrahedron

When 2-bromo-N-phenylbenzamide (**5a**) was used, the reaction time was even shortened to 15 min.

A plausible mechanism was also proposed for the reaction of 2-cholobenzoic acids and 1,3-diketones: Initially, the intermediate **A** was formed through the substrate **1** and **2** in the presence of base, and give the intermediate **B** by the Hurtley reaction.^{10, 17} The higher catalytic activity of Cu NPs for the coupling reaction might be due to a multi-center synergistic effect occurred on the surface of Cu NPs.¹⁸ The carbonyl group of 1,3-diketone was then attacked by the carboxylate anion to give **C** as intermediate. The alkoxy anion of **C** would activate another keto moiety to generate intermediate **D** with a fourmember ring; and then, through the bond-breaking of the C-O bond and C-C bond, the product **3** was achieved finally.¹⁰

Scheme 3 Proposed reaction mechanism for the reaction of 2-cholobenzoic acids and 1,3-diketones.

In conclusion, an efficient and economical strategy has been demonstrated for the synthesis of 3-substituted isocoumarins under Cu NPs catalyzed process of 2-chlorobenzioc acids and 1,3-diketones. In addition, the Cu Nps catalyst shows good catalytic activities to the reaction of 2-chlorobenzoic amides and 1,3-diketones. The detailed mechanism, the effect of particle size and particle support as well as the scope of the reaction are currently under further investigations.

Acknowledgments

4

We are grateful to the financial support from National Natural Science Foundation of China (21472092 to XY). This is a project funded by the Priority Academic Program Development of Jiangsu higher education institutions.

References and notes

- (a) Rukachaisirikul, V.; Rodglin, A.; Sukpondma, Y.; Phongpaichit, S.; Buatong, J.; Sakayaroj, J. J. Nat. Prod. 2012, 75, 853-858; (b) Kornsakulkarn, J.; Thongpanchang, C.; Lapanun, S.; Srichomthong, K. J. Nat. Prod. 2009, 72, 1341–1343; (c) Chou, T.-H.; Chen, I.-S.; Hwang, T.-L.; Wang, T.-C.; Lee, T.-H.; Cheng, L.-Y.; Chang, Y.-C.; Cho, J.-Y.; Chen, J.-J. J. Nat. Prod. 2008, 71, 1692–1695; (d) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891–900.
- (a) Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K. I.; Nakajima, S. Chem. Pharm. Bull. 1981, 29, 2491–2495; (b) Matsuda, H.; Shimoda, H.; Yamahara, J.; Yoshikawa, M. Bioorg. Med. Chem. Lett. 1998, 8, 215–220; (c) Bellina, F.; Ciucci, D.; Vergamini, P.; Rossi, R. Tetrahedron 2000, 56, 2533–2545; (d) Hussain, M.; Hussain, M. T.; Rama, N. H.; Hameed, S.; Malik, A.; Khan, K. M. Nat. Prod. Res. 2003, 17, 207–214; (e) Kurume, A.; Kamata, Y.;

Yamashita, M.; Wang, Q.; Matsuda, H.; Yoshikawa, M.; Kawasaki, I.; Ohta, S. Chem. Pharm. Bull. 2008, 56, 1264–1269.

- (a) Del Olmo, E.; Garcia Armas, M.; Ybara, M. I.; Lopez, J. L.; Oporto, P.; Gimenez, A.; Deharoe, E.; San Felicianoa, A. *Bioorg. Med. Chem. Lett.* 2003, *13*, 2769–2722; (b) Kummerle, A. E.; Vieira, M. M.; Schnitt, M.; Miranda, A. L. P.; Fraga, C. A. M.; Bourguignon, J. J.; Barreiro, E. J. *Bioorg. Med. Chem. Lett.* 2009, *19*, 4963–4966; (c) Manivel, P.; Nawaaz Khan, F.; Hatwar, V. R. *Phosphorus, Sulfur Silicon Relat. Elem.* 2010, *185*, 1932–1942.
 Ramesha, A.R.; Roy, A. K. *Synth. Commun.* 2001, *31*, 2419–2422.
- Kantesha, J.K., Roy, J. R. Synn. Commun. 2007, 51, 2419 (2022).
 (a) Minami, T.; Nishimoto, A.; Nakamura, Y.; Hanaoka, M. Chem. Pharm. Bull. 1994, 42, 1700–1702; (b) Wang, L.; Shen, W. Tetrahedron Lett. 1998, 39, 7625–7628. (c) Liao, H.-Y.; Cheng, C.-H. J. Org. Chem. 1995, 60, 3711–3761.
- (a) Subramanian, V.; Batchu, V. R.; Barange, D.; Pal, M. J. Org. Chem. 2005, 70, 4778–4783; (b) Mereyala, H. B.; Pathuri, G. Synthesis 2006, 17, 2944–2950; (c) Kundu, N. G.; Pal, M. J. Chem. Soc. Chem. Commun. 1993, 86–88; (d) Kundu, N. G.; Pal, M.; Nandi, B. J. Chem. Soc., Perkin Trans. 1 1998, 561–568; (e) Zhou, L.; Jiang, H.-F. Tetrahedron Lett. 2007, 48, 8449–8452.
- 7. Negishi, E.; Makabe, H.; Shimoyama, I.; Wu, G.; Zhang, Y. *Tetrahedron* **1998**, *54*, 1095–1106.
- Yuan, Q.; Chen, Z.-B.; Zhang, F.-L.; Zhu, Y.-M. Org. Biomol. Chem. 2017, 15, 1628–1635.
- 9. Ackermann, L.; Pospech, J.; Graczyk, K.; Pauch, K. Org. Lett. 2012, 14, 930–933.
- (a) Cai, S.; Wang, F.; Xi, C. J. Org. Chem. 2012, 77, 2331–2336;
 (b) Cai, S.; Wang, F.; Xi, C. Synthesis 2012, 44, 1892–1897.
- Kavala, V.; Wang, C.-C.; Barange, D. K.; Kuo, C.-W.; Lei, P.-M.; Yao, C.-F. J. Org. Chem. 2012, 77, 5022–5029.
- (a) Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450–1461; (b) Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H.- J. Acc. Chem. Res. 2013, 46, 1673–1681; (c) Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Acc. Chem. Res. 2013, 46, 1825–1837; (d) Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41, 5577–5587; (e) Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262–5284; (f) Shiju, N. R.; Guliants, V. V. Appl. Catal. A 2009, 356, 1–17; (g) Somorjai, G. A.; Park, J. Y. Angew. Chem. 2008, 120, 9352–9368.
- (a) Xiao, Q.; Jaatinen, E.; Zhu, H. Chem. Asian J. 2014, 9, 3046– 3064; (b) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096– 2126; (c) Astruc, D.; Lu, F.; Aranzaes, J. M. Angew. Chem. 2005, 44, 7852–7872.
- (a) Han, C.; Yu, M.; Sun, W.; Yao, X. Synlett. 2011, 16, 2363–2368; (b) Sun, W.; Wang, Y.; Wu, X.; Yao, X. Green Chem. 2013, 15, 2356–2360; (c) Wang, Y.; Wu, C.; Nie, S.; Xu, D.; Yu, M.; Yao, X. Tetrahedron Lett. 2015, 56, 6827–6832; (d) Lv, W.; Tian, J.; Deng, N.; Wang, Y.; Zhu, X.; Yao, X. Tetrahedron Lett. 2015, 56, 1312–1316.
- Cu NPs catalyst was synthesized following a modified literature method: (a) Sarkar, A.; Mukherjec, T.; Kapoor, S. J. Phy. Chem. C 2008, 112, 3334–3340; (b) Wang, Y.; Asefa, T. Langmuir 2010, 26, 7469–7474. The detailed procedure was also provided in SI.
- 16. Typical procedure for copper nanoparticles catalyzed sunthsis of 3-substituted isocoumarins from 2-chlorobenzoic acids and pentane-2,4-dione (entry 2, Table 1): 2-chlorobenzoic acids (1a, 0.2 mmol), pentane-2,4-dione (2a, 2eq), Cu NPs (1.3 mg, 10 mol%), K₂CO₃ (2.0 equiv) and 1.5 mL of DMSO were added into a 5-mL sealed tube under N2. The mixture was stirred at 100°C for 2 hour. The reaction mixture was then purified by flash column chromatography on silica gel (hexanes/EtOAc 15:1). Compound 3a was obtained in >92% of yield. 3-methyl-1H-isochromen-1one (3a). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.25 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.2 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 6.26 (s, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃, ppm) & 163.0, 154.6, 137.7, 134.8, 129.5, 127.6, 124.9, 120.0, 103.6, 19.7 (ref. 10a). The characterization data for all of products were also provided in SI, ¹H & ¹³C NMR Spectrum were also attached.
- 17. Bruggink, A.; McKillop, A. Tetrahedron 1975, 31, 2607-2619.
- Aalten, H. L.; Koten, G. van; Goubitz, K.; Staml, C. H. Organometallics 1989, 8, 2293–2299.

ACCEPTED MANUSCRIPT

- A facile and economical catalytic synthesis of 3-substituted isocoumarins was achieved.
- 2-Chloro-benzoic acids/amides were utilized as starting materials with 1,3-diketones.
- Copper nanoparticle catalyst shows highly • catalytic activity for the 2-chloro-substituted Acceleration substrates.