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12 Abstract

13 Naturally occurring sinapine was successfully synthesized through 

14 a proline-mediated Knoevenagel-Doebner condensation in ethanol. 

15 This synthetic process involving bio-based syringaldehyde, 

16 Meldrum’s acid and choline chloride, offers a sustainable 

17 alternative to the existing low yield pathways. This two-step 

18 strategy gives access to sinapine in a 52% overall yield, and has 

19 been implemented to the synthesis of sinapine analogs using 4-

20 hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and vanillin as 

21 precursors giving target molecules with 34-61% overall isolated 

22 yields. Purity of synthetic sinapine and that of its analogs (ca. 

23 95%) was assessed by NMR and HPLC-MS analysis. Furthermore, 

24 antioxidant and antimicrobial activities were assessed and 

25 confirmed the potential of this series of molecules.

26 Keywords: Sinapine, Knoevenagel-Doebner, Meldrum's acid, Choline chloride, Choline 

27 phenolic esters

28

Page 3 of 23

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



3

29

30 Introduction

31 Naturally occurring sinapic acid (1) and its main esters (e.g., sinapoyl-glucose, sinapoyl-malate 

32 and sinapoyl-choline aka sinapine) have shown great potential in a wild range of applications 

33 thanks to their potent anti-UV, antioxidant, anti-inflammatory, anti-cancer and/or anti-microbial 

34 properties (Scheme 1).1-9 These compounds can be found in Nature in a wide variety of products 

35 such as fruits, vegetables, cereals or Brassicaceae seeds.10 The latter are particularly of interest 

36 due to their relatively high contents in sinapic analogs and their availability, especially rapeseeds 

37 that can contain up to 18,000 µg of sinapic derivatives per gram of seed.11, 12 After obtaining the 

38 oil by cold pressure, the resulting seed cake can contain up to 10,000 µg of sinapic analogs per 

39 gram of dry weight.12, 13 Moreover, the global production of rapeseed cake was at an average of 69 

40 millions of tons between 2013 and 2016, which represents a capacity of 69 kT sinapic acid per 

41 year.14 This potential source of sinapic derivatives has generated many research works aimed at 

42 efficiently extracting sinapic compounds from this agricultural byproduct.15-18 The same 

43 observation can be made for mustard bran that contains up to 125,000 µg of sinapic derivatives 

44 per gram of dry weight.4, 19, 20 Although great advances have been made in this area, no viable 

45 industrial process has been developed yet. Therefore, alternatives must be found to access these 

46 valuable molecules. 
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48 Scheme 1. Wathelet et al. synthesis strategy to sinapine
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49

50 While straightforward synthesis of sinapoyl-malate and sinapoyl-glucose have been described in 

51 the literature, it is more ambiguous in the case of sinapine.21, 22 A method has been reported by 

52 Wathelet et al., based on the work of Clausen et al., in a communication poster involving sinapoate 

53 (2) and bromocholine bromide (3) (Scheme 2).23, 24 This method presents several disadvantages 

54 because of (1) the relative low availability and high price of sinapic acid (1), (2) the significant 

55 toxicity as well as the corrosivity of bromocholine bromide (3), and (3) the necessity of performing 

56 a precise titration for the formation of 2.25 Moreover, this method has been developed on a ~50 mg 

57 scale and the yields are not clearly reported. It is noteworthy to mention that the synthesis of 

58 sinapine analogs through this method has been reported in the literature using chlorocholine 

59 chloride as precursor.26 Another strategy consisted in an esterification of sinapic acid, via an acyl 

60 chloride and using dimethyl-ethanolamine, followed by a methylation of the resulting 

61 intermediate.27, 28

62
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63 Scheme 2. Synthetic strategy to sinapine from Wathelet et al. [9a]

64 Under such consideration, a sustainable and straightforward strategy to access sinapine remained 

65 to be developed. Herein, we report a convergent retrosynthetic approach starting with the 

66 transesterification of Meldrum’s acid (4) with choline halide (5) followed by a Knoevenagel-

67 Doebner condensation of the resulting choline chloride malonate monoester (6) with lignin-derived 

68 and readily available syringaldehyde (7) (Scheme 3). This approach was then successfully 

69 implemented to other p-hydroxybenzaldehydes and the antioxidant and antimicrobial properties of 

70 the resulting choline esters were assessed.
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72 Scheme 3. Retrosynthetic approach for the synthesis of sinapine

73 Materials and Methods

74 General: Evaporations were conducted under reduced pressure at temperatures below 40 °C 

75 unless otherwise noted. 1H NMR spectra were recorded at 300 MHz at 25 °C in the indicated 

76 solvent and referenced to residual protons (CD3OD, 4.87 ppm). 13C NMR spectra were recorded 

77 at 75 MHz at 25 °C in the indicated solvent and referenced to solvent (CD3OD, 49.2 ppm). 

78 HPLC/MS method: LC-MS analyzes were performed on an Agilent 1290 system, equipped with 

79 a PDA UV detector, and a 6545 Q-ToF mass spectrometer (Wilmington, DE, USA). The source is 

80 equipped with a JetStream ESI probe operating at atmospheric pressure. The spectrometer was 

81 configured according to the following settings: mass range m/z 50–1000, gas temperature 325 °C, 

82 gas flow 8 L/min, nebulizer 35 psi, sheath gas temperature 350 °C, sheath gas flow 11 L/min. 

83 Results were recorded and processed with Mass Hunter B.08.000 software. Elution was performed 

84 using a Zorbax Eclipse plus C18 (1.8 µm, 50 x 2.1 mm; Agilent) with the column heated at 40 °C. 

85 The mobile phases were 0.1% formic acid in water (solvent A) and acetonitrile (solvent B), the 

86 flow rate was set at 0.4 mL/min and followed the gradient: 0-3 min at 5% of B, 3-4 min from 5% 

87 to 10% B, 4-13 min from 10% to 99% B, 13-16 min at 99% B, 16-18 min from 99% to 5% B. The 

88 sample injection volume was 1 µL and the autosampler was tempered at 10 °C. The UV acquisition 

89 was carried out at 250 nm and 320 nm with a reference set at 360 nm.
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90 Method for the synthesis of Sinapine and its analogs: Meldrum’s acid (1.51 g, 10.5 mmol) and 

91 choline chloride (980 mg, 7 mmol) were mixed together in acetonitrile (3.5 mL, 2M) and heated 

92 at reflux for 5 hours. The resulting mixture was dried in vacuo and dissolved in ethanol (630 mM, 

93 10 mL). The corresponding aldehyde (6.9 mmol) and proline (725 mg, 6.9 mmol) were then added 

94 and the solution was refluxed overnight. The crude mixture was concentrated in vacuo, dissolved 

95 in deionized water (10 mL) and directly applied to a C18 reversed phase flash (95/5, 

96 water/methanol). The fraction containing the desired product were combined and dried in vacuo 

97 to yield the pure product.

98 Coumaroyl-Choline: 34% isolated yield. M.p. 240-242 °C. 1H NMR (300 MHz, CD3OD): δ = 

99 7.70 (d, J = 15.9 Hz, 1H, H-3), 7.50 (d, J = 8.4 Hz, 1H, H-5 and H-9), 6.83 (d, J = 8.4 Hz, 2H, H-6 

100 and H-8), 6.39 (d, J = 15.9 Hz, 1H, H-2), 4.67 (m, 2H, H-10), 3.81 (m, 2H, H-11), 3.30 (s, 9H, H-

101 12). 13C NMR (75 MHz, CD3OD): δ = 167.0 (s, C-1), 160.7 (s, C-7), 146.8 (d, C-3), 130.5 (d,C-5 

102 and C-9), 125.9 (s, C-4), 116.0 (d, C-6 and C-8), 113.1 (d, C-2), 65.3 (t, C-11), 57.9 (t, C-10), 53.6 

103 (q, C-12). TOF MS ES+: [M]+ for C14H20NO3
+: m/z 250.1438; found: m/z 250.1437.

104 Caffeoyl-Choline: 61% isolated yield. M.p. 183-185 °C. 1H NMR (300 MHz, CD3OD): δ = 7.61 

105 (d, J = 15.9 Hz, 1H, H-3), 7.09 (d, J = 1.8 Hz, 1H, H-9), 6.98 (dd, J = 1.8 and 8.4 Hz, 1H, H-8), 

106 6.80 (d, J = 8.4 Hz, 1H, H-5), 6.31 (d, J = 15.9 Hz, 1H, H-2), 4.65 (m, J = Hz, 1H, H-10), 3.80 (m, 

107 5H, H-11 and H-13), 3.27 (s, 9H, H-12). 13C NMR (75 MHz, CD3OD): δ = 166.5 (s, C-1), 148.5 

108 (s, C-7), 146.7 (s, C-6), 145.5 (d, C-3), 126.1 (s,C-4), 121.9 (d, C-9), 115.2 (d, C-8), 114.0 (d, C-

109 2), 112.6 (d, C-5), 64.8 (t, C-11), 57.4 (t, C-10), 53.1 (q, C-12). TOF MS ES+: [M]+ for 

110 C14H20NO4
+: m/z 266.1387; found: m/z 266.1385.

111 Feruloyl-Choline: 50% isolated yield. M.p. 109-111 °C. 1H NMR (300 MHz, CD3OD): δ = 7.50 

112 (d, J = 15.9 Hz, 1H, H-3), 7.06 (d, J = 1.8 Hz, 1H, H-9), 6.96 (dd, J = 1.8 and 8.1 Hz, 1H, H-6), 

113 6.76 (d, J = 8.1 Hz, 1H, H-5), 6.27 (d, J = 15.9 Hz, 1H, H-2), 4.57 (m, J = Hz, 1H, H-10), 3.76 (m, 
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114 5H, H-11 and H-13), 3.23 (s, 9H, H-12). 13C NMR (75 MHz, CD3OD): δ = 167.9 (s, C-1), 150.6 

115 (s, C-8), 149.2 (s, C-7), 147.7 (d, C-3), 127.3 (s,C-4), 124.4 (d, C-5), 116.5 (d, C-6), 114.3 (d, C-

116 2), 111.8 (d, C-9), 66.0 (t, C-11), 58.9 (t, C-10), 56.5 (q, C-13), 54.6 (q, C-12). TOF MS ES+: [M]+ 

117 for C15H22NO4
+: m/z 280.1543; found: m/z 280.1545.

118 Sinapine: 48% isolated yield. M.p. 82-84 °C. 1H NMR (300 MHz, CD3OD): δ = 7.44 (d, J = 15.9 

119 Hz, 1H, H-3), 6.74 (s, 2H, H-5 and 9), 6.24 (d, J = 15.9 Hz, 1H, H-2), 4.56 (m, 2H, H-10), 3.78 

120 (m, 2H, H-11), 3.74 (s, 6H, H-13), 3.24 (s, 9H, H-12). 13C NMR (75 MHz, CD3OD): δ = 167.7 (s, 

121 C-1), 149.2 (s, C-6 and 8), 147.8 (d, C-3), 139.5 (s, C-7), 126.2 (s, C-4), 114.7 (d, C-2), 106.9 (d, 

122 C-5 and 9), 66.1 (t, C-11), 59.9 (t, C-10), 56.8 (q, C-12), 54.6 (q, C-13). TOF MS ES+: [M]+ for 

123 C16H24NO5
+: m/z 310.1649; found: m/z 310.1648.

124 Antioxidant assay: 190 μL of homogeneous DPPH solution (200 μM, 2,2-DiPhenyl-1-

125 PicrylHydrazyl) in ethanol was added to a well containing 10 μL of coumaroyl-, caffeoyl-, 

126 feruloyl-choline or sinapine in ethanol at different concentrations (from 400 μM to 12.5 μM). The 

127 reaction was followed by a microplate Multiskan FC, performing 1 scan every 5 min for 7.5 h at 

128 515 nm. The use of different amounts of substrate give the EC50 value, which is describe as the 

129 efficient concentration needed to reduce the initial population of DPPH by half.

130 Antimicrobial assay: Overnight cultures of Escherichia coli K12 strain were diluted to an OD600 

131 = 0.1 in a sterile 96-well microplate with fresh LB medium with or without the addition of 

132 coumaroyl-, caffeoyl-, feruloyl-choline or sinapine at a final concentration of 10, 5, 2.5, 1.25, 0.630, 

133 0.320, 0.160, 0.080, 0.040 or 0.020 %w, and the optical density at 600 nm was measured every 15 

134 min. Proper blank controls were used in each microplate. Wells containing the MBCs and MICs 

135 were streaked onto Agar plates and incubated for 24 hours.

136
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137 Results and Discussion

138 Synthesis of sinapine and its analogs. The first step of this study dealt with the formation of the 

139 choline chloride malonate monoester (9). Unfortunately, the latter cannot be readily obtained 

140 through classical Fischer esterification. Indeed, under such conditions, the desymmetrization of 

141 malonic acid with choline chloride is difficult due to the even reactivity of the two carboxylic acid 

142 functions. Therefore, an alternative strategy consisting in performing a transesterification on 

143 Meldrum’s acid with choline chloride was investigated (Scheme 4).29 

144

HO
N

ClO O

O O
O

N

Cl

O

HO

O

O
+

5 8 9

+

145 Scheme 4. Formation of the choline chloride malonate monoester (9)

146

147 Preliminary experiments with an equimolar mixture of choline chloride and Meldrum’s acid with 

148 or without solvent (acetonitrile 2M) showed the degradation of Meldrum's acid into malonic acid, 

149 and further into acetic acid (Table 1, entries 1 and 4). In order to increase the conversion and to 

150 find the optimal conditions, the reaction was carried out with or without solvent at different choline 

151 chloride/Meldrum’s acid ratio over a 3-hour period. The reactions without solvent were performed 

152 at 90 °C, melting point of Meldrum's acid, and the reaction in acetonitrile at 82 °C, boiling 

153 temperature of the solvent. A slight excess of Meldrum's acid (1.25 equivalents) resulted in a better 

154 conversion with or without solvent (Table 1, entries 2 and 5). Increasing this excess to 1.5 

155 equivalents allowed to reach 100% conversion in presence of solvent (Table 1, entry 3), while 85% 

156 conversion was observed without solvent (Table 1, entry 6). It seems that acetic acid formed in 

157 situ hindered the reaction completion by favorize the degradation of Meldrum's acid if not diluted 

158 in a solvent. Therefore, the optimal conditions to obtain the monoester 9 in quantitative conversion 
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159 appeared to be in acetonitrile at 82 °C with 1.5 equivalents of Meldrum's acid (characteristic peak 

160 at 1.70 ppm, ESI-S5) (Table 1, entry 3). However, in such conditions, residual Meldrum’s acid 

161 was observed. This issue was easily overcome by extending the reaction time to 5 hours (Table 1, 

162 entry 7).

163 Table 1. Optimization of the choline chloride malonate monoester synthesis.

Entry Solvent
Temperature 

(°C)
Duration (h)

Ratio choline 

chloride/Meldrum's 

acid

Conversion 

(%) [a]

1 Acetonitrile 82 3 1:1 60

2 Acetonitrile 82 3 1:1.25 76

3 Acetonitrile 82 3 1:1.5 100

4 None 90 3 1:1 65

5 None 90 3 1:1.25 79

6 None 90 3 1:1.5 85

7 Acetonitrile 82 5 1:1.5 100

164 [a] Conversion were determined by 1H NMR of the crude reaction mixture.

165 After concentration in vacuo, the crude reaction mixture (Table 1, entry 7) was directly submitted 

166 to a proline-mediated Knoevenagel-Doebner condensation with syringaldehyde in ethanol to 

167 afford sinapine.30, 31 The mechanism of this reaction, previously described by Peyrot et al., involves 

168 the activation of the aldehyde moiety through the formation of the iminium 12 which will then 

169 react with the monoester 9. The intermediary 13 thus formed will undergo decarboxylation to yield 
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170 14 that rearranges to regenerate proline and provide sinapine (Scheme 5). The latter can be easily 

171 purified through C18 reverse phase chromatography giving the pure product in a 48% isolated 

172 yield. Such approach avoids the use of the non-sustainable classical pyridine/piperidine system.32 

173 It is worth mentioning that transesterification of sinapine by ethanol occurred (up to 20% yield). 

174 Polar aprotic solvents such as THF, AcOEt and Cyrene® have been investigated to replace ethanol 

175 in order to overcome this issue, unfortunately, the results were not conclusive.

176
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177 Scheme 5. Proline-mediated Knoevenagel-Doebner condensation’s mechanism

178

179 This methodology was then implemented to benzaldehyde, 3,4-dihydroxybenzaldehyde and 

180 vanillin in order to yield coumaroyl-, caffeoyl- and feruloyl-choline, respectively. 

181

182

183
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184 Table 2. Isolated yields of sinapine analogs.

Substrate Product Yield (%) [a]

4-hydroxybenzaldehyde Coumaroyl-choline 34

3,4-dihydroxybenzaldehyde Caffeoyl-choline 61

Vanillin Feruloyl-choline 50

185 [a] Yields were calculated from isolated product after purification.

186 In all cases, quantitative consumption of the aldehyde was observed and isolated yields varied 

187 from 34 to 61% (Table 2). It is worth mentioning that these procedures have been validated at the 

188 gram-scale.

189 Characterization of sinapine and its analogs. The compounds thus formed and purified were 

190 characterized by UHPLC-MS. Mass analysis revealed that in all cases the major peak 

191 corresponded to the molecular ion (m/z 250, 266, 280 and 310 for coumaroyl-, caffeoyl-, feruloyl-

192 choline and sinapine, respectively). Additionally, two characteristic fragments corresponding to 

193 the loss of trimethylamine and choline were observed for each analog (m/z 59 and 103, 

194 respectively). The HPLC UV-detection chromatograms at 320 nm (Figures S-11 and 12) also 

195 showed another peak eluting at 0.5 min corresponding to residual choline as confirmed by 1H NMR 

196 analysis (ca. 5% mol). Finally, thanks to very different retention time, it was shown that 

197 coumaroyl-, caffeoyl-, feruloyl-choline and sinapine can be efficiently separated using reversed 

198 phase C18 chromatography, which is a very interesting feature if one wants to use a crude mixture 

199 of p-hydroxybenzaldehydes directly obtained after lignin-oxidation (Figure 1).
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200

201 Figure 1. HPLC UV-detection chromatograms superposition of coumaroyl (red peak), caffeoyl 

202 (black peak), feruloyl (blue peak) and sinapoyl-choline (green peak)

203 Evaluation of the antioxidant activity of sinapine and analogs. Antioxidant activities of p-

204 hydroxycinnamic acids are well described in the literature.1-9 An efficient method to assess this 

205 property is through DPPH assay which determines the capacity of a given molecule to scavenge 

206 stable DPPH free radicals, usually expressed as the quantity of molecule needed to reduce half of 

207 the initial population of DPPH radicals (aka EC50, the lower the EC50, the higher the antioxidant 

208 activity is). In this study, the EC50 value for sinapine was determined as being 18.1 nmol, which is 

209 of the same order of magnitude than that of sinapine thiocyanate measured by Wei et al. using the 

210 same assay (17.6 nmol).33 This study was extended to coumaroyl-, caffeoyl- and feruloyl-choline, 

211 giving EC50 values of >150, 6.26 and 36.73 nmol, respectively. The impact on the antioxidant 

212 activity of the substituents nature, number, and position on the aromatic cycle is well known 

213 phenomenon34 As already reported, the extra methoxy group of sinapine increases the antiradical 

214 activity compared to that of feruloyl-choline (18.1 nmol vs. 36.73 nmol); so does the extra hydroxy 

215 group of the caffeoyl-choline (6.26 nmol vs. 36.73 nmol). It is noteworthy to mention that the 

216 impact of the hydroxy group on the antioxidant properties is higher than that of the methoxy group 

217 (6.26 nmol vs. 18.1 nmol), as it provides an extra phenol moiety able to quench a second radical. 

218 Compared to commercially available fossil-based antioxidant such as Irganox 1010 (plastic 
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219 industry), Trolox (pharmaceutical industry)BHA (Butylated HydroxyAnisole) and BHT 

220 (Butylated HydroxyToluene), sinapine and its analogs have slightly lower free radicals scavenging 

221 abilities (Table 3). Nevertheless, these molecules are biobased and show high-water solubility 

222 which can be real benefits in the cosmetics and agri-food industry.

223 Table 3. EC50 values for commercially available antioxidants, sinapine and its analogs.

Compound EC50 (nmol)

Irganox 1010 6.89 ± 0.28

Trolox 4.02 ± 0.34

BHT 7.11 ± 0.26

BHA 3.67 ± 0.41

Ethyl-Sinapate 13.7 ± 0.66

Coumaroyl-choline >150

Caffeoyl-choline 6.26 ± 0.11

Feruloyl-choline 36.73 ± 1.52

Sinapine 18.1 ± 0.57

224

225 Antimicrobial activity of sinapine and analogs. The antimicrobial potential of sinapine and its 

226 analogs has also been assessed using Escherichia coli K12 strain. The microorganism was put in 

227 presence of different concentrations of the studied compounds and the growth was measured by 

228 optical density at 600 nm (OD600). While sinapine showed minimal inhibitory concentration (MIC) 
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229 at 10%w, feruloyl-, caffeoyl- and coumaroyl-choline gave better results at 5, 1.25 and 1.25%w, 

230 respectively. The minimal bactericidal concentration (MBC) was also observed at 10, 5, 2.5 and 

231 2.5%w for sinapine, feruloyl-, caffeoyl- and coumaroyl-choline, respectively (Figure 2). It has to 

232 be noted that, as previously observed for phenolic acids.35 the more methoxy groups on the 

233 aromatic ring, the lower the antimicrobial activity. As a comparison, natural antibacterial thymol 

234 has a MBC of 0.2%w.36 MICs and MBCs were confirmed by streaking the culture media on agar 

235 plates followed by an incubation at 37 °C for 24 hours. MICs showed colonies in the agar plates, 

236 where MBCs showed no colonies. It is important to note that the augmentation of the absorbance 

237 at the MBCs of caffeoyl-choline and sinapine are due to strong coloration of the culture media 

238 (most likely due to degradation products).

239
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240
241

242

243
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244 Figure 2. Growth pattern Escherichia coli K12 strain in the presence of coumaroyl-, caffeoyl-, 

245 feruloyl-choline and sinapine. E. coli was grown in LB without (0) or with addition of the 

246 indicated concentrations of studied compounds (in %w), and the OD600 was measured at the 

247 indicated time points. 

248 Herein, we have developed and optimized a sustainable synthetic approach to sinapine, feruloyl-, 

249 caffeoyl- and coumaroyl-choline through a Knoevenagel-Doebner condensation of the 

250 corresponding p-hydroxybenzaldehydes and the asymmetric choline chloride malonate monoester 

251 obtained from Meldrum’s acid. This two-step strategy provides the desired products in isolated 

252 yields from 34 to 61%. The compounds thus formed were characterized through UHPLC-MS and 

253 NMR analysis evaluating their purities being ~95%. Finally, their antioxidant and antimicrobial 

254 activities were assessed, and data confirmed their potential as (1) alternatives to current fossil-

255 based antioxidant, and (2) antimicrobial. 

256 Abbreviations used

257 AcOEt: Ethyl Acetate

258 BHA: Butylated HydroxyAnisole

259 BHT: Butylated HydroxyToluene

260 DPPH: 2,2-DiPhenyl-1-PicrylHydrazyl

261 EC50: half maximal Effective Concentration

262 HPLC: High-Performance Liquid Chromatography

263 LC-MS: Liquid Chromatography-Mass Spectrometry

264 LB medium: Lysogeny Broth medium

265 MBC: Minimum Bactericidal Concentration

266 MIC: Minimum Inhibition Concentration

267 NMR: Nuclear Magnetic Resonance

268 OD600: Optical Density at 600 nm

269 Q-ToF: Quadrupole-Time of Flight
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270 THF: TetraHydroFuran

271 UHPLC: Ultra High-Performance Chromatography
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