Accepted Manuscript

Design, synthesis, biological evaluation and molecular docking studies of phenylpropanoid derivatives as potent anti-hepatitis B virus agents

Sheng Liu, Wanxing Wei, Yubin Li, Xu Liu, Xiaoji Cao, Kechan Lei, Min Zhou

PII: S0223-5234(15)00223-8

DOI: 10.1016/j.ejmech.2015.03.056

Reference: EJMECH 7801

To appear in: European Journal of Medicinal Chemistry

Received Date: 5 November 2014

Revised Date: 24 March 2015

Accepted Date: 25 March 2015

Please cite this article as: S. Liu, W. Wei, Y. Li, X. Liu, X. Cao, K. Lei, M. Zhou, Design, synthesis, biological evaluation and molecular docking studies of phenylpropanoid derivatives as potent anti-hepatitis B virus agents, *European Journal of Medicinal Chemistry* (2015), doi: 10.1016/ j.ejmech.2015.03.056.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A series of phenylpropanoid derivatives were discovered as potent anti-HBV agents. Compound 4c-1 showed the most potent anti-HBV activity, demonstrating potent inhibitory effect not only on the secretion of HBsAg (IC₅₀ = 14.18 μ M, SI = 17.85) and HBeAg (IC₅₀ = 6.20 μ M, SI = 40.82) secretion but also HBV DNA replication (IC₅₀ = 23.43 μ M, SI = 10.80). The structure-activity relationships of were analysed and docking study was carried out to explore the molecular interactions and a molecular target by MOE.

1	Design, synthesis, biological evaluation and molecular docking studies of
2	phenylpropanoid derivatives as potent anti-hepatitis B virus agents
3	Sheng Liu ¹ , Wanxing Wei * ¹ , Yubin Li ² , Xu Liu ¹ , Xiaoji Cao ³ , Kechan Lei ¹ , Min Zhou ¹
4	¹ Department of Chemistry, Guangxi University, Nanning, 530004, P. R. China
5	² School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou
6	510275, P. R. China
7	³ Center of Analysis and Testing, Zhejiang University of Industry, Hangzhou, 310014, P. R.
8	China
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	<i>y</i>
20	
21	

^{*}Corresponding author. Tel.: +86 7713272601. fax +86 7713272601. E-mail: <u>wxwei@gxu.edu.cn</u> (W. Wei)

22	Abstract: A series of phenylpropanoid derivatives were synthesized, and their anti-hepatitis B
23	virus (HBV) activity was evaluated in HepG 2.2.15 cells. Most of the synthesized derivatives
24	showed effective anti-HBV activity. Of these compounds, compound 4c-1 showed the most
25	potent anti-HBV activity, demonstrating potent inhibitory effect not only on the secretion of
26	HBsAg (IC ₅₀ = 14.18 μ M, SI = 17.85) and HBeAg (IC ₅₀ = 6.20 μ M, SI = 40.82) secretion but
27	also HBV DNA replication (IC ₅₀ = 23.43 μ M, SI = 10.80). The structure-activity relationships
28	(SARs) of phenylpropanoid derivatives had been discussed, which were useful for
29	phenylpropanoid derivatives to be explored and developed as novel anti-HBV agents.
30	Moreover, the docking study of all synthesized compounds inside the HLA-A protein (PDB
31	ID: 3OX8) active site were carried out to explore the molecular interactions and a molecular
32	target for activity of phenylpropanoid derivatives with the protein using a moe-docking
33	technique. This study identified a new class of potent anti-HBV agents.
34	Keywords: Synthesis, Phenylpropanoid derivatives, Anti-HBV activity, Structure-activity
35	relationships, Molecular docking
36	
37	
38	
39	
40	
41	
42	
43	

44 1. Introduction

45	Hepatitis B virus (HBV) infection is a serious worldwide health problem, which can cause
46	both acute and chronic infections of the liver and may lead to lifelong infection, cirrhosis,
47	hepatocellular carcinoma, liver failure, or death [1, 2]. There are about 350-400 million
48	people worldwide are chronically infected with HBV with 0.5-1.2 million global deaths per
49	year [3]. Currently, therapies including immunomodulator, interferons (interferon-alpha and
50	pegylated interferon), and nucleoside drugs (lamivudine, adefovir dipivoxil, entecavir,
51	telbivudine and tenofovir) for treating HBV are still unsatisfactory, due to high
52	recurrence, drug resistance and inevitable side effects [4]. Therefore, there exists a
53	significant unmet medical need to explore novel classes of drugs with different antiviral
54	targets and mechanisms for anti-HBV purposes.
55	Natural products and their derivatives possessing various skeletons could provide a great
56	opportunity for finding novel HBV inhibitors [5-9]. In our continuing research for
57	Phyllanthus niruri L., a traditional Chinese medicinal herb used in folk medicine for liver
58	protection and antihepatitis B, anti-HBV active constituents, such as niranthin, nirtetralin,
59	nirtetralin A and nirtetralin B, were investigated [10-12]. In view of their novel structural
60	template, which differs from those of all reported anti-HBV agents, we designed and
61	synthesized a series of analogues in order to screen and determine structure-activity
62	relationships (SARs) and develop more potent anti-HBV agents. As the facts that the
63	anti-HBV active lignans possess the same structural fragment, 3,4-dimethoxyphenyl,
64	3,4,5-trimethoxyphenyl, benzo[d][1,3]dioxol-5-yl, or 4-methoxybenzo[d][1,3]dioxole-5-yl, in
65	their molecular structures, we selected (E)-3-(3,4-dimethoxyphenyl)acrylic acid (a),

66	(E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (b), (E)-3-(benzo[d][1,3]dioxol-5-yl)acrylic acid
67	(c) and (E)-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylic acid (d) as the main scaffold for the
68	design and synthesis of novel compounds as potent anti-HBV agents. According to molecular
69	hybridization principle, esterification of natural compounds is an effective approach for
70	achieving promising derivatives, by which two active parts can be easily hybridized to
71	enhance activity [13, 14]. Some derivatives of the four acrylic acids were synthesized for
72	treatment of HIV, antiproliferative activity, antioxidation and antitumor activity [15-18], and
73	some non-nucleoside anti-HBV agents such as isoflavone analogs also have been reported
74	[19-21], but no investigation was concerned with phenylpropanoid analogs for HBV activity.
75	Consequently, our efforts were devoted to design, synthesize, pharmacological evaluation in
76	vitro and SARs elucidation of a series of phenyl acryloyl type oxime esters based on the four
77	acrylic acids as anti-HBV agents.
78	A QSAR study was carried out for all the series of molecules to help in early preclinical
79	development and avoid costly late-stage preclinical [22, 23]. In addition, attempt to elucidate
80	the molecular interactions and a molecular target for activity was achieved by molecular
81	docking of all synthesized compounds into the active site using molecular operating
82	environment (MOE).

83 2. Results and Discussion

84 2.1. Chemistry

General synthesis for the intermediate and target compounds is depicted in Scheme1. Substituted benzaldehyde was reacted with hydroxylamine hydrochloride in EtOH

87	in the presence of sodium acetate to yield oxime 1-3 in a good yield [24]. Intermediates
88	2a-d were prepared by Knoevenagel condensation of malonic acid and the aldehyde
89	group of four benzaldehydes with yields of 80%-90% [25]. The final oxime ester
90	derivatives (4a-1~ 4a-3), (4b-1~ 4b-3), (4c-1~ 4c-3), (4d-1~ 4d-3) were obtained by reaction
91	of oxime with cinnamoyl chloride 3a-d in the presence of TEA, which was obtained by
92	reaction of substituted phenylacrylic acid 2a-d and thionyl chloride in DCM [26].
93	The structures of the newly synthesized compounds (4a-1~4a-3), (4b-1~4b-3), (4c-1~
94	4c-3), (4d-1~ 4d-3) were characterized by ¹ H NMR, ¹³ CNMR and MS data and their data are
95	presented in the experimental section. ¹ H NMR spectra of the derivatives showed a singlet at
96	about 8.35-8.76 ppm corresponding to N=CH proton. Two doublets at 6.37-6.74 and
97	7.53-7.84 ppm with J=15.25-15.91 Hz corresponding to trans hydrogens of CH=CH
98	respectively. The singlet at 3.89-3.96 ppm attributed to $O-CH_3$ protons, and at 6.00-6.04
99	corresponded to OCH ₂ O protons. The chemical shifts of aromatic hydrogens of the phenyl
100	ring appeared as multiplets in the region δ 6.67-7.21. ¹³ C NMR chemical shifts for title
101	compounds were observed in their expected regions. ¹³ C NMR spectrum for the derivatives
102	showed signals at 55.26-61.00, 101.45-102.12, 155.15-160.04 and 162.31-165.92
103	corresponding to CH ₃ , CH ₂ , C=N and C=O, respectively.

104 2.2. QSAR study

The 3D structures of all the compounds were generated using the Built Optimum option of
Hyperchem software (version 8.0), and subsequently energy minimized using MM+ force
field. Then, the structures were fully optimized. Molecular descriptors were determined by

108 QSAR study, including logP, molar refractivity, surface area, volume, hydration energy and polarizability, and the results showing that all molecules have drug like properties (Table 1). 109 110 All the compounds have the molecular weight ranging from 285 to 350 Da. The log P values 111 of these compounds are superior to act as drug which is -2.14 to 0.80 and the molar 112 refractivity is in the range of 80-100. 113 2.3. Molecular docking Molecular docking studies of phenylpropanoid derivatives were carried out using MOE 114 115 2008.10 as docking software in order to rationalize biological activity results and understand 116 the various interactions between ligand and protein in the active site in detail. The crystal structure of HLA-A protein (PDB ID: 30X8), which was associated with severe liver 117 118 inflammation in Chinese patients with chronic HBV infection, was used for docking study. 119 And the 'Site Finder' tool of the program was used to search for its active site. We performed three docking procedures for each ligand and the best configuration of each of the 120 121 ligand-receptor complexes was selected based on energetic grounds. The affinity scoring function δG was used to assess and rank the receptor-ligand complexes. The docking scores 122 123 and the hydrogen bonding strength of all the molecules were shown in Table 2. 124 The synthesized series derivatives had dock score ranging from -12.4670 to -18.3979. 125 Compound 4c-1 was showing the best least docking score of -18.3979 and the next best least 126 docking score was found with 4d-1 followed by 4d-2. Two hydrogen bonds were present in the derivative 4a-1, 4b-1 and 4c-1, which was the highest among the series. Compound 4c-1 127 was found to be forming two hydrogen bonds of lengths 2.02 and 3.49 Å each with O of O-N 128

129	in the oxime ester group and N in pyridine ring of Tyr27 respectively (Fig. 1). Compound						
130	4d-1 only formed one hydrogen bond of length 3.03 Å with O-N in oxime ester group of						
131	Tyr27 (Fig. 2). Compound 4d-2 also formed only one hydrogen bond of bond length 2.87 Å						
132	with O-N in oxime ester group of Tyr27 (Fig. 3). The compounds 4c-1, 4d-1 and 4d-2						
133	exhibited the best least docking score had good in vitro anti-HBV activity.						
134	2.4. Anti-HBV activity						
135	All the newly synthesized derivatives were tested for their anti-HBV activity, namely						
136	inhibiting the secretion of HBsAg, and HBeAg in HepG 2.2.15 cells using lamivudine (3TC, a						
137	clinically popular anti-HBV agent) as a positive control. The anti-HBV activity of each						
138	compound was expressed as the concentration of compound that achieved 50% inhibition						
139	(IC_{50}) to the secretion of HBsAg and HBeAg. And the cytotoxicity of each compound was						
140	expressed as the concentration of compound required to kill 50% (CC_{50}) of the HepG 2.2.15						
141	cells. The selectivity index (SI), a major pharmaceutical parameter that estimates possible						
142	future clinical development, was determined as the ratio of CC_{50} to IC_{50} . The results of their						
143	anti-HBV activity and cytotoxicity were listed in Table 3.						
144	The treatment of HBV-transfected HepG2.2.15 cells with various concentrations of drugs						
145	for 9 d exhibited a time-and dose-dependent inhibitory effect on the secretion of HBsAg and						
146	HBeAg (Fig. 4). In synthesized derivatives, all compounds showed better activity inhibiting						
147	the secretion of HBsAg than that of lamivudine. And eleven of twelve derivatives, with higher						
148	inhibitory activity against the secretion of HBeAg than lamivudine were obtained except for						

149 4a-3. Compound 4c-1 showed the most potent anti-HBV activity, demonstrating potent

150	inhibitory effect on the secretion of HBsAg (IC ₅₀ = 14.08 μ M, SI = 17.85) and HBeAg (IC ₅₀ =
151	6.20 μ M, SI = 40.82) but appeared toxic (CC ₅₀ = 253.11 μ M). Compound 4d-1 showed the
152	next most potent inhibitory to the secretion of HBsAg (IC ₅₀ =62.79 μ M) and HBeAg (IC ₅₀ =
153	72.91 μ M). Compared to compound 4d-1, compound 4d-2 relatively low inhibitory potency to
154	the secretion of HBsAg (IC ₅₀ = 63.51 μ M) and HBeAg (IC ₅₀ = 75.26 μ M), but weak toxic
155	$(CC_{50} = 819.58 \ \mu\text{M})$ led to relatively high SI values (SI _{HBsAg} = 12.90, SI _{HBeAg} = 10.89).
156	Importantly, the most active compounds 4c-1, 4c-2, 4d-1, 4d-2 and 4d-3 with high
157	activities against HBsAg and HBeAg were selected to investigate inhibition of HBV DNA
158	replication using lamivudine as the reference drug. Compounds 4c-1, 4d-1, and 4d-2 exhibited
159	anti-HBV activity with their IC ₅₀ values against HBV DNA replication of 23.43, 95.04,
160	139.73 μ M, respectively. Compounds 4c-1, 4d-1, and 4d-2 displayed inhibiting not only
161	HBsAg and HBeAg secretion but also HBV DNA replication, however, 3TC showed
162	significantly activity against HBV DNA replication (IC ₅₀ = 6.86) while showed little
163	inhibitory on HBsAg and HBeAg secretion.

164 2.5. Structure-activity relationship

The start reactants substituted benzaldehyde 1a-d, intermediates 2a-d and oximes 1-3 showed low suppressant properties on the HBV while most of the derivatives showed high potency activity against of the secretion of HBsAg and HBeAg as shown in Table 3. In the docking study, we also found that the O of O-N in the oxime ester group interacted with Tyr27 by hydrogen bond. It indicated that oxime ester group (O=C-O-N=C) of the newly synthesized derivatives might be a good target for further

171 lead optimization by introduction the rational substitutions.

172	Derivatives 4a-1 to 4d-1, 4a-2 to 4d-2 and 4a-3 to 4d-3 with the same oxime groups
173	respectively showed different anti-HBV activity and cytotoxicity. Derivative 4d-2, with IC_{50}
174	values of 63.51 μ M and 75.26 μ M for HBsAg and HBeAg respectively, was showing the
175	most effective on inhibiting HBsAg and HBeAg secretion and the next was 4c-2 (HBsAg IC_{50}
176	= 64.60 μ M, HBeAg IC ₅₀ = 81.83 μ M), followed by 4b-2 (HBsAg IC ₅₀ = 173.31 μ M, HBeAg
177	$IC_{50} = 189.67 \ \mu$ M). It was similar to the derivatives 4a-1 to 4d-1 and 4a-3 to 4d-3 except that
178	compound 4c-1 (HBsAg IC ₅₀ =14.18 μ M, HBeAg IC ₅₀ = 6.20 μ M) was observed to show more
179	effective on inhibiting HBsAg and HBeAg secretion than that of 4d-1 (HBsAg $IC_{50} = 62.79$
180	μ M, HBeAg IC ₅₀ = 72.91 μ M) for its high cytotoxicity. Thus, after methoxy group introduced
181	to the 5-C of cinnamoyl group, the inhibitory effect of compounds 4b-1, 4b-2 and 4b-3 on
182	secretion of HBsAg and HBeAg slightly increased comparing to compounds 4a-1, 4a-2 and
183	4a-3 respectively. The introduction of the methoxy group to 5-C of 4d-1, 4d-2, and 4d-3 could
184	also increase their anti-HBV activity comparing to compounds 4c-1, 4c-2 and 4c-3
185	respectively. The substituent of 3,4-dimethoxy by 3,4-methylenedioxy could increase their
186	inhibitory effect on secretion of HBsAg and HBeAg compared 4a-1~3 with 4c-1~3, and
187	4b-1~3 with 4d-1~3. Compound 4a-2 displayed more cytotoxicity ($CC_{50} = 624.24 \ \mu M$) than
188	4b-2 (CC ₅₀ = 1049.90 μ M) and 4c-2 possessed higher cytotoxicity (CC ₅₀ = 479.62 μ M) than
189	4d-2 (CC ₅₀ = 819.58 μ M), which indicated that the introduction of the methoxy group to 5-C
190	could decrease cytotoxicity. Then, the cytotoxicity of 4c-2 was still stronger than that of 4a-2
191	and that of 4d-2 also stronger than 4b-2, indicating that the substituent of 3,4-dimethoxy by
192	3,4-methylenedioxy could increase the cytotoxicity. From the above results, it is indicated

193	that the introduction of methoxy group to 5-C could enhance the anti-HBV activity and
194	decrease cytotoxicity along with the high SI values, and the substituent of 3,4-dimethoxy by
195	3,4-methylenedioxy could increase activity and cytotoxicity along with relatively low SI
196	values.
197	Derivatives 4a-1~3, 4b-1~3, 4c-1~3 and 4d-1~3 contained the same phenylpropanoid part
198	respectively. 4a-1 showed the best anti-HBV activity (HBsAg IC_{50} = 151.87 µM, HBeAg IC_{50}
199	= 161.74 μ M) and the next was 4a-2 (HBsAg IC ₅₀ = 191.26 μ M, HBeAg IC ₅₀ = 201.65 μ M),
200	followed by 4a-3 (HBsAg IC ₅₀ = 228.67 μ M, HBeAg IC ₅₀ = 377.87 μ M). The order also
201	applied to 4b-1~3, 4c-1~3 and 4d-1~3. It suggested that the introduction of pyridine showed
202	relatively high potent anti-HBV activity than introduction of furan and thiophene. Compound
203	4a-1 showed cytotoxicity with CC_{50} values of 545.16 μ M. The cytotoxicity of derivatives 4a-3
204	$(CC_{50} = 574.33 \ \mu\text{M})$ decreased with thiophene group. Compound 4a-2 $(CC_{50} = 624.24 \ \mu\text{M})$
205	was observed with the weakest cytotoxicity with furan group. Actually, all the derivatives
206	obtained from oxime 2 did show weakest cytotoxicity, followed by that from oxime 3. It
207	indicated that the introduction of pyridine group could enhance the anti-HBV activity but
208	increase the cytotoxicity.
209	According to the results mentioned above, SARs were summarized as followed: (1)
210	5-OCH ₃ -substituted compounds with methylenedioxy at 13,14-C could provide higher
211	anti-HBV activity than other analogues. (1) The anti-HBV activity of oxime-substituted
212	compounds could be pyridine-substituted $>$ furan-substituted $>$ thiophene-substituted.

3. Conclusion

214	In summary, our design and synthesis have led to a series of non-nucleoside anti-HBV
215	agents by attaching of the oximes to cinnamic acids. Most of the derivatives displayed potent
216	anti-HBV activity with the $\rm SI_{HBsAg}$ values from 2.51 to 12.90 and $\rm SI_{HBeAg}$ values from 1.52 to
217	27.92. Interestingly, compounds 4c-1, 4d-1, and 4d-2 displayed inhibiting not only HBsAg
218	and HBeAg secretion but also HBV DNA replication, however, 3TC showed significantly
219	activity against HBV DNA replication. In addition, the docking study of the tested compounds
220	inside the HLA-A protein active site was predicted using a moe-docking technique. The
221	results of the in vitro anti-HBV activity study were consistent with the docking results
222	indicating that the anti-HBV effect of the prepared compounds may exert its anti-HBV
223	activity by inhibiting HLA-A. This study identified a new class of potent anti-HBV agents
224	and offered valuable information for seeking non-nucleoside anti-HBV drug candidates.

225 **4. Materials and methods**

226 4.1. General

Melting points were determined using electrothermal melting point apparatus WRX-4 227 228 (Shanghai, China) and were uncorrected. MS spectra were run on a Finnigan LCQ Deca XP MAX mass spectrometer (Thermo Fisher, San Jose, CA, USA) equipped with an ESI source 229 230 and an ion trap analyzer in the positive ion mode/in the negative ion. NMR spectra were recorded on Bruker AM 400 MHz (¹H/¹³C, 400 MHz/100 MHz) or Bruker DRX 500 MHz 231 (¹H/¹³C, 500 MHz/125 MHz) spectrometer (Bruker, Bremerhaven, Germany) and chemical 232 shifts were quoted in δ as parts per million (ppm) downfield with tetramethylsilane (TMS) as 233 234 internal reference. Coupling constants, J, are expressed in hertz (Hz). Column

- chromatography (CC): silica gel (200 300 mesh; Qingdao Makall Group Co., Ltd; Qingdao;
- 236 China). All reactions were monitored using thinlayer chromatography (TLC) on silica gel
- 237 plates. On the basis of NMR and HPLC (Thermo Fisher UltiMate 3000, USA) data, all final
- compounds reported in the manuscript are >95% pure.
- 4.2. Chemistry (Scheme 1)
- 240 4.2.1. General procedure for preparation of compounds 2a-d
- A mixture of compound 1 (1 equiv, 10 mmol), malonic acid (1.2 equiv, 12 mmol) and two
- drops of piperidine in pyridine (25 mL) was refluxed for 4 h and evaporated to remove
- 243 pyridine. The residue was suspended in H_2O (30 mL) and extracted with EtOAc (2×50 mL)
- which was further purified by recrystallization to afford 2a-d.
- 245 *4.2.1.1.* (*E*)-*3*-(*3,4-dimethoxyphenyl*)*acrylic acid* (*2a*). Yield 82%. m.p. 181-183°C. ESIMS:
- 246 $m/z 208.0600 [M]^+$, calc. for $C_{11}H_{12}O_4$ (208.21) [27].
- 247 *4.2.1.2.* (*E*)-*3*-(*3,4,5-trimethoxyphenyl*)*acrylic acid* (*2b*). Yield 90%. m.p. 126-127°C. ESIMS:
- 248 m/z 238.6 [M]⁺, 237.6 [M-H]⁺, calc. for $C_{12}H_{14}O_5$ (238.24) [28].
- 249 *4.2.1.3.* (*E*)-*3-(benzo[d][1,3]dioxol-5-yl)acrylic acid (2c).* Yield 85%. m.p. 242-244 °C.
- 250 ESIMS: m/z 192.2 $[M]^+$, 408.4 $[2M+Na]^+$, calc. for $C_{10}H_8O_4$ (192.17) [29].
- 251 *4.2.1.4.* (*E*)-*3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylic acid (2d).* Yield 80%. m.p.
- 252 228-229 °C. ESIMS: m/z 221 $[M-H]^+$, calc. for $C_{11}H_{10}O_5$ (222.19) [30].
- 253 4.2.2.General procedure for preparation of cinnamoyl chlorides 4a-d
- Substituted cinnamoyl chlorides were obtained by refluxing for 5 h the appropriate acid

- 255 2a-d (10 mmol) with thionyl chloride (10 ml). After evaporation under reduced pressure, the
- crude liquid residue was used for subsequent reactions without purification.
- 257 4.2.3. General procedure for preparation of compounds 1-3
- Hydroxylamine hydrochloride (1.2 equiv, 12 mmol) and sodium acetate (1.2 equiv, 12
- 259 mmol) were added to a solution of the aldehyde (1 equiv, 10 mmol) in EtOH (50 ml). The
- 260 reaction was stirred at 60 °C for 2 h. After the EtOH was remove evaporated in vacuo, the
- residue was suspended in DCM (50 ml) and washed with 1 M HCl solution (3×30 ml), H2O
- $(3 \times 30 \text{ ml})$ and brine solution. The organic phase was dried (Na₂SO₄) and then concentrated
- at reduced pressure. The oximes 1-3 were purified by recrystallization.
- 264 *4.2.3.1. Picolinaldehyde oxime (1).* Yield 100%. m.p. 112-113 °C. ESIMS: m/z 123.1 [M+H]⁺,
- 265 calc. for $C_6H_6N_2O(122.12)$ [31].
- 266 4.2.3.2. Furan-2-carbaldehyde oxime (2). Yield 99%. m.p. 88-89 °C. ESIMS: m/z 112.1
- 267 $[M+H]^+$, calc. for C₅H₅NO₂ (111.1) [32].
- 268 2.2.3.3. Thiophene-2-carbaldehyde oxime (3). Yield 100%. m.p. 130-132 °C. ESIMS: m/z
- 269 128.1 $[M+H]^+$, calc. for C₅H₅NOS (127.16) [33].
- 270 4.2.4. General procedure for preparation of compounds 4a-1~4d-3

- 272 (1.2 equiv, 12 mmol) was added drop wise to the solution at 0 °C and then reaction mixture
- 273 was stirred for 30 min at 0 °C. Appropriate acid chloride (1 equiv, 10 mmol) was added to the
- 274 mixture and then reaction mixture was stirred for 10-20 min at 0 °C, for 12 h at room

²⁷¹ Oxime (1 equiv, 10 mmol) was resolved in dry DCM (20 ml) and then triethylamine (TEA)

temperature. DCM was evaporated to dryness. The residue was washed with cold ether (5 ml)

275

276	and hot water and then purified by column chromatography on silica gel eluting with ethyl
277	acetate/ petroleum ether 1:1to 3:1.
278	4.2.4.1. (E)-picolinaldehyde O-3-(3,4-dimethoxyphenyl)acryloyl oxime (4a-1). White crystal,
279	yield 67%. m.p. 147.0-147.3°C. ¹ H NMR (500 MHz, CDCl ₃): δ 3.94 (6H, each 3H, s,
280	H-16,17), 6.45 (1H, d, J=15.91, H-8), 6.90 (1H, d, J=8.30, H-5), 7.11 (1H, d, J=1.94, H-2),
281	7.18 (1H, dd, J= 1.94, 8.30, H-6), 7.38 (1H, ddd, J=1.00, 1.63, 4.88, H-13), 7.78 (1H, td,
282	J=1.63, 7.91, H-14), 7.84 (1H, d, J=15.91, H-7), 8.17 (1H, d, J=7.91, H-15), 8.54 (1H, s,
283	H-10), 8.68 (1H, dd, J=4.88, H-12). ¹³ C NMR (125 MHz, CDCl3): δ 164.59 (C-9), 156.61
284	(C-10), 151.59 (C-11), 150.12 (C-3), 149.87 (C-12), 149.27 (C-4), 146.85 (C-7), 136.68
285	(C-14), 127.13 (C-1), 125.41 (C-13), 123.11 (C-15), 122.10 (C-6), 112.57 (C-8), 111.06 (C-5),
286	109.77 (C-2), 56.00, 55.92 (C-16, 17). DEPT135: δ 164.31, 153.49, 150.02, 140.61, 129.58
287	(C), 156.73, 149.86, 146.90, 136.76, 125.49, 122.5, 105.54 (CH), 61.00, 56.20 (CH ₃). ESIMS:
288	m/z 313.798 $[M+H]^+$, 336.021 $[M+Na]^+$, 648.812 $[2M+H+Na]^+$, calc. for $C_{17}H_{16}N_2O_4$
289	(312.32).

4.2.4.2. (E)-furan-2-carbaldehyde O-3-(3,4-dimethoxyphenyl)acryloyl oxime (4a-2). White
crystal, yield 53%. m.p. 169.5.1-169.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.96 (6H, each 3H,
s, H-15, 16), 6.52 (1H, d, J=15.90, H-8), 6.53 (1H, q, J=1.75, 3.50, H-13), 7.01 (1H, d, J=8.25,
H-5), 7.13 (1H, d, J=1.95, H-2), 7.16 (1H, d, J=3.50, H-12), 7.17 (1H, d, J=15.90, H-7), 7.21
(1H, dd, J= 1.95, 8.25, H-6), 7.47(1H, d, J=1.75, H-14), 8.76 (1H, s, H-10). ¹³C NMR (125
MHz, CDCl₃): δ 164.99 (C-9), 158.65 (C-10), 150.82 (C-3), 149.56 (C-11), 149.45 (C-4),
146.30 (C-7), 144.40 (C-14), 130.67 (C-1), 119.81(C-6), 115.23 (C-8), 112.34 (C-13), 111.78

297	(C-5), 110.48	(C-2), 109.49	(C-12), 56.12,	56.07 (C-15, 16).	ESIMS: m/z 301.4 []	M^+], calc.
-----	---------------	---------------	----------------	-------------------	---------------------	----------------

298 for $C_{16}H_{15}NO_5$ (301.29).

299	4.2.4.3. (E)-thiophene-2-carbaldehyde O-3-(3,4-dimethoxyphenyl)acryloyl oxime (4a-3).
300	White crystal, yield 60%. m.p. 135.8-136.3 °C. ¹ H NMR (400 MHz, CDCl ₃): δ 3.95 (6H, each
301	3H, s, H-15, 16), 6.39 (1H, d, J=15.90 Hz, H-8), 6.86(1H, d, J=6.81 Hz, H-5), 7.00 (1H, d,
302	J=1.53 Hz, H-2), 7.19 (1H, dd, J=1.53, 6.81, Hz, H-6), 7.13 (1H, t, J=4.22, 4.49 Hz, H-13),
303	7.55 (1H, d, J=4.49 Hz, H-14), 7.56 (1H, d, J=4.22 Hz, H-12), 7.74 (1H, d, J=15.90 Hz, H-7),
304	8.35 (1H, s, H-10). ¹³ C NMR (100 MHz, CDCl ₃): δ 165.01 (C-9), 158.88 (C-10), 150.91
305	(C-3), 149.74 (C-4), 146.18 (C-7), 144.32 (C-11), 129.35 (C-1), 127.81 (C-12), 127.15 (C-13),
306	126.20 (C-14), 121.24 (C-6), 114.31 (C-8), 110.54 (C-5), 109.83 (C-2), 56.80, 56.46 (C-15,
307	16). ESIMS: m/z 318.138 [M+H] ⁺ , 659.570 [2M+ Na] ⁺ , calc. for $C_{16}H_{15}NO_4S$ (317.36).
308	4.2.4.4. (E)-picolinaldehyde O-3-(3,4,5-trimethoxyphenyl)acryloyl oxime (4b-1). White
309	crystal, yield 58%. m.p. 121.1-121.3 °C. ¹ H NMR (500 MHz, CDCl ₃): δ 3.91 (9H, each 3H, s,
310	H-16, 17, 18), 6.48 (1H, d, J=15.85, H-8), 6.82 (2H, s, H-2, 6), 7.39 (1H, ddd, J=1.10, 2.62,
311	4.94, H-13), 7.80 (1H, td, J=2.62, 7.92, H-14), 7.83 (1H, d, J=15.85, H-7), 8.18 (1H, dm,
312	J=1.10, 7.92, H-15), 8.56 (1H, s, H-10), 8.69 (1H, m, J= 4.94, H-12). ¹³ C NMR (125 MHz,
313	CDCl ₃): δ 164.31 (C-9), 156.73 (C-10), 153.49 (C-11), 150.02 (C-3, 5), 149.86 (C-12),
314	146.90 (C-7), 140.61 (C-4), 136.76 (C-14), 129.58 (C-1), 125.49 (C-13), 122.15 (C-15),
315	114.20 (C-8), 105.54 (C-2, 6), 61.00 (C-17), 56.20 (C-16, 18). DEPT135: δ 164.31, 153.49,
316	150.02, 140.61, 129.58 (C), 156.73, 149.86, 146.90, 136.76, 125.49, 122.5, 105.54 (CH),
317	61.00, 56.20 (CH ₃). ESIMS: m/z 343.1296 [M+H] ⁺ , 365.1115 [M+Na] ⁺ , calc. for $C_{18}H_{18}N_2O_5$
318	(342.35).

- 319 4.2.4.5. (E)-furan-2-carbaldehyde O-3-(3,4,5-trimethoxyphenyl)acryloyl oxime (4b-2). White
- 320 crystal, yield 59%. m.p. 102.6-102.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.89 (9H, each 3H, s,
- 321 H-15, 16, 17), 6.43 (1H, q, J=1.95, 3.60, H-13), 6.70 (1H, d, J=15.28, H-8), 6.74 (2H, s, H-2,
- 322 6), 6.83 (1H, d, J=3.60, H-12), 7.47(1H, d, J=1.95, H-14), 7.62 (1H, d, J=15.28, H-7), 8.36
- 323 (1H, s, H-10). ¹³C NMR (125 MHz, CDCl₃): δ 165.66 (C-9), 159.59 (C-10), 153.43 (C-3, 5),
- 324 149.56 (C-11), 146.90 (C-7), 142.39 (C-14), 139.56 (C-4), 129.75 (C-1), 115.56 (C-8), 112.37
- 325 (C-13), 109.41 (C-12), 105.10 (C-2, 6),60.97 (C-16), 55.26 (C-15, 17). ESIMS: m/z 332.1207
- 326 $[M+H]^+$, 354.1031 $[M+Na]^+$, calc. for $C_{17}H_{17}NO_6$ (331.32).
- 327 4.2.4.6. (E)-thiophene-2-carbaldehyde O-3-(3,4,5-trimethoxyphenyl)acryloyl oxime (4b-3).
- 328 White crystal, yield 51%. m.p. 142.5-142.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.90 (9H, each
- 329 3H, s, H-15, 16, 17), 6.48 (1H, d, J=15.85, H-8), 6.82 (2H, s, H-2, 6), 7.13 (1H, q, J=4.91,
- 330 5.61 Hz, H-13), 7.56 (1H, d, J=5.61 Hz, H-14), 7.58 (1H, d, J=4.91 Hz, H-12), 7.82 (1H, d,
- 331 J=15.85, H-7), 8.37 (1H, s, H-10). ¹³C NMR (125 MHz, CDCl₃): δ 165.92 (C-9), 159.34
- 332 (C-10), 153.24 (C-3, 5), 146.59 (C-7), 144.32 (C-11), 140.47 (C-4), 129.29 (C-1), 128.03
- 333 (C-12), 127.80 (C-13), 125.84 (C-14), 115.28 (C-8), 105.46 (C-2, 6), 60.76 (C-16), 56.69
- 334 (C-15, 17). ESIMS: m/z 370.3 [M+Na]⁺, calc. for C₁₇H₁₇NO₅S (347.39).
- 335 4.2.4.7. (E)-picolinaldehyde O-3-(benzo[d][1,3]dioxol-5-yl)acryloyl oxime (4c-1). White
- 336 crystal, yield 52%. m.p. 157.0-157.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 6.02 (2H, s, H-16),
- 337 6.45 (1H, d, J=15.25, H-8), 6.92 (1H, d, J=7.50, H-5), 7.09 (1H, dd, J= 1.84, 7.50, H-6), 7.21
- 338 (1H, d, J=1.84, H-2), 7.26 (1H, ddd, J=1.38, 4.75, 5.29, H-13), 7.71 (1H, td, J=5.29, 7.49,
- 339 H-14), 7.79 (1H, d, J=15.25, H-7), 8.18 (1H, d, J=7.49, H-15), 8.56 (1H, s, H-10), 8.60 (1H, d,
- 340 J=4.75, H-12). ¹³C NMR (125 MHz, CDCl₃): δ 162.31 (C-9), 155.15 (C-10), 150.54 (C-11),

- 341 149.86 (C-12), 149.44 (C-3), 149.16 (C-4), 146.89 (C-7), 136.58 (C-14), 126.53 (C-1), 125.11
- 342 (C-13), 123.95 (C-15), 122.77 (C-6), 114.28 (C-8), 109.15 (C-5), 106.88 (C-2), 101.49 (C-16).
- 343 DEPT135: δ 162.31, 150.54, 149.44, 149.16, 126.53 (C), 155.15, 149.86, 146.89, 136.58,
- 344 125.11, 123.95, 122.77, 114.28, 109.15, 106.88 (CH),101.49 (CH₂). ESIMS: m/z 297 [M+H]⁺,
- 345 319 $[M+Na]^+$, calc. for $C_{16}H_{12}N_2O_4$ (296.28).
- 346 *4.2.4.8.* (*E*)-furan-2-carbaldehyde O-3-(benzo[d][1,3]dioxol-5-yl)acryloyl oxime (4c-2).
- 347 White crystal, yield 49%. m.p. 157.8-158.0 °C. ¹H NMR (500 MHz, CDCl₃): 6.03 (2H, s,
- 348 H-15), 6.37 (1H, d, J=15.86 Hz, H-8), 6.53 (1H, q, J=1.80, 3.48, H-13), 6.85(1H, d, J=8.02 Hz,
- 349 H-5), 7.06 (1H, dd, J=1.56, 8.02 Hz, H-6), 7.09 (1H, d, J=1.56 Hz, H-2), 7.17 (1H, dd, J=0.79,
- 350 3.48 Hz, H-12), 7.48 (1H, dd, J=0.79, 1.80 Hz, H-14), 7.77 (1H, d, J=15.86 Hz, H-7), 8.36
- 351 (1H, s, H-10). ¹³C NMR (125 MHz, CDCl₃): δ 165.22 (C-9), 157.39 (C-10), 149.90 (C-3),
- 352 149.41 (C-11), 148.06 (C-4), 146.47 (C-7), 144.41 (C-14), 129.49 (C-1), 119.46(C-6), 115.25
- 353 (C-8), 112.35 (C-13), 110.64 (C-5), 109.90 (C-2), 109.15 (C-12), 101.60 (C-15). ESIMS: m/z
- 354 $308.2 [M+Na]^+$, calc. for $C_{15}H_{11}NO_5$ (285.25).
- 355 4.2.4.9. (E)-thiophene-2-carbaldehyde O-3-(benzo[d][1,3]dioxol-5-yl)acryloyl oxime (4c-3).
- 356 White crystal, yield 57%. m.p. 139.6-139.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 6.02 (2H, s,
- 357 H-15), 6.40 (1H, d, J=15.57 Hz, H-8), 6.86(1H, d, J=7.76 Hz, H-5), 7.01 (1H, dd, J=1.22, 7.76
- 358 Hz, H-6), 7.10 (1H, q, J=4.13, 5.67 Hz, H-13), 7.12 (1H, d, J=1.22 Hz, H-2), 7.52 (1H, d,
- 359 J=5.67 Hz, H-14), 7.54 (1H, d, J=4.13 Hz, H-12), 7.69 (1H, d, J=15.57 Hz, H-7), 8.36 (1H, s,
- 360 H-10). ¹³C NMR (125 MHz, CDCl₃): δ 164.75 (C-9), 158.34 (C-10), 149.80 (C-3), 148.84
- 361 (C-4), 146.35 (C-7), 143.46 (C-11), 129.31 (C-1), 127.81 (C-12), 127.01 (C-13), 125.06
- 362 (C-14), 121.13 (C-6), 114.79 (C-8), 109.95 (C-5), 106.50 (C-2), 101.56 (C-15). ESIMS: m/z

- 363 301.1480 $[M^+]$, 323.1103 $[M+Na]^+$, calc. for $C_{15}H_{11}NO_4S$ (301.32).
- 364 *4.2.4.10.* (*E*)-picolinaldehyde O-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acryloyl oxime (4d-1).
- 365 White crystal, yield 58%. m.p. 186.3-186.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.95 (3H, s,
- 366 H-17), 6.04 (2H, s, H-16), 6.42 (1H, d, J=15.89, H-8), 6.77 (1H, d, J=1.25, H-6), 6.82 (1H, d,
- 367 J=1.25, H-2), 7.39 (1H, m, J= 1.74, 6.89, H-13), 7.79 (1H, td, J=1.40, 7.92, H-14), 7.77 (1H, d,
- 368 J=15.89, H-7), 8.17 (1H, d, J=7.92, H-15), 8.55 (1H, s, H-10), 8.69 (1H, dd, J=4.42, H-12).
- ¹³C NMR (125 MHz, CDCl3): δ 164.46 (C-9), 156.60 (C-10), 150.04 (C-11), 149.80 (C-12),
- 370 149.46 (C-5), 146.71 (C-7), 143.75 (C-3), 137.88 (C-4), 136.82 (C-14), 128.95 (C-1), 125.48
- 371 (C-13), 122.17 (C-15), 113.39 (C-8), 109.69 (C-6), 101.49 (C-2), 102.12(C-16), 56.67 (C-17).
- 372 DEPT135: δ 164.46, 150.04, 149.46, 143.75, 137.88, 128.95 (C), 156.60, 149.80, 146.71,
- 373 136.82, 125.48, 122.17, 113.39, 109.69, 101.49 (CH), 102.12 (CH₂), 56.67 (CH₃). ESIMS:
- 374 m/z 327.0987 $[M+H]^+$, 349.0807 $[M+Na]^+$, calc. for $C_{17}H_{14}N_2O_5$ (326.3).
- 375 4.2.4.11. (E)-furan-2-carbaldehyde O-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acryloyl oxime
- 376 (4*d*-2). White crystal, yield 64%. m.p. 122.5-122.8 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.94
- 377 (3H, s, H-16), 6.03 (2H, s, H-15), 6.39 (1H, d, J=15.85 Hz, H-8), 6.92 (1H, d, J=1.36 Hz,
- 378 H-6), 7.01 (1H, d, J=1.36 Hz, H-2), 6.52 (1H, q, J=1.75, 3.45 Hz, H-13), 7.17(1H, dd, J=0.80,
- 379 3.45 Hz, H-12), 7.47 (1H, d, J=0.80, 1.75, H-16), 7.75 (1H, d, J=15.85 Hz, H-7), 8.36 (1H, s,
- 380 H-10). ¹³C NMR (125 MHz, CDCl3): δ 165.00 (C-9), 159.37 (C-10), 150.49 (C-5), 149.33
- 381 (C-11), 146.58 (C-7), 144.17 (C-14), 143.24 (C-3), 136.80 (C-4), 128.75 (C-1), 115.18 (C-8),
- 382 112.33 (C-13), 109.92(C-6),109.56 (C-12), 101.60 (C-15), 101.45 (C-2), 56.44 (C-16).
- 383 ESIMS: m/z 338.3423 $[M+Na]^+$, calc. for $C_{16}H_{13}NO_6$ (315.28).
- 384 *4.2.4.12.* (*E*)-thiophene-2-carbaldehyde O-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acryloyl

- 385 *oxime (4d-3).* White crystal, yield 61%. m.p. 132.6-133.2 °C. ¹H NMR (500 MHz, CDCl₃): δ
- 386 3.92 (3H, s, H-16), 6.00 (2H, s, H-15), 6.67(1H, d, J=1.18 Hz, H-2), 6.74 (1H, d, J=15.28 Hz,
- 387 H-8), 6.75(1H, d, J=1.18 Hz, H-6), 6.93 (1H, d, J=3.97 Hz, H-12), 7.17 (1H, q, J=3.97, 4.72)
- 388 Hz, H-13), 7.19 (1H, d, J=4.72 Hz, H-14), 7.53 (1H, d, J=15.28 Hz, H-7), 8.36 (1H, s, H-10).
- ¹³C NMR (125 MHz, CDCl₃): δ 164.36 (C-9), 160.04 (C-10), 149.29 (C-5), 146.41 (C-7),
- 390 143.61 (C-3),142.09 (C-11), 136.58 (C-4), 130.38 (C-1), 127.80 (C-12), 127.59 (C-13),
- 391 126.07 (C-14), 115.93 (C-8), 109.04 (C-6), 101.82 (C-15), 100.70 (C-2), 56.69 (C-16).
- 392 DEPT135: δ 164.36, 149.29, 143.61, 136.58, 130.38 (C), 160.04, 146.41, 142.09, 127.80,
- 393 127.59, 126.07, 115.93, 109.04, 100.70 (CH), 101.82 (CH₂), 56.69 (CH₃). ESIMS: m/z 332.4
- 394 $[M+H]^+$, 354 $[M+Na]^+$, calc. for $C_{16}H_{13}NO_5S$ (331.34).
- 395 4.3. Molecular docking studies
- 396 The ligand study was carried out by HyperChem software, a sophisticated molecular
- 397 modeling environment that uniting with quantum chemical calculations, dynamics, and
- 398 molecular mechanics [34]. Three-dimensional structures were constructed and optimized for
- all the molecules, and then QSAR descriptors were studied, which is a powerful lead
- 400 optimization tool that can quantitatively relate variations in biological activity to changes in401 molecular properties.
- 402 In our previous studies, niranthin, nirtetralin, nirtetralin A and nirtetralin B from
- 403 *Phyllanthus niruri L.* were confirmed to possess anti-HBV activity [10-12]. Then we
- 404 investigated the potential anti-HBV targets of the anti-HBV constituents with reverse docking
- 405 approach using fifteen HBV related proteins and RNA including human leukocyte antigen

406	HLA-A*02:03 (PDB ID: 3OX8), human leukocyte antigen HLAA*02:06 (PDB ID: 3OXR),
407	human leukocyte antigen HLA-A*02:07 (PDB ID: 3OXS), hepatitis B virus preS1 protein
408	(PDB ID: 3ZHF), hepatitis B virus preS2 surface antigen (PDB ID: 1WZ4), human hepatitis
409	B virus surface antigen HzKR127 (PDB ID: 2EH8), human hepatitis B virus e-antigen (PDB
410	ID: 3V6F, 3V6Z), Hepatitis B X-interacting protein HBXIP (PDB ID: 3MS6, 4WZR,
411	4WZW), HBV RNA polymerase (PDB ID: 2HN7), and human hepatitis B virus encapsidation
412	signal (PDB ID: 2IXY, 2K5Z). HLA-A protein (PDB ID: 3OX8) showed the best reverse
413	docking result and was chosen as molecular target for further docking study.
414	The molecular docking study was performed using MOE 2008.10 to understand the
415	ligand-protein interactions in detail. The target compounds were built using the builder
416	interface of the MOE program and subjected to energy minimization. The crystal structure of
417	human leukocyte antigen (HLA-A) protein (PDB ID: 30X8) was retrieved from Protein Data
418	Bank (http://www.rcsb.org/pdb/home/home.do) [35]. The edited crystal structure after
419	removing water molecules was imported into MOE and chain A was considered for docking
420	process as the protein is a dimer consisting of A and B chains. The structure is protonated,
421	polar hydrogens were added and energy minimization was carried out till the gradient
422	convergence 0.05 kcal/mol was reached to get the stabilized conformation. The active site was
423	correlated with 'Site Finder' module of MOE to define the docking site for the ligands.
424	Docking procedure was followed using the standard protocol implemented in MOE 2008.10
425	and the geometry of resulting complexes was studied using the MOE's Pose Viewer utility.

426 4.4. Pharmacology

427 *4.4.1. Cells and Cell culture*

428	HepG2.2.15 (clonal cells derived fromhuman hepatoma cell line G2) cells were provided
429	by the Chinese Academy of Medical Sciences (P.R. China) and maintained in MEM medium
430	supplemented with 10% fetal bovine serum and 380 µg/ml of G418, 50 u/ml of kanamycin,
431	and 0.03% L-glutamine at 37 °C in a 5% CO_2 atmosphere with 100% humidity.

432 *4.4.2. Drug treatment*

433	HepG 2.2.15 cells were seeded at a density of 1×10^5 cells/ml (200 µl/well) in 96-well plates
434	and maintained at 37 °C for 24 h prior to extract addition, followed by treatment with various
435	concentrations of drugs. Lamivudine (3TC) was served as the positive control. Cells were
436	refed with drug-containing fresh medium every 3 d for up to 9 d in time-dependent
437	experiment. Medium was taken at third day of treatment (T3), the sixth day of treatment (T6)
438	and the ninth day of treatment (T9), and stored at -20 $^{\circ}$ C until analysis. The IC ₅₀ and selected
439	index (SI) of each compound were calculated, respectively.

440 *4.4.3. Cell toxicity*

Logarithmically growing cells were seeded in 96-well culture plates at a density of 1×10⁵
cells/ml (200 µl/well). They were cultured for 24 h and then treated with various
concentrations of drugs. OD values were read at 450 nm after 9days and the percent of cell
death was calculated and the cells were refed with drug-containing fresh medium every 3 d
for up to 9 d. After drug treatment, the cytotoxicity was measured using the MTT assay [36,
37].

- 447 4.4.4. Determination of HBsAg and HBeAg
- 448 The levels of HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) were
- 449 simultaneously detected using ELISA kits (Rongsheng Biotechnology Co. Ltd, Shanghai,
- 450 China) according to the manufacturer's instructions.
- 451 4.4.5. Determination of HBV replication
- 452 Inhibitory activity against HBV was determined by a real-time fluorescence quantitative PCR
- 453 (FQ-PCR) according to our previous description [11]. Briefly, 2.0 µl HBV DNA was
- 454 amplified in a 25 mL mixture containing $12.5 \,\mu l \, 2 \times SYBR$ Green Master (ROX) and 2
- 455 primers specific for HBV: a forward primer (5'-AAC CAT TGA AGC AAT CAC TAG AC-3')
- 456 and a reverse primer (5'- ATC TAT GGT GGC TGC TCG AAC TA -3'). The thermal program
- 457 comprised of an initial denaturation at 95 °C for 10 min followed by 40 amplification cycles
- 458 with each of the two following steps: 95 °C for 15 s and 60 °C for 1 min.

459 Acknowledgements

460 This work was financially supported by the national natural science foundation of China
461 (No. 81060261), natural science foundation of Guangxi province, China, (No. 2011jjD20002),
462 and science research and technology development foundation of Guagnxi province, China
463 (No.11107009-3-5)

464 **References**

465 [1] N. Gitilin, HepatitisB: diagnosis, prevention and treatment. Clin. Biochem. 43 (1997)

- 466 1500-1506.
- 467 [2] M. Rizzetto, A. Ciancio, Chronic HBV-related liver disease. Mol. Aspects Med. 29 (2008)
 468 72-84.
- 469 [3] D. Lavanchy, Hepatitis B virus epidemiology, disease burden, treatment, and current and
- 470 emerging prevention and control measures. J. Viral Hepat. 11 (2004) 97-107.
- 471 [4] K. Sato, M. Mori, Current and Novel Therapies for Hepatitis B Virus Infection. Mini-Rev.
- 472 Med. Chem. 10 (2010) 20-31.
- 473 [5] C.X. Ying, Y. Li, C.H. Leung, M.D. Robek, Y.C. Cheng, Unique antiviral mechanism
- discovered in anti-hepatitis B virus research with a natural product analogue. Proc. Natl.
- 475 Acad. Sci. U.S.A. 104 (2007) 8526-8531.
- 476 [6] L.M. Gao, Y.X. Han, Y.P. Wang, Y.H. Li, Y.Q. Shan, X. Li, Z.G. Peng, C.W. Bi, T. Zhang,
- 477 N.N. Du, J.D. Jiang, D.Q. Song, Design and Synthesis of Oxymatrine Analogues
- 478 Overcoming Drug Resistance in Hepatitis B Virus through Targeting Host Heat Stress
- 479 Cognate 70. J. Med. Chem. 54 (2011) 869-876.
- 480 [7] I.T. Crosby, D.G. Bourke, E.D. Jones, T.P. Jeynes, S. Cox, J.A.V. Coates, A.D. Robertson,
- 481 Antiviral agents 3. Discovery of a novel small molecule non-nucleoside inhibitor of
- 482 Hepatitis B Virus (HBV). Bioorg. Med. Chem. Lett. 21 (2011) 1644-1648.
- 483 [8] N.N. Du, X. Li, Y.P. Wang, F. Liu, Y.X. Liu, C.X. Li, Z.G. Peng, L.M. Gao, J.D. Jiang,
- 484 D.Q. Song, Synthesis, structure-activity relationship and biological evaluation of novel
- 485 N-substituted matrinic acid derivatives as host heat-stress cognate 70 (Hsc70)
- 486 down-regulators. Bioorg. Med. Chem. Lett. 21 (2011) 4732-4735.
- 487 [9] L.J. Wang, C.A. Geng, Y.B. Ma, X.Y. Huang, J. Luo, H. Chen, R.H. Guo, X.M. Zhang, J.J.

- 488 Chen. Synthesis, structure activity relationships and biological evaluation of caudatin
- derivatives as novel anti-hepatitis B virus agents. Bioorgan. Med. Chem. 20 (2012)
- 490 2877-2888.
- 491 [10] W.X. Wei, X.R. Li, K.W. Wang, Z.W. Zheng, M. Zhou, Lignans with Anti-Hepatitis B
- 492 Virus Activities from Phyllanthus niruri L. Phytother. Res. 26 (2012) 964-968.
- 493 [11] S. Liu, W.X. Wei, K.C. Shi, X. Cao, M. Zhou, Z.P. Liu, In vitro and in vivo anti-hepatitis
- 494 B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. J.
- 495 Ethnopharmacol. 155 (2014) 1061-1067.
- 496 [12] S. Liu, W.X. Wei, Y.B. Li, X. Lin, K.C. Shi, X. Cao, M. Zhou, In vitro and in vivo
- 497 anti-hepatitis B virus activities of the lignan nirtetralin B isolated from Phyllanthus niruri
- 498 L. J. Ethnopharmacol. 157 (2014) 62-68.
- 499 [13] C. Viegas-Junior, A. Danuello, V.D. Bolzani, E.J. Barreir, C.A.M. Fraga, Molecular
- 500 hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 14
- 501 (2007) 1829-1852.
- 502 [14] H. Chen, Y.B. Ma, X.Y. Huang, C.A. Geng, Y. Zhao, L.J. Wang, R.H. Guo, W.J. Liang,
- 503 X.M. Zhang, J.J. Chen, Synthesis, structure activity relationships and biological
- 504 evaluation of dehydroandrographolide and andrographolide derivatives as novel
- 505 anti-hepatitis B virus agents. Bioorg. Med. Chem. Lett. 24 (2014) 2353-2359.
- 506 [15] Z.R. Wu, L.F. Zheng, Y. Li, F. Su, X.X. Yue, W. Tang, X.Y. Ma, J.Y. Nie, H.Y. Li,
- 507 Synthesis and structure–activity relationships and effects of phenylpropanoid amides of
- 508 octopamine and dopamine on tyrosinase inhibition and antioxidation. Food Chem. 134
- 509 (2012) 1128-1131.

- 510 [16] S.N. Kim, J.Y. Lee, H.J. Kim, C.G. Shin, H. Parka, Y.S. Lee, Synthesis and HIV-1
- 511 Integrase Inhibitory Activities of Caffeoylglucosides. *Bioorg.* Med. Chem. Lett. 10 (2000)
 512 1879-1882.
- 513 [17] P. Panda, M. Appalashetti, M. Natarajan, C.P. Mary, S.S. Venkatraman, Z.M.A. Judeh,
- 514 Synthesis and antiproliferative activity of helonioside A,3',4',6'-tri-O-feruloylsucrose,
- 515 lapathoside C and their analogs. Eur. J. Med. Chem. 58 (2012) 418-430.
- 516 [18] P. Panda, M. Appalashetti, M. Natarajan, M.B. Chan-Park, S.S. Venkatraman, Z.M.A.
- 517 Judeh, Judeh. Synthesis and antitumor activity of lapathoside D and its analogs. Eur. J.
- 518 Med. Chem. 53 (2012) 1-12.
- 519 [19] F. Zhang, G. Wang, A review of non-nucleoside anti-hepatitis B virus agents. Eur. J. Med.
- 520 Chem. 75 (2014) 267-281.
- 521 [20] Y.K. Zhang, H.Y. Zhong, Z.L. Lv, M.F. Zhang, T. Zhang, Q.S. Li, K. Li, Anti-hepatitis B
- virus and anti-cancer activities of novel isoflavone analogs. Eur. J. Med. Chem. 62 (2013)
 158-167.
- 524 [21] L. Roux, S. Priet, N. Payrot, C. Weck, M. Fournier, F. Zoulim, J. Balzarini, B. Canard, K.
- 525 Alvarez, Ester prodrugs of acyclic nucleoside thiophosphonates compared to
- phosphonates: Synthesis, antiviral activity and decomposition study. Eur. J. Med. Chem.
 63 (2013) 869-881.
- 528 [22] F.D. Santos, P. Abreu, H.C. Castro, I.C.P.P. Paixao, C.C. Cirne-Santos, V. Giongo, J.E.
- 529 Barbosa, B.R. Simonetti, V. Garrido, D.C. Bou-Habib, D.D. Silva, P.N. Batalha, J.R.
- 530 Temerozo, T.M. Souza, C.M. Nogueira, A.C. Cunha, C.R. Rodrigues, V.F. Ferreira,
- 531 M.C.B.V. de Souza, Synthesis, antiviral activity and molecular modeling of oxoquinoline

532	derivatives. Bioorgan. Med. Chem. 17 (2009) 5476-5481.
533	[23] K.R. Babu, V.K. Rao, Y.N. Kumar, K. Polireddy, K.V. Subbaiah, M. Bhaskar, V.
534	Lokanatha, C.N. Raju. Identification of substituted [3, 2-a] pyrimidines as selective
535	antiviral agents: Molecular modeling study. Antivir. Res. 95 (2012) 118-127.
536	[24] V.V. Quan, C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton, A,B. Hughes, Synthesis and
537	anti-inflammatory activity of aromatic glucosinolates. Bioorgan. Med. Chem. 21 (2013)
538	5945-5954.
539	[25] H.B. Zou, H. Wu, X.N. Zhang, Y. Zhao, S. Joachim, Y.J. Lou, Y.P. Yu, Synthesis,
540	biological evaluation, and structure-activity relationship study of novel cytotoxic
541	aza-caffeic acid derivatives. Bioorgan. Med. Chem. 18 (2010) 6351-6359.
542	[26] A. Karakurt, A.A.B.S. Mehmet, Ü. Çalıs, S.Dalkara, Synthesis of some novel
543	1-(2-naphthyl)-2-(imidazol-1-yl)ethanone oxime ester derivatives and evaluation of their
544	anticonvulsant activity. Eur. J. Med. Chem. 57 (2012) 275-282.
545	[27] Brittelli, R. David, Phosphite-mediated in situ carboxyvinylation: a new general acrylic
546	acid synthesis. J. Org. Chem. 46 (1981) 2514-2520.
547	[28] M.W. Klohs, M.D. Draper, F. Keller, Alkaloids of Rauwolfia serpentina. III.
548	Rescinnamine, a new hypotensive and sedative principle. J. Am. Chem. Soc. 76 (1954)
549	2843.
550	[29] M.L. Salum, C.J. Robles, R. Erra-Balsells, Photoisomerization of Ionic Liquid
551	Ammonium Cinnamates: One-Pot Synthesis-Isolation of Z-Cinnamic Acids. Org. Lett.
552	12 (2010) 4808-4811.
553	[30] A.H. Salway, Synthesis of Substances Allied to Cotarnine. J. Chem. Soc. Transactions.

- 554 95 (1909) 1204-1220.
- [31] E.J. Poziomek, B.E.J. Hackley, G.M. Steinberg, Pyridinium aldoximes. J. Org. Chem. 23
 (1958) 714-717.
- 557 [32] J. Nidhi, K. Anil, S.M.S. Chauhan, Metalloporphyrin and heteropoly acid catalyzed
- 558 oxidation of CNOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase.
- 559 Tetrahedron Lett. 46 (2005) 2599-2602.
- 560 [33] L. Fernando, D.L.C. Pilar, E. Eva, G.C. Araceli, D.L.H. Antonio, L.A. Vicente, Synthesis
- and Properties of Isoxazolo[60]fullerene-Donor Dyads. J. Org. Chem. 65 (2000)
- 562 8675-8684.
- 563 [34] S. Dastmalchi, M. Hamzeh-Mivehroud, T. Ghafourian, H. Hamzeiy, Molecular modeling
- of histamine H3 receptor and QSAR studies on arylbenzofuran derived H3 antagonists. J.
- 565 Mol. Graph. Model. 26 (2008) 834-844.
- 566 [35] J.X. Liu, Y. Kenneth, E.C.R. Chen, Structural insights into the binding of hepatitis B
- 567 virus core peptide to HLA-A2 alleles: Towards designing better vaccines. Eur. J. Immunol.
- 568 41 (2011) 2097-2106.
- 569 [36] M. Ferrari, M.C. Fornasiero, A.M. Isetta, MTT colorimetric assay for testing macrophage
 570 cytotoxic activity in vitro. J. Immunol. Methods. 131 (1990) 165-172.
- 571 [37] Y.Q. Han, Z.M. Huang, X.B. Yang, H.Z. Liu, G.X. Wu, In vivo and in vitro anti-hepatitis
- 572 B virus activity of total phenolics from Oenanthe javanica. J. Ethnopharmacol. 118 (2008)
 573 148-153.
- 574

576 Legend of figures

- 577 Scheme 1. Synthetic route to the series of compounds. Reagents and conditions: (a)
- 578 CH₂(COOH)₂, piperidine, C₅H₅N, reflux, 4h, 80-90%; (b) SOCl₂, CH₂Cl₂, reflux, 5h, 95%; (c)
- 579 H_2 NOH-HCl, AcONa, EtOH, 60°C, 1h, 98%; (d) Et₃N, CH₂Cl₂, rt, 12h, 50-70%.
- 580 Table 1. Molecular descriptors of derivatives from QSAR study.
- 581 Table 2. Docking score and bond interactions of synthesized compounds.
- 582 Table 3. Anti-HBV activity and cytotoxicity of the phenylpropanoid derivatives in vitro.
- 583 Figure 1. Binding mode of 4c-1 into the binding site of HLA-A. The hydrogen bond formed
- 584 colored in green.
- 585 Figure 2. Binding mode of 4d-1 into the binding site of HLA-A. The hydrogen bond formed
- 586 colored in green.
- 587 Figure 3. Binding mode of 4d-2 into the binding site of HLA-A. The hydrogen bond formed
- 588 colored in green.
- 589 Figure 4. Inhibitory effect of the phenylpropanoid derivatives on secretion of HBsAg (A) and
- 590 HBeAg (B) in the HepG2.2.15 cell line. Data were expressed as mean \pm S.D. (n = 3).

	e			5 1	
Ligand	S-score	No. of	Distance (A)	Amino acid	Molecular
	(kcal/mol)	H-bonds		involved	structure
3TC	-10.7074	2	2.03	TYR 27	O of -OH
			2.29	TYR 27	O of -COC-
4a-1	-15.0037	2	1.77	TYR 27	O of -ON
			2.77	TYR 27	N of pyridine
4a-2	-14.1510	0	-	-	-
4a-3	-14.1436	1	2.67	TYR 27	O of -ON
4b-1	-16.5849	2	2.63	TYR 27	O of -ON
			3.39	TYR 27	N of pyridine
4b-2	-16.4346	1	2.98	TYR 27	O of -ON
4b-3	-16.4019	1	2.99	TYR 27	O of -ON
4c-1	-18.3979	2	2.02	TYR 27	O of -ON
			3.49	TYR 27	N of pyridine
4c-2	-12.5508	1	1.89	TYR 27	O of -ON
4c-3	-12.4670	1	1.90	TYR 27	O of -ON
4d-1	-16.6093	1	3.03	TYR 27	O of -ON
4d-2	-16.5985	1	2.87	TYR 27	O of -ON
4d-3	-14.8563	1	2.86	TYR 27	O of -ON

Table 2. Docking score and bond interactions of synthesized compounds.

10					d				
Compd	$CC_{co}^{b}(\mu M) =$	HBsAg	5	НВеАд			ication		
compu	CC30 (µ11)	IC_{50}^{e} (μ M)	\mathbf{SI}^{f}	$IC_{50}^{e}(\mu M)$	SI^{f}	$IC_{50}^{e}(\mu M)$	SI^{f}		
1a	>1500	_g	-	-	-	ND	ND		
1b	>1500	-	-	-	-	ND	ND		
1c	1289.31	-	-	-	-	ND	ND		
1d	1075.75	-	-	-	-	ND	ND		
2a	534.66	>600	< 0.89	>600	< 0.89	ND	ND		
2b	834.13	>600	<1.39	>600	<1.39	ND	ND		
2c	503.46	433.15	1.16	526.25	0.96	ND	ND		
2d	667.25	410.96	1.62	476.75	1.40	ND	ND		
1	402.02	387.17	1.04	469.11	0.86	ND	ND		
2	475.21	479.80	1.01	519.47	0.91	ND	ND		
3	562.19	353.56	1.59	431.23	1.30	ND	ND		
4a-1	545.16	151.87	3.59	161.74	3.37	ND	ND		
4a-2	624.24	191.26	3.26	201.65	3.10	ND	ND		
4a-3	574.33	228.67	2.51	377.87	1.52	ND	ND		
4b-1	787.32	142.67	5.52	150.08	5.25	ND	ND		
4b-2	1049.90	173.31	6.06	189.67	5.54	ND	ND		
4b-3	857.37	196.62	4.36	209.22	4.10	ND	ND		
4c-1	253.11	14.18	17.85	6.20	40.82	23.43	10.80		
4c-2	479.62	64.60	7.42	81.83	5.86	-	-		
4c-3	265.78	75.75	3.51	117.67	2.26	ND	ND		
4d-1	644.93	62.79	10.27	72.91	8.85	95.04	6.78		
4d-2	819.58	63.51	12.90	75.26	10.89	139.73	5.87		
4d-3	676.60	74.37	9.10	104.52	6.47	-	-		
3TC ^h	568.25	234.70	2.42	267.16	2.13	6.86	82.84		

Table 3. Anti-HBV activity and cytotoxicity of the phenylpropanoid derivatives in vitro.

a Values are means determined from at least two experiments.

b CC₅₀ is 50% cytotoxicity concentration in HepG2 2.2.15 cells.

c HBsAg: hepatitis B surface antigen.

d HBeAg, hepatitis B e antigen.

e IC₅₀ is 50% inhibitory concentration.

f SI (selectivity index) = CC_{50}/IC_{50} .

g No SI can be obtained.

h Lamivudine (3TC) as the positive control.

g Not determined.

	Molecular		Molar	Surface	Volume	Hydration	Polarizability	
Ligand	weight	LogP	refractivity	area	(Λ^{03})	energy	(Λ^{03})	
	(Da)		(A^{03})	(A^{o2})	(\mathbf{A})	(Kcal/mol)	(\mathbf{A})	
3TC	229.25	-0.55	55.14	525.55	606.87	48.20	21.71	
4a-1	312.32	0.61	93.01	704.41	912.63	43.90	33.13	
4a-2	317.36	-1.08	90.78	729.25	898.62	47.75	32.20	
4a-3	317.36	-0.81	93.60	709.11	904.30	44.77	33.36	
4b-1	342.35	-0.38	99.38	757.97	974.66	43.66	35.61	
4b-2	331.32	-2.14	93.53	756.01	944.36	43.13	33.47	
4b-3	347.39	-1.80	99.98	762.65	966.33	44.54	35.84	
4c-1	296.28	0.80	85.85	715.19	837.91	41.55	30.52	
4c-2	285.25	-0.96	80.00	713.15	807.65	41.03	28.39	
4c-3	301.32	-0.62	86.44	719.87	829.56	42.42	30.76	
4d-1	326.3	-0.19	92.22	761.65	907.50	40.43	33.00	
4d-2	315.28	-1.95	86.37	759.71	877.24	39.90	30.86	
4d-3	331.34	-1.61	92.82	766.32	899.14	41.31	33.23	

Table 1. Molecular descriptors of derivatives from QSAR study.

CER HA

Highlights

- A series of phenylpropanoid derivatives were designed and synthesized based on our previous studies.
- The human HBV-transfected liver cell line HepG2.2.15 was used in vitro assay.
- The structure-activity relationships of the derivatives had been discussed in the paper.
- Docking study was carried out to explore molecular target for activity using MOE.
- Compound 4c-1exhibited the most potent anti-HBV activities.

1	Design, synthesis, biological evaluation and molecular docking studies of
2	phenylpropanoid derivatives as potent anti-hepatitis B virus agents
3	Sheng Liu ¹ , Wanxing Wei * ¹ , Yubin Li ² , Xu Liu ¹ , Xiaoji Cao ³ , Kechan Lei ¹ , Min Zhou ¹
4	¹ Department of Chemistry, Guangxi University, Nanning, 530004, P. R. China
5	² School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou
6	510275, P. R. China
7	³ Center of Analysis and Testing, Zhejiang University of Industry, Hangzhou, 310014, P. R.
8	China
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	*

^{*}Corresponding author. Tel.: +86 7713272601. fax +86 7713272601. E-mail: <u>wxwei@gxu.edu.cn</u> (W. Wei)

- 26 List of supporting information
- 27 Figures
- 28 Figure 1. Chemical structure of phenylpropanoid derivatives
- 29 Figure 2. MS spectrum of 2a
- 30 Figure 3. MS spectrum of 2b
- 31 Figure 4. MS spectrum of 2c
- 32 Figure 5. MS spectrum of 2d
- 33 Figure 6. MS spectrum of oxime 1
- 34 Figure 7. MS spectrum of oxime 2
- 35 Figure 8. MS spectrum of oxime 3
- 36 Figure 9. MS, ¹H NMR and ¹³C NMR spectrum of 4a-1
- 37 Figure 10. MS, ¹H NMR and ¹³C NMR spectrum of 4a-2
- 38 Figure 11. MS, ¹H NMR and ¹³C NMR spectrum of 4a-3
- 39 Figure 12. MS, ¹H NMR and ¹³C NMR spectrum of 4b-1
- 40 Figure 13. MS, ¹H NMR and ¹³C NMR spectrum of 4b-2
- 41 Figure 14. MS, ¹H NMR and ¹³C NMR spectrum of 4b-3
- 42 Figure 15. MS, ¹H NMR and ¹³C NMR spectrum of 4c-1
- 43 Figure 16. MS, ¹H NMR and ¹³C NMR spectrum of 4c-2
- 44 Figure 17. MS, ¹H NMR and ¹³C NMR spectrum of 4c-3
- 45 Figure 18. MS, ¹H NMR and ¹³C NMR spectrum of 4d-1
- 46 Figure 19. MS, ¹H NMR and ¹³C NMR spectrum of 4d-2
- 47 Figure 20. MS, ¹H NMR and ¹³C NMR spectrum of 4d-3
- 48 Figure 21. Binding mode of compound 4a-1 into the binding site of HLA-A.
- 49 Figure 22. Binding mode of compound 4a-2 into the binding site of HLA-A.
- 50 Figure 23. Binding mode of compound 4a-3 into the binding site of HLA-A.
- 51 Figure 24. Binding mode of compound 4b-1 into the binding site of HLA-A.
- 52 Figure 25. Binding mode of compound 4b-2 into the binding site of HLA-A.
- 53 Figure 26. Binding mode of compound 4b-3 into the binding site of HLA-A.
- 54 Figure 27. Binding mode of compound 4c-1 into the binding site of HLA-A.
- 55 Figure 28. Binding mode of compound 4c-2 into the binding site of HLA-A.

56	Figure 29. Binding mode of compound 4c-3 into the binding site of HLA-A.
57	Figure 30. Binding mode of compound 4d-1 into the binding site of HLA-A.
58	Figure 31. Binding mode of compound 4d-2 into the binding site of HLA-A.
59	Figure 32. Binding mode of compound 4d-3 into the binding site of HLA-A.
60	
61	Tables
62	Table 1. Effects of on the inhibition of HBsAg secretion by HepG2.2.15 cells.
63	Table 2. Effects of on the inhibition of HBeAg secretion by HepG2.2.15 cells.
64	Table 3. Effects of on the inhibition of HBV DNA replication.
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	

76 Figure 1. Chemical structure of phenylpropanoid derivatives

75

88 Figure 5. MS spectrum of 2d

97 Figure 8. MS spectrum of oxime 3

102 Figure 9. MS, ¹H NMR and ¹³C NMR spectrum of 4a-1

107 Figure 10. MS, ¹H NMR and ¹³C NMR spectrum of 4a-2

112 Figure 11. MS, ¹H NMR and ¹³C NMR spectrum of 4a-3

119 Figure 12. MS, ¹H NMR and ¹³C NMR spectrum of 4b-1

138 Figure 15. MS, ¹H NMR and ¹³C NMR spectrum of 4c-1

168 Figure 19. MS, ¹H NMR and ¹³C NMR spectrum of 4d-2

177 Figure 21. Binding mode of compound 4a-1 into the binding site of HLA-A.

180 Figure 22. Binding mode of compound 4a-2 into the binding site of HLA-A.

183 Figure 23. Binding mode of compound 4a-3 into the binding site of HLA-A.

189 Figure 25. Binding mode of compound 4b-2 into the binding site of HLA-A.

192 Figure 26. Binding mode of compound 4b-3 into the binding site of HLA-A.

195 Figure 27. Binding mode of compound 4c-1 into the binding site of HLA-A.

198 Figure 28. Binding mode of compound 4c-2 into the binding site of HLA-A.

201 Figure 29. Binding mode of compound 4c-3 into the binding site of HLA-A.

Figure 30. Binding mode of compound 4d-1 into the binding site of HLA-A.

Figure 31. Binding mode of compound 4d-2 into the binding site of HLA-A.

Groups	Concentration/	3 days		6 days		9 days		9 days
	μΜ	OD	Inhibiti	OD	Inhibiti	OD	Inhib	Cell
		(x±s)	on (%)	(x±s)	on (%)	(x±s)	ition (%)	survival (%)
Control	-	0.632±0.052	-	0.548±0.026	-	0.218±0.015	-	100
3TC	300	0.426 ± 0.038	37.26	0.344 ± 0.027	43.59	0.129 ± 0.025	60.36	75.19
	150	0.474 ± 0.026	28.56	0.404 ± 0.028	30.70	0.135±0.038	55.86	82.39
	75	0.511 ± 0.046	21.98	0.435 ± 0.043	24.15	0.169±0.031	33.11	95.86
	37.5	0.568 ± 0.033	11.59	0.511 ± 0.030	7.98	0.181±0.041	25.23	118.45
4a-1	300	0.558 ± 0.051	13.35	0.394 ± 0.037	32.83	0.127±0.018	61.26	99.54
	150	0.573 ± 0.044	10.75	0.423 ± 0.025	26.78	0.137 ± 0.022	54.50	101.86
	75	0.618 ± 0.044	2.54	0.457 ± 0.040	19.52	0.164 ± 0.008	36.71	104.25
	37.5	0.647 ± 0.026	-	0.495 ± 0.016	11.25	0.189±0.013	19.82	106.67
4a-2	300	0.371 ± 0.017	47.22	0.296 ± 0.039	53.77	0.137±0.015	54.95	103.31
	150	0.413 ± 0.026	39.67	0.341 ± 0.026	44.23	0.148±0.017	47.30	114.02
	75	0.446 ± 0.035	33.64	0.377 ± 0.022	36.54	0.160±0.012	39.41	120.16
	37.5	0.522 ± 0.034	19.87	0.451±0.019	20.80	0.187 ± 0.031	21.17	128.25
4a-3	300	0.369 ± 0.047	47.64	0.247±0.034	52.64	0.136±0.013	54.95	97.71
	150	0.407 ± 0.038	40.70	0.285±0.032	41.24	0.155±0.033	42.79	98.65
	75	0.475 ± 0.036	28.44	0.366±0.037	29.56	0.175 ± 0.065	29.28	101.20
	37.5	0.536 ± 0.054	17.39	0.432 ± 0.032	19.80	0.187 ± 0.024	20.50	113.67
4b-1	300	0.549±0.036	15.10	0.359±0.020	40.46	0.166 ± 0.027	66.67	88.95
	150	0.586 ± 0.023	8.39	0.409±0.016	29.63	0.188 ± 0.020	47.30	98.07
	75	0.616 ± 0.051	2.96	0.467 ± 0.030	17.24	0.200 ± 0.016	39.19	106.92
	37.5	0.641±0.028		0.489±0.063	12.68	0.216±0.031	24.10	108.25
4b-2	300	0.429±0.031	36.71	0.313±0.031	50.14	0.128 ± 0.017	60.81	76.08
	150	0.501±0.052	23.67	0.378 ± 0.036	36.40	0.148 ± 0.010	47.07	93.23
	75	0.543±0.040	16.12	0.413 ± 0.044	28.85	0.165 ± 0.020	36.04	126.80
	37.5	0.585±0.049	8.45	0.477 ± 0.045	15.17	0.195 ± 0.046	15.77	132.91
4b-3	300	0.385 ± 0.044	44.69	0.286 ± 0.046	55.98	0.133±0.023	57.66	79.92
	150	0.436±0.035	35.57	0.340 ± 0.047	44.44	0.149 ± 0.033	46.40	92.59
	75	0.487 ± 0.042	26.27	0.404 ± 0.050	30.63	0.172 ± 0.033	30.86	93.38
	37.5	0.537±0.047	17.15	0.445 ± 0.036	21.94	0.181 ± 0.031	24.77	100.48
4c-1	300	0.213±0.021	75.85	0.133±0.023	88.68	0.080 ± 0.009	93.02	35.15
	150	0.280±0.017	63.83	0.171 ± 0.018	80.48	0.089 ± 0.007	86.94	53.83
	75	0.312±0.046	57.97	0.233±0.039	67.31	0.102 ± 0.024	78.38	72.91
	37.5	0.431±0.012	36.41	0.289 ± 0.036	55.41	0.113±0.023	70.72	79.27
4c-2	300	0.313±0.053	57.85	0.176±0.018	79.49	0.092 ± 0.014	85.36	43.05
	150	0.395±0.043	42.93	0.219±0.022	70.37	0.114±0.020	70.50	73.81
	75	0.460 ± 0.026	31.22	0.292 ± 0.028	54.63	0.130±0.025	59.46	85.51
	37.5	0.509 ± 0.029	22.34	0.401 ± 0.046	31.48	0.170±0.028	32.43	94.40
4c-3	300	0.310±0.012	58.27	0.138±0.026	87.54	0.088 ± 0.007	88.06	79.40

Table 1. Effects of on the inhibition of HBsAg secretion by HepG2.2.15 cells ($x\pm s$, n=3).

		A	ACCEP	FED MANUS	SCRIPT	۲.		
	150	0.377±0.043	46.26	0.252±0.025	63.25	0.125±0.023	63.06	92.17
	75	0.455±0.037	32.13	0.336±0.029	45.37	0.141±0.006	52.03	104.98
	37.5	0.520±0.035	20.35	0.410±0.036	29.56	0.174±0.031	29.73	112.39
4d-1	300	0.309±0.022	58.51	0.190±0.029	76.57	0.098 ± 0.015	81.31	67.22
	150	0.404 ± 0.041	41.25	0.269±0.031	59.62	0.114 ± 0.018	70.05	82.84
	75	0.482 ± 0.038	27.17	0.343 ± 0.046	43.87	0.121±0.016	65.77	94.16
	37.5	0.537±0.028	17.21	0.430 ± 0.038	25.28	0.173 ± 0.030	30.41	101.03
4d-2	300	0.267 ± 0.041	66.18	0.217±0.031	70.66	0.104 ± 0.014	77.18	89.29
	150	0.321±0.038	56.28	0.274 ± 0.031	58.55	0.118±0.016	67.34	91.49
	75	0.418±0.036	38.77	0.360 ± 0.044	40.10	0.133±0.022	57.66	95.37
	37.5	0.509 ± 0.048	22.28	0.431±0.029	24.93	0.164±0.023	36.49	109.10
4d-3	300	0.305 ± 0.020	59.30	0.233 ± 0.020	67.31	0.103 ± 0.004	77.93	95.61
	150	0.375 ± 0.044	46.62	0.311±0.035	50.71	0.117 ± 0.016	68.24	97.46
	75	0.436 ± 0.040	35.45	0.373±0.019	37.39	0.135 ± 0.028	56.08	107.07
	37.5	0.527±0.039	19.08	0.439 ± 0.051	23.29	0.174±0.039	29.73	119.12
221					X			

Table 2. Effects of on the inhibition of HBeAg secretion by HepG2.2.15 cells ($\bar{x}\pm s$, n=3).

Groups	Concentration/	3 days	6 days 9 days			9 days		9 days
	μΜ	OD	Inhibiti	OD	Inhibiti	OD	Inhib	Cell
		(x±s)	on (%)	(x±s)	on (%)	(x±s)	ition (%)	survival (%)
Control	-	3.502 ± 0.030	-	3.455±0.018	-	2.619 ± 0.050	-	100
3TC	300	2.441 ± 0.218	30.87	2.100±0.186	39.92	1.079 ± 0.063	60.17	75.19
	150	2.680±0.310	23.93	2.398±0.216	31.12	1.458 ± 0.089	45.36	82.39
	75	2.983 ± 0.353	15.09	2.706 ± 0.297	22.05	1.745 ± 0.147	34.17	95.86
	37.5	3.154 ± 0.320	10.13	3.021±0.224	12.78	2.148 ± 0.242	18.39	118.45
4a-1	300	1.771±0.212	50.35	1.522 ± 0.091	56.93	1.104 ± 0.156	59.20	99.54
	150	2.241 ± 0.211	36.68	1.846 ± 0.250	47.38	1.381±0.141	48.38	101.86
	75	2.550 ± 0.272	27.71	2.339 ± 0.180	32.88	1.589 ± 0.099	40.34	104.25
	37.5	2.837 ± 0.258	19.34	2.617 ± 0.101	24.69	1.927±0.127	27.04	106.67
4a-2	300	2.065 ± 0.373	41.81	1.799±0.263	48.79	0.171±0.174	56.60	103.31
	150	2.457 ± 0.359	30.39	2.030 ± 0.175	41.97	1.500 ± 0.159	43.74	114.02
	75	2.875±0.292	18.25	2.507 ± 0.153	27.91	1.665 ± 0.211	37.28	120.16
	37.5	3.019 ± 0.221	14.06	2.776 ± 0.321	20.01	1.927 ± 0.087	27.03	128.25
4a-3	300	3.009 ± 0.213	14.35	2.252 ± 0.315	35.44	1.281±0.397	52.27	97.71
	150	3.098 ± 0.359	11.75	2.763 ± 0.242	20.37	1.912±0.223	26.95	98.65
	75	3.260 ± 0.335	7.04	2.936 ± 0.296	15.29	2.042 ± 0.194	22.55	101.20
	37.5	2.480 ± 0.029	0.63	3.164 ± 0.175	8.58	2.142 ± 0.188	18.65	113.67
4b-1	300	2.325 ± 0.158	34.24	1.634 ± 0.226	53.64	1.055 ± 0.047	61.10	88.95
	150	2.532 ± 0.257	28.22	2.264 ± 0.205	35.09	1.394 ± 0.217	47.87	98.07
	75	2.804 ± 0.238	20.31	2.462 ± 0.249	29.24	1.565±0.095	41.17	106.92

	37.5	3.042±0.308	13.38	2.730±0.264	21.35	1.847±0.207	30.16	108.25
4b-2	300	2.498±0.213	29.21	2.009 ± 0.121	42.59	1.135 ± 0.085	58.00	76.08
	150	2.726 ± 0.279	22.58	2.291±0.222	34.28	1.464±0.136	45.12	93.23
	75	3.048±0.210	13.21	2.580 ± 0.240	25.76	1.707±0.119	35.64	126.80
	37.5	3.310±0.133	5.59	2.847 ± 0.243	17.91	1.970±0.155	25.35	132.91
4b-3	300	2.975 ± 0.272	15.34	2.331±0.292	33.10	1.210±0.153	55.06	79.92
	150	3.113±0.246	11.32	2.497 ± 0.174	28.22	1.435 ± 0.142	46.26	92.59
	75	3.205 ± 0.289	8.64	2.744 ± 0.231	20.93	1.811±0.164	31.56	93.38
	37.5	3.521±0.033	-	2.876±0.221	17.06	2.091±0.161	20.62	100.48
4c-1	300	1.321±0.167	63.46	0.567 ± 0.028	85.08	0.152±0.047	96.42	35.15
	150	1.582 ± 0.137	55.85	0.819 ± 0.054	77.64	0.164±0.034	95.92	53.83
	75	1.870 ± 0.130	47.47	0.914 ± 0.021	74.84	0.321±0.055	89.79	72.91
	37.5	2.412 ± 0.030	31.70	1.198 ± 0.132	66.47	0.508 ± 0.051	82.51	79.27
4c-2	300	1.878 ± 0.242	47.24	1.043±0.239	71.05	0.400 ± 0.041	86.70	43.05
	150	2.293 ± 0.085	35.18	1.538 ± 0.150	56.47	1.108 ± 0.128	59.06	73.81
	75	2.651 ± 0.382	24.76	1.900 ± 0.272	45.80	1.417±0.185	46.96	85.51
	37.5	2.922 ± 0.288	16.88	2.574±0.244	25.96	1.844±0.157	30.27	94.40
4c-3	300	1.740 ± 0.207	51.27	1.308±0.182	63.25	0.787 ± 0.083	71.60	79.40
	150	2.352±0.214	33.45	1.890±0.246	46.09	1.302±0.154	51.48	92.17
	75	2.620 ± 0.249	25.67	2.368±0.199	32.02	1.522±0.167	42.86	104.98
	37.5	2.957 ± 0.150	15.86	2.757±0.213	20.55	1.969±0.122	25.41	112.39
4d-1	300	1.640 ± 0.158	54.17	0.895 ± 0.014	75.41	0.506 ± 0.023	82.58	67.22
	150	1.939±0.288	45.48	1.298 ± 0.090	63.53	0.949 ± 0.080	65.26	82.84
	75	2.565 ± 0.251	27.27	2.018±0.251	42.34	1.153±0.105	57.29	94.16
	37.5	2.891±0.171	17.77	2.686±0.311	22.66	1.852 ± 0.261	29.99	101.03
4d-2	300	1.448 ± 0.194	59.76	1.352±0.165	61.95	0.711±0.097	74.57	89.29
	150	1.730±0.204	51.55	1.571±0.134	55.48	0.952 ± 0.098	65.16	91.49
	75	2.400±0.185	32.07	2.171±0.231	37.82	1.162 ± 0.088	56.92	95.37
	37.5	2.646±0.267	24.92	2.413±0.225	30.69	1.825 ± 0.089	31.04	109.10
4d-3	300	2.062±0.209	41.91	1.719±0.087	51.13	0.936±0.199	65.75	95.61
	150	2.341±0.124	33.77	2.097±0.228	40.00	1.138±0.041	57.87	97.46
	75	2.624±0.338	25.55	2.309±0.104	33.75	1.367±0.156	48.93	107.07
	37.5	3.064±0.358	12.73	2.908±0.267	16.10	1.871±0.172	29.22	119.12
224								
225								
226								

	3 days			6 da	VS	eveb 0	
Groups	Concentration/ -	HBV DNA	Inhibiti	HBV DNA	Inhibiti	HBV DNA	Inhibiti
Groups	μM	(copies/ul)	on(%)	(copies/ul)	on(%)	(copies/ul)	on(%)
Control		9.19 ± 1.22	011 (70)	$(copies/\mu i)$ 10 50+0 78	011 (70)	$(copies, \mu)$	011 (70)
3TC	300	3.73+0.19	- 59.45	2 89±0 63	- 71.59	1.48 ± 0.51	- 86 39
510	150	4 91+0 27	76.61	2.09±0.05	66.83	1.40 ± 0.01	81.64
	75	4.91 ± 0.27	40.01	3.48 ± 0.01	58.80	2.00±0.98	76.68
	37.5	4.97 ± 0.21 5.52 ±0.28	30 07	4.32 ± 0.71	38.57	2.34±0.75	69.42
4c-1	300	3.32 ± 0.28	62.82	3.28 ± 0.12	68 70	1.55 ± 0.54	85.82
40-1	150	1 98+0 33	02.82 45.77	1 03+0 95	61 59	1.53 ± 0.54	72 22
	75	4.98±0.33	36.80	4.03±0.73	47.62	3.03 ± 0.32	68 73
	37.5	5.80±0.35	30.35	5.50±0.78	47.02 38.10	5.41±0.55	58 11
4d 1	300	0.40 ± 0.20	30.30 41.06	0.30±0.33	52.02	4.33 ± 0.30	50.44 67.48
4u-1	150	5.42 ± 0.37	34.80	4.94±0.40	14.76	3.33±0.47	54.40
	75	5.98±0.55	28 55	5.80±0.44	30.21	4.90±0.49	J4.49 17 31
	37.5	0.37±0.05	20.55	7.67±0.13	26.95	5.74±0.14	36.74
4d-2	300	4.92 ± 0.30	46 50	4.48 ± 0.15	57.37	4 20±0.32	61 49
4u-2	150	4.92 ± 0.44 5 45+0 13	40.50	4.48 ± 0.33	42.86	4.20 ± 0.20 5 23+0 42	52.02
	75	6.48±0.26	29.45	6.37 ± 0.38	39.37	5.23±0.42 6 58±0 29	39.64
	37.5	7.37+0.42	19.84	7.60+0.10	27.62	7.58+0.19	30.47
36	51.5	1.57±0.12	19.01	1.0020.10	27.02	7.50±0.17	50.17
	Y.						

Table 3. Effects of on the inhibition of HBV DNA replication ($x\pm s\times 10^2$, n=3). 235

236