
This article was downloaded by: [University of Tennessee, Knoxville] On: 29 March 2013, At: 09:02 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

SYNTHESIS OF NEW 5-SUBSTITUTED 1,2,4-TRIAZOLE-3-THIONE DERIVATIVES

Henryk Foks $^{\rm a\ c}$, Anna Czarnocka-janowicz $^{\rm a}$, Waleria Rudnicka $^{\rm a}$ & Henryk Trzeciak $^{\rm b}$

^a Department of Organic Chemistry, Medical University of GdańSk, Poland

^b Department of Pharmacology, Silesian Medical University of Katowice, Poland

^c Al. Gen. J. Hallera 107, 80416, Gdańsk, Poland Version of record first published: 27 Oct 2006.

To cite this article: Henryk Foks , Anna Czarnocka-janowicz , Waleria Rudnicka & Henryk Trzeciak (2000): SYNTHESIS OF NEW 5-SUBSTITUTED 1,2,4-TRIAZOLE-3-THIONE DERIVATIVES, Phosphorus, Sulfur, and Silicon and the Related Elements, 164:1, 67-81

To link to this article: http://dx.doi.org/10.1080/10426500008045234

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2000, Vol. 164, pp. 67-81 Reprints available directly from the publisher Photocopying permitted by license only

SYNTHESIS OF NEW 5-SUBSTITUTED 1,2,4-TRIAZOLE-3-THIONE DERIVATIVES

HENRYK FOKS^{a*}, ANNA CZARNOCKA-JANOWICZ^a, WALERIA RUDNICKA^a and HENRYK TRZECIAK^b

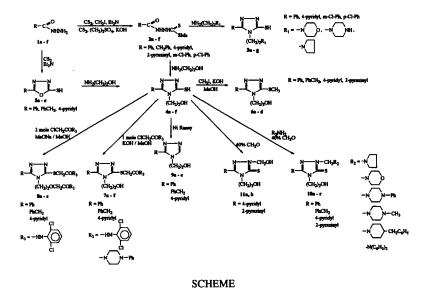
^aDepartment of Organic Chemistry, Medical University of Gdańsk, Poland and ^bDepartment of Pharmacology, Silesian Medical University of Katowice, Poland

(Received December 07, 1999)

In the present paper we describe the preparation of series of new derivatives of 1,2,4-triazole-3-thiol. As starting materials methyl 3-acyldithiocarbazates were used, which on reaction with amines gave the corresponding 4,5-disubstituted 1,2,4-triazole-3-thiol derivatives (3). Into the 4-position of the 1,2,4-triazole-3-thiol system a β -hydroxyethyl substituent was introduced (compounds 4). These compounds were alkylated with methyl iodide to from 6, with N-substituted amides of chloroacetic acid (products 7 and 8), and aminomethylated with formation of Mannich bases (10). Some of the thiols 4 were desulfurized to 9. The new compounds were tested for their circulatory activity, but found not pharmacologically active.

Keywords: 1,2,4-triazole-3-thiones; alkylation; Mannich bases; desulfurization

INTRODUCTION


In continuation of our previous studies we report in this paper on the synthesis of new compounds with potential influence on the circulatory system. Since many 1,2,4-triazole-3-thiols derivatives were described in the chemical literature as biologically active^[1,2], it seemed to be interesting to obtain new 4,5-disubstituted derivatives of this heterocyclic system and determine their circulatory activity.

^{*} Address. Al. Gen. J. Hallera 107, 80416 Gdańsk, Poland

RESULTS AND DISCUSSION

The starting materials 2 for the target compounds were prepared from acid hydrazides 1 by addition of carbon disulfide and followed by methylation with methyl iodide (2a - c) or dimethylsulphate $(2a - f)^{[3]}$. The methyl dithiocarbazates 2a, c, e, f were caused to react with 2-morpholino-, 2-piperazino- and 2-pyrrolidinoethylamine to afford the 4-substituted 1,2,4-triazole-3-thiol derivatives 3. These reactions proceeded with difficulty and the expected products formed with low yields. However, the best yields of 3 were found when 2 was refluxed with excess of amine.

As the β -hydroxyethyl moiety is present in mamy compounds with high circulatory activity, we introduced it to the triazole system and synthesized compound 4 by reaction of esters 2 with excess of β -ethanoloamine (Scheme).

Some of the compounds 4 were obtained by another method. The corresponding acid hydrazides 1 treated with carbon disulphide in the presence of triethylamine gave oxadiazolinethiones $5^{[3]}$, and the latter compounds were converted to derivatives 4a - c when refluxed whith ethanoloamine.

The reaction yields were not high, since the aminooxadiazole derivatives formed as by products.

The derivatives 4a - c obtained by these two methods possessed identical melting points, IR and NMR spectra.

Compounds 4 ($\mathbf{a} - \mathbf{c}$, \mathbf{f}) were earlier obtained by Malbec^[4] in the reaction of the corresponding thiosemicarbazide esters with ethanoloamine. Compounds 4d – \mathbf{e} were not described before and their characteristic data are given in the Table I.

Afterwards the 5-substituted 4-(2-hydroxyethylo)-1,2,4-triazole-3-thiols $4\mathbf{a} - \mathbf{d}$ were alkylated with methyl iodide to give the S-methyl derivatives $6\mathbf{a} - \mathbf{d}$, and treatment with N-substituted chloroacetic acid amides yielded $7^{[4]}$.

When equimolar quantities of substrates were used and the reaction of derivatives 4 (a - c) was carried out in methanolic solution of potassium hydroxide, the S-substituted derivatives 7a - f were obtained. Whereas in the presence of sodium ethanolate and excess of amide, S,N-disubstituted derivatives 8a - c were formed.

Desulfurization of the 5-substituted-4-(2-hydroxyethyl)-1,2,4-triazole-3-thiols $4\mathbf{a} - \mathbf{c}$ was carried out by reacting the thiols with Raney – nickel at boiling temperature^[5] to afford 4,5-disubstituted-1,2,4-triazole $9\mathbf{a} - \mathbf{c}$.

Aminomethylation of compounds 4a - d led to the corresponding Mannich bases 10, while reaction with formalin gave 2-hydroxymethyl-4-(2-hydroxyethyl)-1,2,4-triazole-3-thiols 11a - b.

The compounds **6a-c**; **7a-d**, **f**; **8c**; **9a**, **c**; **10a**, **c**, **j**, **k**, **m**, **o**; **11c** did not show any measurable pressor or antipressor activity in rats *in vitro*.

EXPERIMENTAL

Chemistry

Melting points of obtained compounds were determined on a Boetius apparatus and are uncorrected. The ¹H NMR spectra were recorded on a Tesla-Brno 80 MHz spectrometer. Chemical schifts are given in ppm (δ) relative to tetramethylsilane and as solvents were used DMSO-d₆, TFA and CDCl₃. The IR spectra were obtained with a Specord TL 80. The v_{max} are given in cm⁻¹; all compounds were examined as potassium bromide pellets.

March 2013		TABLI	E I Physical preperties of	N R N (Cf	-N - ℝ₂ →s
9:02 29	R ₁	<i>R</i> ₂	M.p. °C (solvent)	Yield (%)	¹ Η NMR 80 MHz δ (ppm)
ville] af 09	- N _0	н	182 – 185 methanol + H ₂ O	40	2,45(m, H, morphol.); 2,7 (m, 4H, morphol.); 3,4-3 4H, CH ₂ CH ₂); 4,15(m, NH); 7,85-8,2 (m, 5H arom
see, Knox	-N_NH	н	222 – 227 methanol	35	2,3–2,8(m, 8H, piperaz.); 3,1–3,47(m, NH); 4,1–4,5 4H, CH ₂ CH ₂); 7,72(m, 5H arom.)
of Tendes	- N _O	н	195 – 200 ethanol + H ₂ O	45	2,3(m, 4H, morphol.); 2,65 (m, 4H morphol.); 3,3–3 4H, CH ₂ CH ₂); 4,3–4,55(m, NH); 8 i 8,9 (d, 4H pyr
niversed bixin	-N_NH	Н	85 – 100 methanol + H ₂ O	45	2,4(m, 4H piperaz.); 2,7 (m, 4H piperaz.); 4,45(2 <u>H</u> , 2×NH); 5,7 (m, 4H CH ₂ CH ₂); 8 i 8,9(d, 5H pyrid.)
Downloaded by Univers by of Tendessee, Knoxville] at 09:02 29 में दि		Н	150 – 153 water	50	2,5(m, 4H morphol.); 2,9 (m, 4H morphol.); 3,5- 3, 4H, CH ₂ CH ₂); 7,4-7,8(m, 4H arom.)

R ₁	R ₂	M.p. °C (solvent)	Yield (%)	^I H NMR 80 MHz δ (ppm)
	Н	123 – 133 methanol + H ₂ O	45	1,05–1,7(m, 8H piperaz.); 3,3–3,8(m, CH ₂ CH ₂); 7, 7,8(m, 4H arom.)
-N	н	72 – 76 water	45	1,7(m, 4H pyrrol.); 2,5 (m, 4H pyrrol.); 3,5(t, CH ₂) 7,75(m, 4H arom.)
ОН	Н	159 – 160 methanol + H ₂ O	55	3,45-4(m, 4H CH ₂ CH ₂); 4,15(m, OH); 8,85-9,25 (pyraz.)
ОН	н	150 - 160 methanol	60	3,4-4,2(m, CH ₂ CH ₂); 4,12 (m, OH); 7,4-8,01 (m, 4 arom.)
ОН	- CH2-N	97 – 99 cyclohex.	27	1,64–1,8(4H pyrrol.); 2,72–2,90(4H pyrrol.); 3,96 (CH ₂ N); 4,20 (2H, CH ₂ O); 4,80(1H, OH)5,24 (2H, 7,48–7,72(5H arom.)
ОН	- CH2-N_0	167 – 170 methanol + H ₂ O 1:1	31	3,67–3,92(m, 4H mor- phol.); 2,80–3,0(4H, morpho 4,85(1H, OH); 4,17–4,50(4H, CH ₂ CH ₂); 5,30(s, 2H 7,75–8,15(5H arom.)
ОН	-CH ₂ -NN-Ph	70 – 72 water	17	3,93–4,4(4H, CH ₂ CH ₂); 2,61(m, 4H piperaz.); 3,07 4H piperaz.); 4,8(OH); 6,96–7,45 (10H, arom.)
	-N NH -N OH OH OH OH	-N MH $H-N$ H HOH HOH $HOH -CH_2-N OOH -CH_2-N O$	(solvent) $H = (solvent)$	$(solvent) (\%)$ $(-1) + (-CH_2 - N) + (-CH_$

13					
rch 20	R	R ₂	M.p. °C (solvent)	Yield (%)	¹ Η NMR 80 MHz δ (ppm)
02 29 Ma	ОН	-CH2-N_N-CH3	86 – 89 methanol	40	2,9(m, 4H piperaz.); 2,45 (m, 4H piperaz); 3,95(t, CH_2CH_2); 1,02 (s, CH_3); 4,02(t, CH_2); 5,12(s, CH_2 , 7,55–7,7 (m, 5H arom.)
at 09:	ОН	$-CH_2-N(C_6H_5)_2$	112 - 115 methanol	35	3,9(t, CH ₂); 4,15(t, CH ₂) 6,07(s, CH ₂); 7,35-7,55 (r arom.)
[ana subsection of the section of t	ОН	- CH2-N	119 - 123 water	12	2,0–2,25(m, 4H pyrrol.) 2,80–3,05(m, 4H pyrrol.); 4,20(2H, CH ₂ O); 3,37–3,95(2H, CH ₂ N); 4,45(2H, C 5,90 (2H, CH ₂); 4,95(1H, OH); 7,37–7,62 (5H, aro
HC seed K	ОН	- CH2-N_0	110 – 115 water	16	2,60–2,82(4H morphol.); 3,50–3,75(4H morphol.); 4,25 (4H, CH ₂ CH ₂); 5,0(1H, OH); 4,07(2H, CH ₂); 7,37(5H, arom.)
[Ungersity of gennessecork nox vign] at 09:02 29 March	ОН	-CH2-N N-Ph	49 – 53 water	18	2,95-3,31(4×CH ₂ pipe- raz.); 3,73-4,20(4H pipe- r 4,40(2H, CH ₂ N); 4,07(2H, CH ₂); 7,04-7,27 (5H ar 7,31-7,50 (5H arom.)
jy IUn ^{da} D	ОН	- CH ₂ -N	75 – 79 cyclohex + H ₂ O	19	2,40–2,68(4H pyrrol.); 1,85–2,05(4H pyrrol.); 4,16 4,32(2H, CH ₂ O); 3,80–4,0(2H, CH ₂ N); 4,60 (2H, C 8,40- 8,56(2H, pyrid.); 8,9–9,1 (2H pyrid.)
Download العلم المالية [مراحم المالية] الم	ОН	-CH2-N_0	115 – 117 water	16	2,45–3,55(4xCH ₂ mor- phol.); 3,70–7,20(4H, CH ₂ C 5,0(1H, OH); 6,70(2H, CH ₂ N); 7,75 (2H pyrid.); 8, pyrid.)

3					
March 201	R ₁	<i>R</i> ₂	M.p. °C (solvent)	Yield (%)	¹ H NMR 80 MHz δ (ppm)
29	ОН	-CH ₂ -N N-Ph	146 – 147 water	15	2,68–3,24(4xCH ₂ pipe- raz.); 3,84–4,32(4H, CH ₂ Cl 5,20(1H, OH); 6,80(2H, CH ₂); 7,01–7,36 (5H arom. (2H pyrid.); 8,71 (2H pyrid.)
llle] at the second	ОН	-CH2-N_N-CH3	107 – 109 methanol	40	1,15(3H, CH ₃); 2,75(m, 4H pyraz.); 3,92(t, 2H, CH 4,7(t, 2H, CH ₂); 8,62(d, 2H pyrid.); 5,12 (s, 2H, CH 9,15 (d, 2H pyrid.)
pwridyl P	ОН	$-CH_2N(C_6H_5)_2$	53 – 58 cyclohex + H ₂ O	14	3,85(1H, CH ₂ N); 4,52(1H, CH ₂ O); 5,02(1H, OH); 6,8(-NCH ₂ N-); 7,10–7,50 (10H, arom.); 7,80(2H py 8,90 (2H pyrid.)
resityed Tennesdee, Knod ville] at d9:02 like in the like is the l	OH	- CH2-NCH2Ps	132 – 135 methanol	45	0,8(m, 1H piperid.); 1,17 (m, 4H piperid.); 2,35(m, piperid.); 3,1(d, 2H, CH ₂); 3,9–4,3 (m, 4H, CH ₂ CH ₂ (s, CH ₂); 7,15(m, 5H arom.); 7,3(d, 2H pyrid.); 8,7(pyrid.)
versity bour bour bour bour bour bour bour bour	ОН	- CH2-N	143 – 146 methanol + H ₂ O	16	2,0–2,3(4H pyrrol.); 2,75–2,97(4H pyrrol.); 4,85 (1 OH); 3,90–4,20 (4H, -CH ₂ -CH ₂ -); 8,85- 9,2(3H, pi
Downloaded by [dini	ОН	- CH2-N_0	135 – 145 methanol	14	2,72–2,92(4H morphol.); 3,50–3,82(4H morphol.); 4,85(1H, OH); 5,20(2H, CH ₂); 3,87–4,20(4H, CH ₂ · 9,30(1H py- raz.); 8,67(2H, pyraz.)

ille] at	R _I	<i>R</i> ₂	M.p. °C (solvent)	Yield (%)	¹ H NMR 80 MHz δ (ppm)
-porazinyl M	ОН	- CH2-N N-Pb	64 – 65 methanol	28	4,01–4,25(4H, CH ₂ CH ₂); 5,1(1H, OH); 7,1–7,40 (S arom.); 8,70(2H pyraz.); 9,21(1H pyraz.)
Tenned bisksee,	ОН	-CH ₂ OH	146 – 149 methanol + H ₂ O	17	3,60–3,80(2H, CH ₂ N); 4,04–4,20(2H, CH ₂ O); 5,40 5,60(2H, CH ₂ OH); 5,0(1H, OH); 7,04(1H, CH ₂ OH 7,84(2H py- rid.); 8,80(2H pyrid.)
-porazinyl	ОН	-CH ₂ OH	226 - 230 methanol	12	3,85(CH ₂ N); 4,75(2H, CH ₂ O); 4,97(1H, OH); 6,95 OH); 5,70–5,82 (CH ₂ O); 8,95(3H pyraz.)

March 2013		TABLE II Phy	sical preperties of R	-N N R ₁ CH ₂) ₂ R ₂		
20:05 20	R _j	<i>R</i> ₂	M.p. °C (solvent)	Yield (%)	$\frac{IR (KBr)}{cm^{-1}}$	¹ Η NMR δ – ppn
ille] af 09	-SCH ₃	ОН	120 - 124 water	70		3,75(3H, CH ₃); 4,08 (C 3,03(2H, CH ₂ N); 7,55- (5H arom.)
Knog H ⁷	-SCH ₃	ОН	116 - 118 water	64		3,43(2H, CH ₂ N); 4,15(CH ₂ O); 3,81 (3H, 7,85(5H arom.); 4,2(2H
pyri- dyl	-SCH ₃	ОН	85 – 86 methanol + water 1:1	53		4,3(CH ₂ O); 3,75 (3H, 0 2,85 (2H, CH ₃ N); 7,92 8,9(4H pyrid.)
Dyra- zinyl Norder Nord	-SCH ₃	ОН	174 – 175 water	57		3,51(2H, CH ₂ N); 4,02(CH ₂ O); 3,78 (3H, 8,95(3H pyraz.)
Downloaded by [University or Tennessee, Knos ville] at 09:02 29 March 2013		ОН	137 – 139 methanol + water 1:1	25	1680 (C=O) 3100– 3200 (OH) 2920 (NH)	3,51(2H, CH ₂ N); 3,71(CH ₂ O); 7,85(5H arom. 7,7(3H arom.); 4,42(2H CH ₂ O)

013						
N March 201	R ₁	<i>R</i> ₂	M.p. °C (solvent)	Yield (%)	IR (KBr) cm ⁻¹	¹ Η NMR δ – ppn
)9:02 29 쩦a	-3CHC-N-	ОН	144 – 147 water	30	1675 (C=O) water 3100-3200 (OH) 2940 (NH)	
.noxville]da		ОН	194 – 197 methanol	33	1690 (C=O) 3100– 3200 (OH) 2920 (NH)	
nessee, K	-scH _a -c-N H N-Pa	ОН	198 – 200 water	30	1660 (C=O) 3120- 3200 (OH)	
/ of Thin	-102Hg-C-N	ОН	176 – 179 methanol	17	1680 (C=O) 3100- 3200 (OH)	
[Univer id Iniversity	-xcx,-c-x	ОН	175 – 177 water	21	1650 (C=O) 3100 3200 (OH)	4,3(CH ₂ O); 3,45 (2H, C 3,85 (2H, CH ₂ CO); 7,8 pyrid.); 8,80 (2H pyrid. (1H piper.); 1,17 (4H p
Downloaded by [Univergity of Thanessee, Knoxville] gt 09:02 29	-3CHC-N-C		165 – 167 methanol + water 1:1	23	1690 (C=O) 2910 (NH)	2,35(4H piper.); 3,1 (21 CH ₂)

$\tilde{\omega}$						
March 2013						
4						
arc						
<u>ک (.binyq H2)</u>						
CH ₂ O); 7,95(2H pynd.			+ water			
202 + :(NICH) +H2)76'C		42	151 – 153 methanol	НО	н	եչունչ
3'65(2H' CH ³ N): † 20		Cr	100004000 251 - 151	HU	н	Inhing
⊖ (.mons Hč)čĽ,7						
(2212 117)/0'+ (07112			+ water			
3,37(2H, CH ₂ N); 3,82(40	16 – 79 methanol	НО	н	² HOr
3'32(2H' CH ⁵ N): 3'80(2H ⁶ N): 3'8						
CH ₂ O ₂ H ₂ (5) 7.8.7 :(O ₂ H ₂)		<u>.</u>	+ water 1:1			
DE E (NºHO HZZE		84	102 – 103 methanol	НО	Н	u
X						
(Smors Ho)0,7 ;(.biryq				ہ <u>ت</u>	ņ	
HS)9,8 ;(.binyq H2)79,7						
CH ⁵ O): † ' † 5(†H ' C H '	(HN)					
3'28'E '(N ² H)' 'H)'S'E	1690 (C=O) 2900	82	naxoib 201 – 081	d "	d "	լհրսհժ
	0000 (0 0) 0021	00				1
of				n		
7.55,7,100 H0)0,7-22,7				ې بې	ц Ц с	
,时的)2,4 ;(.mous H2)7,7				-сн ³ -сн ³ -сно-	-N-3-406-	
CH ³ O); 4,45(4H, CH ₃ C	(HN)			∑ ́ ́ ́ ́		
3' t 2(5H' CH ⁵ N): 3'8	1670 (C=O) 2900	91	171 – 173 methanol	a	a	⁷ HOr
۲ ا	 	(%)	(1UƏAJOS)			
и Да – 9 XWN H ₁	^{CW_1} IK (KBL)	(%) pjəi <u>j</u>)° . d.M	² 8	'N	к
0 Zanw H	1"a//ai	PP:A	<u> </u>	a	<u>a</u>	ă
Downloade H NMR 5 - موقق H NMR 5 - Poy		_				
olu						
IM						
Ô						
_						

The results of elemental analyses (%C, H) for all the compounds obtained were in a good agreement with the data calculated. Reaction yields and the physical constants of the new compounds are given in Tables I and II.

1. Methyl 2-acylodithiocarbazates (2a - f)

A) compounds 2a - c

To a suspension of 50 mmole of hydrazide 1a - e in 15 ml of ethanol 50 mmole of Et_3N was added. Then, 50 mmole of carbon disulphide was added dropwise through a reflux condenser. After the reaction mixture cleared, 50 mmole of methyl iodide was added drop by drop. The mixture was allowed to stay overnight at room temperature. The precipitated ester was filtered off and recrystallized.

B) compounds 2d - f

To a solution of 15 mmole of KOH in 20 ml of water and 10 ml of ethanol was added 15 mmole of hydrazide 1d - f and then, through a reflux condenser 15 mmole of carbon disulfide was added with stirring. After the oily drops of carbon disulfide disappeared, 15 mmole of dimethyl sulfate was added portionwise with stirring. After 30 minutes the solution was acidified with acetic acid and the precipitated esters 2d - f were collected, washed with water and recrystallized.

2. 4,5-Disubstituted S-triazole-3-thiol derivatives (3a - g)

2-Morpholino-, 2-pyrrolidino- and 2-piperazinoethylamine (3 ml), respectively, were added to the corresponding ester **2a**, **c**, **e**, **f** (10 mmole) and the reaction mixture was refluxed for 0.5 - 2 h. After cooling the oily mixture was dissolved in 20 ml of water and acidified with acetic acid; the precipitated products were filtered off and recrystallized (Table I).

3. 5-Substituted-4-(2-hydroxyethylo)-1,2,4-triazolo-3-thiols (4a - f)

Method A

Compounds 4a - f were obtained in a similar manner as described in 2 for thiols 3, but the methyl esters 2 were caused to react with β -ethanoloamine. Characteristic data of compounds 4d - e are given in Table I.

Method B

a) Hydrazide 1a - c (25 mmole) was refluxed with an equimolar quantity of CS₂ and Et₃N in 10 ml of methanol until H₂S liberation ceased. After evaporation under vacuum, the solid residue was dissolved in a small volume of water and acidified with concentrated hydrochloric acid. Precipitated oxadiazolothiones 5a - c were filtered off and recrystallized.

b) Oxadiazolothiones $5\mathbf{a} - \mathbf{c}$ were refluxed with an excess of ethanoloamine (10 - 30 min.), then to the thick mixture, 10 ml of water was added and the precipitated aminooxadiazoles were filtered off, the filtrates were acidified with concentrated hydrochloric acid The obtained compounds $4\mathbf{a} - \mathbf{c}$ were recrystallized.

4. Methylation of 5-substituted 4-(2-hydroxyethyl)-s-triazole-3-thioles – compounds (6a – d)

Derivative 4a - d (30 mmole) was dissolved in methanolic solution of potassium hydroxide (0,1 g KOH in 10 ml of methanol), then 0,2 ml of methyl iodide was added dropwise. The reaction mixture was refluxed for 0,5 - 3 hours. After the precipitated KCl was filtered off, methanol was evaporated in vacuo, and the resulting oily residue was treated with ethyl ether and allowed to stand until crystalls were formed. The precipitate was separated and purified by recrystallization (Table II).

5. Alkylation of 5-substituted 4-(2-hydroxyethyl)-s-triazole-3-thiols with N-substituted chloroacetic acid amides – compounds (7a - f) and (8a - c)

A) N-substituted amides of chloroacetic acid

To a solution of chloroacetic chloride in 50 ml of dry ethyl ether or benzene the appropriate amine (2,6-dichloroaniline or N-phenylpiperazine) was added dropwise with cooling in icewater. The reaction mixture was kept at room temperature for 24 h. The precipitated amides were filtered off.

B) Synthesis of alkylated products 7a-f

Derivative 4a - c (2 mmole) was dissolved in methanolic solution of potassium hydroxide (0,2 g KOH in 10 ml of methanol – for the

2,6-dichloroaniline derivative and 0,4 g KOH – for the N-phenylpiperazine derivative), and treated with an equimolar quantity of N-substituted chloroamide. The reaction mixture was refluxed for 30 min., the precipitated salt was filtered, and the filtrate evaporated. The oily residue solidified after treating with ethyl ether or petroleum ether. Obtained derivatives 7a - f were purified by recrystallization (Table II).

C) Synthesis of alkylated products 8a - c

Compounds $4\mathbf{a} - \mathbf{c}$ were refluxed with N-substituted chloroamide (1:2) in methanol (10 ml) with sodium methanolate (0,23 g Na) for 3 hours. The precipitated salt was filtered and the methanolic solution was evaporated. The oily residue solidified after treating with ethyl ether. Derivatives $8\mathbf{a} - \mathbf{c}$ were finally purified by recrystallization (Table II).

6. 5-Substituted-4-(2-hydroxyethyl)-s-triazoles (9a - c)

Appropriate triazole-3-thione 4a - c (3 mmole) was dissolved in 10 ml of ethanol, Raney Nickel (2,3 g) was added and the mixture was refluxed for 4 hours. Then nickel was filtered off and the filtrate evaporated, the oily residue was treated with ethyl ether and allowed to stand till a precipitate separated (Table II).

7. Synthesis of Mannich bases (10a - r)

Appropriate compound 4a - d was dissolved in 5 ml of methanol, the corresponding amine (1:1) and 0,3 ml of 40% formalin was added. The reaction mixture was refluxed for 3 hours, the solvent was evaporated and the oily residue treated with ethyl ether or petroleum ether and kept in a refrigerator. After some time the Mannich bases precipitated. Products were purified by crystallization (Table I).

8. Synthesis of 2-hydroxymethyl derivatives (11a - b)

Appropriate compound 4c - d (2,5 mmole) the was refluxed with 3 ml of 40% formalin for 2 hours. The resulting solution was evaporated and the oily residue treated with ethyl ether till solidifying. The obtained solid crude products were recrystallized (Table I).

PHARMACOLOGY

Perfused artery experiment

Experiments were performed on male Wistar rats, weighing 200 ± 20 g bred in the Central Animal Farm of the Silesian Medical University. The rats were housed in an animal room at a constant temperature (21 - 24 °C), humidity (50 - 60%), and alternative 12/12-hr light-dark cycle. The animals had a free access to a standard diet and tap water. The rats were killed under ether anesthesia.

The tail artery was prepared for perfusion according to the method of Nicholas^[6]. The proximal segment (2 - 3 cm) of the tail artery was excised, cannulated and mounted vertically under 0,5 g tension in an organ bath with Krebs solution. The constriction of tail artery in response to the tested compounds $(10^{-6} - 10^{-5}\text{M})$ or in response to noradrenaline $(10^{-7} - 10^{-5}\text{M})$ with presence of the compounds $(10^{-6} - 10^{-5}\text{M})$ was measured as an increase in perfusion pressure (Statham P23 ID transducer) at a constant flow Krebs solution (4 ml/min.).

References

- Budeanu C., Iorpa T., Ciuqureanu C., Iorga J.: Rev. Chim. (Bucarest) 30, 633 (1979); Chem. Abs. 92, 52673r (1980).
- 2. Yale H.L., Pialla H.J.: J. Med. Chem. 9, 42 (1966).
- 3. Reid J.R., Heindel N.D.: J. Heteroc. Chem. 13, 925 (1976).
- 4. Malbec F., Milcent R., Barbier G.: J. Heteroc. Chem. 21, 1689 (1984).
- 5. Hoygarth E.: J. Chem. Soc. 1952, 4811.
- 6. Nicholas T.E.: J. Pharm. Pharmac. 21, 826 (1969).