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ABSTRACT: An intramolecular, gold-catalyzed alkyne hydroarylation results in the formation of the core pyrroloazepinone
framework of the hymenin group of oroidin alkaloids. Elaboration of the cyclic adduct via C2-azidation, bromination of the pyrrole,
and deprotection set the stage for global reduction with Mo(CO)g resulting in the formation 2-debromohymenin.

he pyrrole-imidazole alkaloids (PIAs) are a family of

sponge-derived secondary metabolites that exhibit a
remarkable array of structural diversity.'”” These alkaloids
are formally derived from oroidin (1a) (or congeners 1b—d)®
and are often characterized by the number of oroidin units
found in their framework, giving rise to a series of monomers,
dimers, and even tetramers. The monomeric derivatives display
a range of different constitutions, possessing annulated five to
seven membered rings and up to two additional rings (2—7,
Figure 1).””'> While the precise details of their biosyntheses
remain to be fully elucidated,"”'* the origin of these natural
products can be formulated in terms of electrophilic or
oxidative reactions of oroidin."” In the course of our studies
toward a number of oroidin dimers,'® we have used propargylic
imidazole'’ ™" precursors and recognized that they may
function as precursors to several monomeric derivatives in
their own right. Specifically, we described the use of imidazolyl
propargylamides for the synthesis of various frameworks found
in the oroidin monomers and completed the formal total
synthesis of cyclooroidin (4).”' Herein, we report the
construction of the pyrroloazepinone skeleton common to
hymenin*** and congeners”*™"’ via an intramolecular, gold-
catalyzed hydroarylation®® and an investigation of its
elaboration into hymenin (6)***’ and 2-debromohymenin
(7). Hymenin was isolated by Kobayashi and co-workers
from a sample of Hymeniacidon sp. found off Ishigaki,>*’
whereas the 2-debromo congener was obtained from an
Indonesian sponge, Stylissa carteri (syn. Axinella carteri), and
described by the Proksch lab.”> Hymenin and hymenialdisine
(3)”*° have been shown to protect cortical neurons against
oxidative stress at low nanomolar concentrations (1—10 nM in
cell viability and MTT assays after treatment with H,0,).”'
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Figure 1. Structures of several oroidin monomers.
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However, both hymenin and 2-debromohymenin were
reported to be inactive against human monocytic leukemia
cells.

The only prior synthetic approach to this family of natural
products has been reported by the Horne lab which involves
the initial construction of the pyrroloazepinone core and a
subsequent Friedel—Crafts-like arylation with 2-aminoimida-
zole.”””*** Our work™" in this area was inspired by a report by
Beller and co-workers who demonstrated that both Pt- and Au-
catalysts result in the formation of pyrroloazepinones upon
cyclization of aryl substituted N-propargyl pyrrolecarboxa-
mides via hydroarylation. Pt-Catalysts delivered rearranged
products predominantly (cf. 9 in Scheme 1) whereas Au-
catalysts produced mixtures of the required product (cf. 10 in
Scheme 1) in addition to the rearranged product; the ratio of
the two was dependent on the reaction temperature.”*>> The
formation of rearrangement products was rationalized via the

Scheme 1. Gold-Catalyzed Hydroarylation of Imidazolyl
Pyrrole Carboxamides

H AN AuCl,
N o) N —_ > (o] \
Br | | ) 14-Dioxane S=0
\ 0, Y
N 72% = O NMe,

15 (not formed)
(b)

intermediacy of the spiro fused derivative 12 derived from ipso
addition to the pyrrole (Scheme 1).° The nonrearranged
pyrroloazepinone skeleton was required in order to apply this
chemistry to a total synthesis of stevensine or hymenin. Our
preliminary work on Au-catalyzed hydroarylations®™** of
imidazolyl alkynes with pyrroles showed that there was some
substituent sensitivity in the reaction with respect to the fusion
of the pyrrole ring.”" Large amide N-substituents appeared to
favor the rearranged product (Scheme 1, 8 (R = Tr) — 11),”
whereas smaller substituents resulted in the formation of two
pyrroloazepinones in comparable amounts (Scheme 1, 8 (R =
Me) — 9 + 10). In order to apply this chemistry to stevensine
(5) or hymenin (6), the use of an N-methyl substituent on
either the pyrrole nitrogen or amide nitrogen was not likely to
be synthetically viable. Although Beller’s studies suggested that
the use of an NH-pyrrole and a secondary amide was not likely
to be productive, an attempt to cyclize the dibrominated
pyrrole carboxamide 13 was investigated anyway. A high
yielding cyclization was observed, but oxazolidine 14 rather
than the pyrroloazepine 15 was obtained in good yield and
confirmed through X-ray crystallography (Scheme 1b). Given
this observation, it was determined that protection of the
amide nitrogen was necessary,”” therefore we sought to
identify a small, but readily removable substituent for the
amide nitrogen. The use of an N-OMe group was appealing, as
it appeared to meet the criterion of a small (A-values Me = 1.7;
Et = 1.8; MeO = 0.6 kcal mol™!)*" yet removable substituent
and we had some prior experience with reductive cleavage of
N—-O bonds in other contexts with imidazole-containing
substrates; thus, we constructed the appropriate substrate 17 to
test the hypothesis (Scheme 2).*” It was also determined that
using the brominated pyrrole was unattractive, as this renders
the ring less nucleophilic and increases the steric crowding in

Scheme 2. Construction and Cyclization of the Pyrrole-
Substituted Propargylimidazole
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the desired ring fusion thus reducing the selectivity of the
cyclization.

The known propargyl amine derivative 17" was coupled
with 4-iodoimidazole 16" through a Sonogashira reaction
(Scheme 2). Exposure of 18 to TFA removed the carbonate
moiety and the resulting N-methoxyamine was acylated with
the pyrrolecarbonyl chloride 19, affording pyrrole amide 20.
Treatment of the pyrrole carboxamide 20 with AuCl; in
dioxane led to the formation of two pyrroloazepinones 21 and
22 (X-ray), of which the major product 21 (2,3-fusion) had
the correct orientation of the ring fusion for application to the
synthesis of hymenin and stevensine. In addition to the
cyclization products, a small amount of the trans acylated
derivative 23 (X-ray) and ca. 10—20% of unreacted starting
material 20 were recovered. Our initial plan was to employ the
nonrearranged adduct en route to stevensine via bromination
of the pyrrole ring; however, exposure of 21 to NBS resulted in
competitive bromination of the azepinone double bond and
thus these advanced intermediates were better configured for a
pursuit of hymenin.

The major 2,3-isomer 21 was subjected to catalytic
hydrogenation to deliver the saturated congener, which upon
lithiation with LDA (3.9 equiv) and exposure of the resulting
organolithium to TsNj resulted in the formation of the 2-azido
derivative 24 (Scheme 3).""*7*° Deprotection of the

Scheme 3. Elaboration of the Pyrroloazepinone Core
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sulfonylurea afforded the free imidazole 25 (confirmed by X-
ray structure; see Supporting Information) which upon
reduction with Zn/AcOH afforded desbromohymenin (27)
in good overall yield”' Through careful control of the
stoichiometry and the reaction time (for 26 Zn = 10 equiv, 1 h;
for 27 Zn = 2§ equiv, 6 h), the azide can be reduced
chemoselectively to afford 26. Attempts were made to effect
bromination of 27 to generate hymenin (or debromohymenin)
with little success, presumably due to competitive reaction of
the imidazole at CS5; therefore, bromination was explored
earlier in the sequence.

Gratifyingly, monobromination of 24 occurred readily at C4
on the pyrrole using 1.0 equiv of NBS in THF/H,0O at —60 °C
affording 28 in 80% (Scheme 4); the location of the bromine

and the overall connectivity of the hymenin framework was
confirmed by X-ray crystallography. Dibromination of the
pyrrole was achieved by exposure to 2.2 equiv of NBS at low
temperature to deliver 31, again confirmed by X-ray
crystallography (Scheme 4). This was a more challenging
transformation as bromination also occurred on the imidazole
ring (CS) leading to 32 and thus the reaction had to be
monitored carefully by NMR spectroscopy to maximize the
yield of the dibromide ~50%. Bromination at CS on the
imidazole moiety began to impinge as the degree of conversion
increased and thus reaction was terminated once over
bromination was observed. The monobromide 28 was
deprotected by acid-catalyzed hydrolysis of the sulfonyl urea
to provide the corresponding free imidazole 29 (Scheme 4).
Completion of the synthesis of 7 simply required conversion of
the azide to the amine and removal of the O-methyl group.
Finding a suitable reductant to effect both conversions while
retaining the bromide(s) was challenging. As expected, Zn/
HOACc was effective in the required reductions (cf. 25 — 27,
Scheme 4), but also resulted in reductive debromination. At
this point, we explored using a two-step reduction sequence by
converting the azide to the amine by treatment with Lindlar
catalyst and hydrogen which delivered the corresponding
amines 30 (and 33) in accordance with prior experi-
ence.'¥"*™* Sml,, which we have employed in related but
less advanced intermediates to cleave an N—O bond
reductively was investigated.”” However, upon reaction of
either 30 or 33 to Sml,, reductive cleavage was accompanied
by partial reductive debromination, which in the case of 33
delivered debromohymenin (7) in good yield. Harran and co-
workers have observed similar reductive debromination on
pyrroles during their synthesis of advanced axinellamine
derivatives.*® At this point, we sought reagents with different
mechanisms for N—O bond cleavage, whereupon the use of
Mo(CO), in wet acetonitrile for cleavage of isoxazolidines was
identified as a possibility.47 Gratifyingly, treatment of 30 under
these conditions resulted in a clean reduction of the N—O
bond which upon purification provided 2-debromohymenin
(7). We also found that reaction of the azide-containing
precursor 29 with four equivalents of Mo(CO)g delivered 7 in
good yield and thus telescoping the last two steps (Scheme
4)." Dibrominated intermediate 33 was subjected to the same
sequence of reactions, unfortunately clean hymenin (6) was
not obtained from this sequence giving rise to inseparable
mixtures of products (Scheme 4).

In summary, we have developed a convenient 9-step
synthesis of pyrroloazepinone-containing natural product 2-
debromohymenin (7) from a commercially available iodoimi-
dazole via a key gold-catalyzed hydroarylation. Critical to the
success of this chemistry was the use of an N-OMe group as a
protecting group to facilitate the selectivity of the pyrrole ring
fusion. Elaboration of the pyrroloazepinone through reduction,
C2-azidation and bromination delivered key late stage
intermediates. Chemoselective reduction of the C2-azide and
reductive cleavage of the N-methoxy group with Mo(CO)g
delivered the debromohymenin congener in good yield. This
synthesis is longer than the previously reported approach from
the Horne group, but it is potentially more flexible and avoids
the use of extremely long reaction times (2 X 7 days). Efforts
are ongoing to find an alternative endgame solution to afford
higher brominated congener, hymenin as well as addressing the
issues of a stevensine synthesis.
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Scheme 4. Completion of the Synthesis of 2-Debromohymenin (X-ray Structures of Bromination Products 28 and 31)
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