Reaction of Acetylferrocene with Dimethylformamide Dimethyl Acetal and Some Transformations of the Reaction Product

A. I. Moskalenko, A. V. Boeva, and V. I. Boev

Lipetsk State Pedagogical University, ul. Lenina 42, Lipetsk, 398020 Russia e-mail: kaf himii@lspu.lipetsk.ru

Received March 23, 2010

Abstract—1-Dimethylamino-3-ferrocenyl-3-oxoprop-1-ene was synthesized by the reaction of acetylferrocene with dimethylformamide dimethyl acetal. Its reactivity in the reactions with mononucleophilic (sodium salts of phenol, thiophenol, benzenesulfinate, diethylphosphorous acid) and binucleophilic reagents (hydrazine hydrate, hydroxylamine, amidines, 1,2-diaminobenzene, 2-aminophenol, 2-aminothiophenol) and methyl iodide was studied. As a result, we obtained new ferrocene-containing α -keto-unsaturated compounds and heterocycles of pyrazole, isoxazole, pyrimidine, and benzazepine series. In the reaction with CH₃I formed ferrocenoylacetylene which in the presence of dicarbonyl-bis(triphenylphosphine)nickel catalyst easily trimerized to give a mixture of 1,2,4- and 1,3,5-triferrocenoylbenzene.

DOI: 10.1134/S1070363211030133

Studies in the chemistry of ferrocene and its derivatives attracted attention in connection with a number of unusual and unique properties of these compounds [1, 2], including a wide range of biological activity. Most interesting with respect to the biological effects are heterocyclic derivatives of ferrocene [3, 4], whose activity depends on the nature of functional groups and the nature of the heterocycle in their molecules. The methods for obtaining these ferrocene derivatives play an important role, for they stimulate the research on new heterocyclic compounds of the ferrocene series with potential practically useful properties.

Here we report on the first examined reaction of acetylferrocene with dimethylformamide dimethyl acetal **I**, which is known [5–9] to be able to react with compounds containing labile hydrogen atoms. In the reaction two moles of methanol were released and the corresponding enamines were formed, the highly reactive reagents in organic synthesis [10-12] of compounds of various types, including heterocycles. Therewith, the greater lability of the substrate hydrogen atoms, the easier proceeds its condensation with acetal I [7-9]. In this regard, we can expect a low reactivity of acetylferrocene in the reaction with acetal I, since the acidity of the hydrogen atoms of acetyl groups is significantly reduced by the influence of electron-donating ferrocenyl core [1]. Indeed, we found that acetylferrocene poorly reacted with acetal I: only on prolonged (52 h) boiling in a large excess of the latter in an inert atmosphere. Even in these conditions, only 26% of acetylferrocene reacted with compound I to form enamine II in quantitative yield with respect to the converted acetylferrocene. The more prolonged reflux of the reaction mixture led to its darkening due to the decomposition of ferrocenecontaining components, and the yield of the desired product II decreased.

$$Fc - C - CH_{3} \xrightarrow[]{(CH_{3}O)_{2}CHN(CH_{3})_{2}, 105^{\circ}C, 52 h} \\ I \longrightarrow Fc - C - CH = CH - N(CH_{3})_{2} \\ O \qquad II \\ Fc = C_{5}H_{5}FeC_{5}H_{4}.$$

	37: 11	Wield mass-			Found, %					Calculated, %				
no.	Yield, %	°C	<i>R_f</i> (system)	spectrum, $m/z [M+1]^+$	С	Н	Fe	Ν	Formula	С	Н	Fe	Ν	$M_{\rm calc}$
Π	99.2 ^a	169–170	0.55 (B)	284	63.38	5.89	19.73	4.87	C ₁₅ H ₁₇ FeNO	63.60	6.01	19.75	4.95	383
Ш	99.2	151-152 ^b	0.65 (A)	253	61.64	4.81	21.93	10.94	$C_{13}H_{12}FeN_2 \\$	61.90	4.76	22.22	11.12	252
IV	72.0	110–112 ^b	0.72 (A)	254	61.40	4.28	22.07	5.54	C ₁₃ H ₁₁ FeNO	61.66	4.35	22.13	5.53	253
V	52.0	174–175	0.48 (A)	280	60.03	4.48	19.89	14.93	$C_{14}H_{13}FeN_3$	60.22	4.66	20.07	15.05	279
VI	64.2	158–159	0.73 (A)	350	61.67	5.41	15.93	11.86	C ₁₈ H ₁₉ FeN ₃ O	61.89	5.44	16.05	12.03	349
VII	86.5	152-154	0.54 (A)	342	66.75	6.33	16.28	12.18	C ₁₉ H ₁₅ FeN ₃	66.86	6.58	16.42	12.32	341
VIII	86.7	181-182	0.59 (A)	376	60.64	4.46	14.85	11.17	C ₁₉ H ₁₇ FeN ₃ O ₂	60.80	4.53	14.93	11.20	375
IX	89.2	208-209	0.51 (B)	354	67.81	4.19	15.73	11.74	$C_{20}H_{15}FeN_3$	67.99	4.25	15.86	11.90	353
Х	73.0	138–139	0.77 (C)	329	69.63	4.55	16.83	8.42	$C_{19}H_{16}FeN_2$	69.51	4.88	17.07	8.54	328
XI	71.4	118-120	0.64 (C)	330	69.45	4.31	16.94	4.09	C ₁₉ H ₁₅ FeNO	69.30	4.56	17.02	4.26	329
XII	84.2	133–134	0.71 (C)	346	65.82	4.24	16.18	3.88	C ₁₉ H ₁₅ FeNS	66.09	4.35	16.23	4.06	345
XIII	59.0	174–175	0.68 (B)	324	66.96	6.38	17.27	4.25	C ₁₈ H ₂₁ FeNO	66.87	6.50	17.34	4.33	323
XIV	67.5	184–186	0.47 (B)	346	69.63	5.48	16.19	3.95	C20H19FeNO	69.57	5.51	16.23	4.06	345
XV	70.8	128-129	0.38 (C)	333	68.79	4.61	16.74		$C_{19}H_{16}FeO_2$	68.67	4.82	16.87		332
XVI	79.5	136–137	0.44 (C)	349	65.51	4.47	16.23		C ₁₉ H ₁₆ FeOS	65.52	4.60	16.09		348
XVII	75.4	184–185	0.36 (C)	381	59.84	4.18	14.86		C19H16FeO3S	60.00	4.21	14.74		380
XVIII	70.5	108-109	0.72 (C)	377	54.36	5.68	14.73		$C_{17}H_{21}FeO_4P$	54.26	5.59	14.89		376
XIX	81.0	$78 - 80^{b}$	0.81 (A)	239	65.42	4.17	23.38		C ₁₃ H ₁₀ FeO	65.55	4.20	23.53		238
XX+XXI	84.0	218-220	0.56 (A)	715 ^c	65.24	4.09	23.61		$C_{39}H_{30}Fe_3O_3$	65.55	4.20	23.53		714

Table 1. Yields, melting points, TLC, elemental analysis, and chromato-mass-spectral data of compounds III-XXI

With respect to the converted acetylferrocene. ^b Published data [13] mp: 148–153°C (III); 110–112°C (IV); 78–80°C (XIX). ^c Two peaks a with the integral intensities ratio 1:3.

0	IR s	pectrum, v, cm ⁻¹					
no.	Ferrocene core	Aromatic system	Functional groups	¹ H NMR spectrum, δ, ppm			
II	2997, 1596, 1418, 1101,		1668 (C=O),	2.98 s (6H, 2CH ₃), 4.15 s (5H, C ₅ H ₅), 4.36 m (2H, C ₅ H ₂),			
	1000, 807		1624 (C=C)	4.76 m (2H, C ₅ H ₂), 5.36 d (1H, C=CH, J 16.2 Hz), 7.69 d			
				(1H, C=CH–N, J 16.2 Hz)			
III	3005, 1563, 1460, 1098,	1605, 1502, 1431	3423 (N–H)	3.98 s (5H, C ₅ H ₅), 4.23 m (2H, C ₅ H ₂), 4.62 m (2H,			
	1002, 812			C ₅ H ₂), 6.48 d (1H, Het), 7.54 d (1H, Het)			
IV	3002, 1560, 1462, 1100,	1602, 1501, 1426		$4.08 \ s \ (5H, \ C_5H_5), \ 4.35 \ m \ (2H, \ C_5H_2), \ 4.78 \ m \ (2H,$			
	1000, 810			C_5H_2), 6.05 d (1H, Het), 7.97 d (1H, Het)			
V	3000, 1564, 1456, 1102,	1608, 1505, 1428	3420, 3392 (NH ₂)	4.10 s (5H, C ₅ H ₅), 4.52–4.76 m (6H, C ₅ H ₄ , NH ₂), 6.08 d			
	1005, 816			(1H, Het), 8.46 d (1H, Het)			
VI	3005, 1568, 1448, 1101,	1606, 1501, 1430		3.28-3.49 m (4H, 2 NCH ₂), 3.76-3.98 m (4H, 2 OCH ₂),			
	998, 812			4.08 s (5H, C ₅ H ₅), 4.56 m (2H, C ₅ H ₂), 4.81 m (2H,			
				C ₅ H ₂), 6.18 d (1H, Het), 8.44 d (1H, Het)			
VII	3000, 1584, 1447, 1107,	1611, 1598, 1523,		4.12 s (5H, C ₅ H ₅), 4.58 m (2H, C ₅ H ₂), 4.78 m (2H,			
	1000, 818	1503, 1428		C ₅ H ₂), 7.53–8.79 m (6H, Het)			
VIII	3006, 1584, 1462, 1102,	1604, 1506, 1438	1689 (C=O)	1.24 t (3H, CH ₃), 4.12 s (5H, C ₅ H ₅), 4.31 q (2H, OCH ₂),			
	1001, 821			4.50 m (2H, C ₅ H ₂), 4.77 m (2H, C ₅ H ₂), 6.51 d (1H, Het),			
				7.52 s (1H, Het), 8.55 d (1H, Het)			

Table 2. IR and ¹H NMR spectral data for compounds III–XXI

_

Table 2. (Contd.)

Comm	IR	spectrum, v, cm^{-1}					
no.	Ferrocene core	Aromatic system	Functional groups	¹ H NMR spectrum, δ, ppm			
IX	3000, 1592, 1419, 1102,	1603, 1598, 1520,		4.04 s (5H, C ₅ H ₅), 4.51 m (2H, C ₅ H ₂), 4.73 m (2H,			
v	998, 819	1500, 1438	2429 (NILL)	C_5H_2), 6.24 d (1H, Het), 7.03–7.24 m (4H, C_6H_4), 8.07 d			
Λ	3004, 1382, 1418, 1100, 1003, 810	1002, 1300, 1430,	3420 (INII), 1622 (C-NI)	(10, 100) 4.07 s (5H C.H.) 4.38 m (2H C.H.) 4.66 m (2H			
	1003, 817	1450	1622 (C=N), 1612 (C=C)	(211, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			
XI	3002 1580 1418 1100	1604 1563 1452	1612 (C=N)	8 12 d (1H C=CH-N)			
	1002, 818	1432	1610 (C=C)	$4 11 \text{ s} (5\text{H} \text{C}_5\text{H}_5) 4 42 \text{ m} (2\text{H} \text{C}_5\text{H}_2) 4 78 \text{ m} (2\text{H} \text{C}_5\text{H}_2)$			
XII	3000, 1586, 1420, 1102,	1602, 1568, 1454,	1621 (C=N).	$C_{5}H_{2}$), 6.83 d (1H, C=CH), 7.03–7.24 m (4H, $C_{6}H_{4}$),			
	1000, 823	1430	1612 (C=C)	8.26 d (1H, C=CH–O)			
XIII	2998, 1592, 1418, 1100,	1608, 1561, 1456,	1669 (C=O),	4.10 s (5H, C ₅ H ₅), 4.40 m (2H, C ₅ H ₂), 4.80 m (2H,			
	1003, 810	1430	1624 (C=C)	C ₅ H ₂), 6.72 d (1H, C=CH), 7.01-7.25 m (4H, C ₆ H ₄),			
				8.18 d (1H, C=CH–S)			
XIV	3000, 1589, 1420, 1104,	1602, 1571, 1453,	3426 (NH),	1.38-1.84 m (6H, 3 CH ₂), 3.16-3.42 m (4H, 2 NCH ₂),			
	1002, 810	1436	1668 (C=O),	4.12 s (5H, C ₅ H ₅), 4.38 m (2H, C ₅ H ₂), 4.78 m (2H,			
			1624 (C=C)	C ₅ H ₂), 5.38 d (1H, C=CH, J 16.4 Hz), 7.71 d (1H,			
XV	2998, 1576, 1422, 1100,	1603, 1562, 1452,	1671 (C=O),	C=CH–N, <i>J</i> 16.4 Hz)			
	1000, 812	1429	1618 (C=C)	4.02 s (5H, C ₅ H ₅), 4.36 m (2H, C ₅ H ₂), 4.75–4.98 m (4H,			
				C ₅ H ₂ , NCH ₂), 5.41 d (1H, C=CH, <i>J</i> 16.2 Hz), 6.98–7.11			
XVI	2999, 1578, 1426, 1103,	1605, 1560, 1453,	1668 (C=O),	m (5H, C_6H_5), 7.74 m (1H, C=CH–N)			
	1001, 816	1420	1620 (C=C)	4.13 s (5H, C_5H_5), 4.42 m (2H, C_5H_2), 4.78 m (2H,			
	2002 1500 1420 1102		1(01(0,0)	$C_{5}H_{2}$), 5.73 d (1H, C=CH, J 15.8 Hz), 7.08–7.38 m (5H,			
XVII	3002, 1569, 1428, 1102,		1681 (C=O),	C_6H_5), 8.29 d (1H, C=CH-O, J 15.8 Hz)			
	1000, 817		1628 (C=C),	4.12 s (5H, C_5H_5), 4.40 m (2H, C_5H_2), 4.72 m (2H,			
VVIII	2000 1572 1426 1100		$1332, 1152 (SO_2)$	C_{5H_2} , 5.04 d (1H, C=CH, J 10.1 Hz), 7.00–7.45 m (5H,			
луш	3000, 1373, 1420, 1100, 1002, 818		16/8 (C=0), 1624 (C=C)	$C_{6}n_{5}$, 8.10 d (1n, C-Cn-S, J 10.1 nz) 4.10 s (5H C-H.) 4.42 m (2H C-H.) 4.72 m (2H			
	1002, 010		1024 (C=C), 1262 (P=O)	(211, 2312), 4.10 (211, $(2512), 4.72$ in (211, $(2$			
			1202 (P-O), 1156 (P-O)	$(5H C_4H_4) = 8.54 d (1H C=CH-SO_2 J 16.2 Hz)$			
XIX	3008 1584 1418 1103		2148 (C≡C).	$1.24 \text{ t} (3\text{H}, \text{CH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, \text{C}_5\text{H}_5), 4.28 \text{ g} (4\text{H}, 2\text{OCH}_2), 4.08 \text{ s} (5\text{H}, 100 \text{ g} (100 \text{ g} (1$			
	1000, 820		1665 (C=O)	4.40 m (2H, C ₅ H ₂), 4.71 m (2H, C ₅ H ₂), 5.79 d (1H,			
XX+XXI	3002, 1582, 1428, 1100,	1608, 1564, 1552,	1702, 1694 (C=O)	C=CH, J _{HH} 16.0 Hz), 7.86–8.03 m (1H, C=CH–P, J _{HH}			
	1000, 816	1438, 1406		16.0 Hz, ² <i>J</i> _{PH} 17.2 Hz)			
				4.17 s (5H, C ₅ H ₅), 4.36–4.48 m (3H, C ₅ H ₂ , ≡CH), 4.69			
				m (2H, C ₅ H ₂)			
				4.18 s (15H, $3C_5H_5$), 4.49 m (6H, $3C_5H_2$), 4.76 m (6H,			
				3 C ₅ H ₂), 7.65–8.07 m (3H, C ₆ H ₃)			

The composition and structure of compound **II** are confirmed by elemental analysis, GC–MS (Table 1), IR and ¹H NMR spectral data (Table 2), as well as by a variety of chemical transformations.

The IR spectrum of ketoenamine II contains characteristic absorption bands of stretching vibrations of C–H bond of the cyclopentadienyl rings at 3100– 3086 cm⁻¹, carbonyl C=O group at 1668 cm⁻¹, and double C=C bond at 1624 cm⁻¹.

In the ¹H NMR spectrum of compound II the signals of HC=CH groups appear as doublets at 5.36 and 7.69 ppm with the coupling constant 16.2 Hz, indicating *trans*-configuration of substituents at the carbon atoms at the double bond. The spectrum also

contains singlets at 2.98 and 4.15 ppm, respectively, relating to the six protons of the dimethylamino group and to the five protons of C_5H_5 , and multiplets at 4.36 and 4.76 ppm characteristic of the four protons of substituted cyclopentadienyl ring.

The study of enamine **II** reactivity showed that it is a valuable reagent in the synthesis of various ferrocene derivatives. Thus, it reacts readily with binucleophilic reagents to form five-, six- and seven-membered heterocyclic ferrocene-containing compounds **III–XII**.

In particular, refluxing enamine II with an excess of hydrazine hydrate in ethanol affords 3-ferrocenylpyrazol III in nearly quantitative yield, and the reaction with hydroxylamine produces 3-ferrocenyloxazol IV, but in lower (72%) yield.

For the synthesis of six-membered heterocycles on the basis of enamine **II**, we used the reagents containing amidine group (NH=C–NH₂): guanidine, morpholino-1-carboxamidine, pyridine-4-carboxamidine,

ethyl 5-amino-1*H*-pyrazolo-4-carboxylic acid, and 1*H*-benzimidazole-2-amine. These reagents react with enamine **II** in the suitable reaction conditions to form ferrocene-containing pyrimidine **V–IX** in yields of 72–85%.

The synthesis of the seven-membered heterocyclic compounds was carried out by the condensation of enamine **II** with 1,2-disubstituted aromatic binucleophiles, 1,2-diaminobenzene, 2-aminophenol, and 2-aminothiophenol, at heating the equimolar amounts of reactants in anhydrous ethanol in the presence of sodium ethoxide. As a result, the corresponding 5-ferrocenyl-substituted benzazepines **X**–**XII** containing two heteroatoms in the ring were obtained in the yield of 68–73%.

It should be noted the high regioselectivity of the above mentioned heterocyclization reactions involving enamine II due to the specificity of the structure of binucleophilic reagents. The latter in the reaction are preferably condensed with carbonyl group of the substrate II due to the presence in them of the primary amino groups. Then the subsequent elimination of dimethylamino group of substrate II or intermediate formed in the presence of a strong base leads to the closure of the heterocycle to give the end products III–XII.

We also investigated the reaction of enamine **II** with some mononucleophilic reagents proceeding through the substitution of dimethylamino group. Thus, reflux in toluene of equimolar amounts of compound **II** with piperidine and benzylamine gives rise to amines **XIII** and **XIV**. On heating with the sodium salts of phenol, thiophenol, and benzene-sulfinate, and diethylphosphorous acid in ethanol the nucleophilic substitution proceeds to afford compounds **XV–XVIII** as a result of the formation of new C–O, C–S, and C–P bonds.

It is known [10] that enamines, as the bases, are able to react with electrophilic reagents. In particular, we studied the reaction of enamine \mathbf{H} with methyl iodide as the electrophilic reagent. It was unexpectedly found that on reflux of reagents in anhydrous

acetonitrile the quaternary trimethylammonium salt **A** is not formed, but formed 3-ferrocenylpropyn-3-one **XIX** previously described in [13]. The formation of

this compound in 81% yield can probably be explained by the formation in the first stage of the reaction of easily decomposing iodomethylate **A**:

$$\mathbf{II} + \mathbf{MeI} \xrightarrow{\mathbf{MeCN}} \begin{bmatrix} \mathbf{Fc} - \mathbf{C} - \mathbf{CH} \stackrel{\mathbf{C}}{=} \mathbf{CH} - \mathbf{N}^{+} \mathbf{Me_{3}I^{-}} \end{bmatrix} \xrightarrow{-\mathbf{HN}^{+} \mathbf{Me_{3}I^{-}}} \mathbf{Fc} - \mathbf{C} - \mathbf{C} \stackrel{\mathbf{C}}{=} \mathbf{CH} \xrightarrow{\mathbf{HN}^{+} \mathbf{Me_{3}I^{-}}} \mathbf{KIX}$$

Elimination of the trimethylammonium hydroiodide from the salt **A** is caused of course by the high acidity of the α -hydrogen atom owing to the electron-withdrawing effect of the neighboring carbonyl group as well as trimethylammonium group, whose negative inductive effect is conjugated with the π -electrons of the double bond.

Compound **XIX** synthesized reacted with hydrazine hydrate and hydroxylamine under the reaction

conditions [13] affords, respectively, pyrazol III and oxazole IV, previously obtained from enamine II.

Also it was found that under heating in benzene in the presence of a catalytic amount of dicarbonyl-bis (triphenylphosphine)nickel the compound **XIX** undergoes trimerization to form a mixture of 1,2,4- and 1,3,5-triferrocenoylbenzenes **XX** and **XXI**, which is a characteristic transformation for acetylene and its derivatives.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 81 No. 3 2011

The composition and structure of compounds III– XXI are confirmed by analytical and spectroscopic data given in Tables 1 and 2. It should be noted that in the ¹H NMR spectrum of compound XIV the fragments CH=CH, CH₂ appear as doubled signals with the integral intensity ratio ~3:7, due, as we think, to the existence of two isomers **B** and **C**.

Moreover, the signal of the NH proton of isomer **B** is located in the weak field at 8.10 ppm, whereas the same proton in isomer **C** resonates in a strong field at 5.38 ppm with the same ratio of the integral intensities. The formation of such isomers has previously been noted in [9].

By GC–MS and ¹H NMR spectral data, the ratio of structural isomers **XX** and **XXI** in a mixture is 1:3.

Thus, based on accessible acetylferrocene we developed a convenient method of obtaining 1-dimethylamino-3-ferrocenyl-3-oxoprop-1-ene II, which can be widely used in the synthesis of various ferrocene derivatives of the scientific and practical interest.

EXPERIMENTAL

Commercial reagents (Acros) were used. The IR spectra were recorded on a UR-20 spectrometer from KBr pellets. The ¹H NMR spectra were registered on a Varian Mercury Plus-400 spectrometer (400 MHz) in CDCl₃ with internal reference HMDS. GC–MS spectra were recorded on a Thermo Finnigan Surveyor MSQ (USA) instrument by chemical ionization at atmospheric pressure. Identity and purity of the compounds obtained was monitored by TLC on Silufol UV-254 plates, eluents ethyl acetate–chloroform, 4:1 (A), acetone (B), ethyl acetate–hexane, 1:1 (C).

1-Dimethylamino-3-ferrocenyl-3-oxoprop-1-ene (II). A mixture of 11.4 g of acetylferrocene and 200 ml of dimethylformamide dimethyl acetal I was refluxed under inert atmosphere for 52 h at stirring. Excess of acetal I was removed in a vacuum. The residue was subjected to chromatography eluting the starting acetylferrocene with ethylacetate and then the target product II with acetone. After the solvent removal the unreacted acetylferrocene (8.39 g, 73.6%) and enamine II (3.71 g, 99.2%, with respect to the converted acetylferrocene) were isolated.

3-Ferrocenylpyrazol (III). A mixture of 0.5 g of enamine II and 0.5 ml of hydrazine hydrate in 3 ml of ethanol was refluxed with stirring for 2 h, the solvent was removed in a vacuum. The mixture was mixed with 30 ml of water and extracted with ethyl acetate $(2\times30 \text{ ml})$. The organic layer was washed with water and dried over anhydrous sodium sulfate. After the removal of solvent in a vacuum, 0.45 g (99.2%) of compound III was obtained, which was crystallized from benzene.

3-Ferrocenyloxazol (IV). To a solution of 0.5 g of enamine **II** in 5 ml of ethanol was added aqueous solution of hydroxylamine prepared from 0.63 g of HONH₂·HCl and 0.84 g of NaHCO₃ in 5 ml of water, the mixture was refluxed under stirring for 5 h, cooled, mixed with 50 ml of water, and extracted with ethyl acetate (2×50 ml). The organic layer was dried over anhydrous sodium sulfate. After distilling off the solvent in a vacuum, the residue was purified by chromatography eluting with the ethyl acetate–hexane (4:1) mixture. Yield 0.33 g (72%) of compound **IV**, which was crystallized from aqueous ethanol (1:1).

Compound XII was obtained similarly.

2-Amino-4-ferrocenylpyrimidine (V). A mixture of 0.5 g of enamine **II**, 0.52 g of guanidine dihydrochloride, and 1.24 g of K_2CO_3 in 5 ml of DMSO was stirred at 80–90°C under argon for 1.5 h, cooled, diluted with 50 ml of water, and extracted with ethyl acetate (3×70 ml). The organic layer was washed with water and dried over anhydrous sodium sulfate. After distilling off the solvent in a vacuum the residue was purified by chromatography eluting with the ethyl acetate–chloroform mixture (5:1). Yield 0.26 g (52%) of azine **V**, which was crystallized from aqueous methanol (2:1).

Compound VI was obtained similarly.

2-(Pyridin-4-yl)-4-ferrocenylpyrimidine (VII). A mixture of 0.57 g of enamine II, 0.77 g of pyridine-4-carboxamidine dihydrochloride, and 1.12 g of potassium *tert*-butoxide in 10 ml of anhydrous ethanol was refluxed with stirring under argon for 2 h, cooled, diluted with 100 ml of water, and extracted with ethyl acetate (3×80 ml). The organic layer was washed with

water and dried over anhydrous sodium sulfate. After distilling off the solvent in a vacuum the residue was purified by chromatography eluting with the ethyl acetate–chloroform mixture (5:1). Yield 0.59 g (86.5%) of compound **VII**, which was crystallized from aqueous methanol (2:1).

Compounds VIII-IX were obtained similarly.

5-Ferrocenyl-1*H***-benzo**[*a*]**-1**,**4-diazepine (X).** To a solution of 2 mmol of sodium ethoxide in 5 ml of anhydrous ethanol was added 2 mmol of 1,2-diaminobenzene. The mixture was stirred under argon for 30 minutes. Then 2 mmol of enamine II was added, and the mixture was refluxed for 3 h, cooled, diluted with 50 ml of water and extracted with ethyl acetate (3×60 ml). The organic layer was washed with water, dried over anhydrous sodium sulfate, and concentrated. The residue was purified by chromatography eluting with the ethyl acetate–hexane mixture (2:1). Yield 0.48 g (73%) of compound X, which was crystallized from ethyl acetate–hexane mixture (1:1).

Compounds XI and XII were synthesized similarly.

1-Piperidino-3-ferrocenyl-3-oxoprop-1-ene (XIII). A mixture of 0.57 g of enamine II and 0.2 ml of piperidine in 3 ml of anhydrous toluene was refluxed with stirring for 5 h. Then the solvent was removed on a rotary evaporator and the residue was crystallized from ethyl acetate–hexane, 1:1. Yield 0.38 g (59%).

Compound XIV was obtained similarly.

1-(o-Phenoxy)-3-ferrocenyl-3-oxoprop-1-ene (XV). To a solution of 2 mmol of EtONa in 5 ml of anhydrous ethanol under an argon atmosphere was added 2 mmol of phenol. The mixture was stirred for 30 min, then 2 mmol of enamine II was added and the mixture was refluxed under stirring for 3 h to complete consumption of the starting compounds (TLC monitoring). After the removal of solvent, the residue was dissolved in 100 ml of ethyl acetate, washed with water, dried over anhydrous sodium sulfate, the solvent was removed on a rotary evaporator, and the residue was crystallized from aqueous ethanol (1:1). Yield 0.47 g (70.8%).

Compounds XVI-XVIII were synthesized similarly.

3-Ferrocenylpropyn-3-one (XIX). A mixture of 1.13 g of enamine II and 3 ml of CH_3I in 10 ml of anhydrous acetonitrile was refluxed with stirring for 8 h. Then 50 ml of water and 100 ml of ethyl acetate were added. The organic layer was separated and the

aqueous solution was extracted with 60 ml of ethyl acetate. The combined organic solutions were washed with water, dried over anhydrous sodium sulfate, and concentrated. The residue was purified by chromatography eluting with the ethyl acetate–hexane mixture (5:1). Yield 0.77 g (81%) of compound **XIX**, which was crystallized from a mixture of benzene and hexane (1:3).

Trimerization of compound (XIX). To a solution of 0.5 g of compound **XIX** in 5 ml of anhydrous benzene was added 0.05 g of dicarbonyl-bis(triphenylphosphine)nickel [15], and the mixture was stirred at 70–75°C in an argon atmosphere for 5 h to complete consumption of the starting compounds (TLC monitoring), was filtered and concentrated. The residue was crystallized from the hexane–methylene chloride mixture (2:1). Yield 0.42 g (84%) of a mixture of compounds **XX** and **XXI**.

REFERENCES

- Perevalova, E.G., Reshetova, M.D., and Grandberg, K.I., Metody elementoorganicheskoi khimii. Zhelezoorganicheskie soedineniya. Ferrotsen (Methods of Organoelemental Chemistry. Organoiron Compounds. Ferrocene), Moscow: Khimiya, 1983.
- 2. Staveren, D.R., and Metzler-Nolte, N., Chem. Rev., 2004, vol. 104, no. 12, p. 5931.
- Zora, M. and Gormen, M., J. Organomet. Chem., 2007, vol. 692, no. 22, p. 5026.
- Snegur, L.V., Nekrasov, Yu.S., Sergeeva, N.S., Zhilina, Zh.V., Gumenyuk, V.V., Starikova, Z.A., Simenel, A.A., Morozova, N.V., Sviridova, I.R., and Babin, V.N., *Appl. Organometal. Chem.*, 2008, vol. 22, p. 139.
- 5. Effenberger, F. and Simchen, G., *Chem. Ber.*, 1963, vol. 96, no. 4, p. 1350.
- 6. Bredereck, H., Chem. Ber., 1968, vol. 101, no. 1, p. 41.
- Hengartner, V., Batcho, A.D., Blount, J.F., Leimgruber, W., Larscheid, M.E., and Scott, J.W., *J. Org. Chem.*, 1979, vol. 44, no. 12, p. 3748.
- Ponticello, G.S. and Baldwin, J.J., J. Org. Chem., 1979, vol. 44, no. 14, p. 4003.
- Golyanskaya, O.M., Voloshin, N.A., Chernyshev, A.V., Dubonosov, A.D., Metelitsa, A.V., Mezheritskii, V.V., and Bren', V.A., *Zh. Org. Khim.*, 2008, vol. 44, no. 4, p. 608.
- Shmushkovich, J., *Enaminy* (Enamines), in *Uspekhi* organicheskoi khimii (Advances of Organic Chemistry), Knunyants, I.L., Ed., Moscow: Mir, 1966, vol. 4, pp. 5– 123.
- 11. Bredereck, H., Sell, R., and Effenberger, F., *Chem. Ber.*, 1964, vol. 97, no. 11, p. 3407.

- Dominquez, E., Ibeas, E., Martinez de Marigorta, E., Palacios, J.K., and Saumartin, R., J. Org. Chem., 1996, vol. 61, no. 15, p. 5435.
- 13. Schlögl, K. and Monar, A., *Monatsh. Chem.*, 1962, vol. 93, no. 4, p. 861.
- 14. Reutov, O.A., Kurts, A.L., and Butin, K.P., Organi-

cheskaya khimiya (Organic Chemistry), Moscow: Mosk. Gos. Univ., 1999, pt. 1, pp. 492–496.

 Dzhemilev, U.M., Popod'ko, N.R., and Kozlova, E.V., Metallokompleksnyi kataliz v organicheskom sinteze (Metal Complex Catalysis in Organic Synthesis), Moscow: Khimiya, 1999, pp. 60–61.