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ABSTRACT: An electroreductive 4-pyridylation of activated
alkenes was developed in an undivided cell with the assistance of
Ni(acac)2 (acac = acetylacetone). This novel protocol is
compatible with a broad range of electron-poor alkenes, which
are commonly regarded as challenging substrates in the previous
conventional approaches. Moreover, a series of cyclic voltammetric
experiments were conducted to reveal the unique role of Ni(acac)2
differentiating reduction process of reaction partners.

Pyridine is one of the most important heterocycles and
exists, in some form, in more than 60 United States Food

and Drug Administration (U.S. FDA) approved pharmaceut-
icals.1 Moreover, it is also a versatile building block in the
synthesis of chiral ligands applied in asymmetric catalysis.2

Consequently, considerable effort has been devoted to the
synthesis of pyridines.3 Specifically, pyridylation of electron-
deficient alkenes has emerged as an efficient approach toward
the synthesis of pyridine derivatives inspired by the pioneering
work of Inoue and MacMillan.4,5 For example, an elegant
photocatalytic system was reported in a radical conjugate
addition of nitrogen heterocycles by Jui and co-workers
(Scheme 1a).5a However, this approach was limited to
aliphatic electron-poor alkenes. Li and Cheng subsequently
disclosed a novel pyridine-boryl radical strategy in the reaction

with α,β-unsaturated ketones (Scheme 1b).5b Although
impressive, neither the regioselectivity nor the substrate
scope of this methodology was fully developed. Very recently,
Scheidt described an impressive advance in reductive
pyridylation of arylidene malonates, in which aliphatic
substrates proved to be unsuitable (Scheme 1c).5c Taken
together, a general and mild pyridylation approach is still in
high demand.
Synthetic electrochemistry offers an appealing alternative to

traditional redox transformations.6 With precise manipulation
of redox potential, organic molecules may selectively lose or
gain electrons over the surface of electrodes. The past decade
has witnessed a renaissance in electrochemistry, particularly in
the area of anodic oxidation transformations.6−11 Tremendous
progress in C−H oxidation,7 C−H functionalization,8

oxidative coupling,9 olefin functionalization,10 and oxidative
decarboxylation11 has been achieved. In contrast, electro-
reduction, which commonly requires divided cells, has received
far less attention and largely lagged behind.12−16 Recently, a
remarkable breakthrough in the electrochemical Birch
reduction was demonstrated by Baran and co-workers
(Scheme 2a).13 Ye reported an electrochemical arylation of
an α-amino sp3 C−H through a convergent paired electrolysis
approach (Scheme 2b).14 Very recently, reductive cross-
coupling reactions of halides were unveiled independently by
the Reisman and Mei groups (Scheme 2c).15 Finally, Lehnherr
and Rovis developed a novel reductive pyridylation of imines
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Scheme 1. Conventional Pyridylation Approaches of
Electron-deficient Alkenes
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through a proton-coupled electron transfer process (Scheme
2d).16

To the best of our knowledge, electroreductive pyridylation
of electron-deficient alkenes has never been well-developed.17

There are two main issues hampering development of the
transformation (Scheme 2e): (a) uncontrollable homocoupling
reaction of alkene or pyridine precursors, due to the similar
reductive potential of the reactants;18 (b) low reactivity of
internal alkenes.17 Inspired by our previous work on nickel-
catalyzed 1,4-hydroboration of N-heteroarenes19a and related
work of Dunstan,19b we envisaged that nickel salt might
selectively complex with 4-cyanopyridine, thereby differ-
entiating the reductive potentials of the reaction partners
(Scheme 2e). Thus, as part of our ongoing work in transition-
metal catalysis and synthetic electrochemistry,20 nickel-assisted
electroreductive pyridylation is reported herein. This novel
protocol was readily compatible with a broad range of electron-
poor alkenes, including α,β-unsaturated ketone, ester, amide,
nitrile, and sulfone. This novel electrochemical approach
provided a complementary access to pyridines, which are
challenging for conventional approaches.5

Initially, benzalacetone 2a was chosen as a model electron-
poor alkene, which has received far less attention,5 with 4-
cyanopyridine as a reaction partner in an undivided cell
(Scheme 3). Under direct electrolysis, the optimal result of the
reaction between 1 and 2a was observed (60% yield) with the
employment of Ni(acac)2 (10 mol %) (acac = acetylacetone)

as metal additive, Na2CO3 (3 equiv) as base, nBu4NClO4 as
electrolyte, a mixed solution of dichloroethane (DCE)/
CH3CN (7/3 mL) as solvent, and graphite rod and nickel
plate as anode and cathode, respectively (for details of
optimization, see Supporting Information). Removal of metal
additive led to diminished yields, which suggests it plays a
critical role in the reaction. Without electricity, the above
reaction ceased, and no product was detected. When we
performed the reaction in the cathode part of a divided cell, an
almost same yield (56%) was observed. These results
suggested this reaction did proceed through an electro-
reductive pathway.
Having identified the optimal reaction conditions, the scope

of enones amenable to this method was then evaluated
(Scheme 4). A broad range of enones bearing electron-
donating and -withdrawing groups were investigated (3b−3j),
and the corresponding products were obtained with moderate
yields (27−65% yields). Specifically, the pinacolatoboron
(BPin)-substituent, which could allow for later functionaliza-
tion, proved to be amenable to the reaction conditions, albeit
with a lower yield (3j). The reaction was readily scaled up to 5
g scale, and the desired pyridylation product 3a (5.7 g) was
accessed in synthetically useful yield (51%). Substituents at the
2- or 3-positions were tolerated, including methyl, choro, and
trifluoromethyl, affording the products in 32−59% yields (3k−
3n). Remarkably, fused and hetero rings proceeded smoothly
in the reaction furnishing the expected pyridylation products
with moderate efficiency (3o−3p). This protocol was
compatible with multiple substitution patterns, although the
products were obtained in decreased yields (3q−3s). Notably,
varying the R1 group of 2 to cyclopropyl, adamantyl, or phenyl
has a little effect on the reaction efficiency (3t−3v).
Additionally, aliphatic enones can be successfully employed
in the reductive pyridylation affording the products albeit with
slightly diminished yields (3w−3y). Cyclic enones were further
explored, and corresponding products were obtained with
maintained yields (3z−3ab). To our delight, chromone
underwent the electroreductive pridylation to furnish product
3ac in low yield, which can serve as a synthetic precursor for
selective σ1 receptor antagonist.21 To further expand the
substrate scope, various cyano-pyridines were examined under
optimal conditions. It was found that the substituent and the
position of the cyano group significantly affected the reaction
performance (3ad−3ag). Neither 2-cyano nor 3-cyano
pyridine (3ad−3ae) was tolerated in the reaction; besides, 4-
cyano-2-fluoropyridine failed to afford the desired product.
These results might be attributed to the weaker coordination
between the substrates with Ni(acac)2 owing to the steric
effects of substituents. In contrast, 4-cyano-3-fluoropyridine
proceeded smoothly in the reaction giving a sterically hindered
product 3ag with lower yield.

Scheme 2. Electroreductive Transformations Scheme 3. Optimization of Reaction Conditions
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Next, we turned our attention to other electron-deficient
alkenes (Scheme 5). Various acrylates were subjected to the
optimized pyridylation conditions, and the products 3ah−3ak
were obtained with acceptable yields. It is noteworthy that an
allyl group (3ak) was untouched during the reaction. For the
case of 3al, a product containing the estrone moiety was
exclusively produced without observation of ketone pyridyla-
tion product. Subsequently, acrylonitrile (3am), phenyl vinyl
sulfone (3an), and diethyl maleate (3ao) were also found to
participate smoothly in the electroreductive pyridylation,
delivering the desired products with moderate to good yields.
To further expand the substrate scope, less reactive cinnamate
substrates were examined, and the synthetically challenging

products (3ap−3ar) were obtained with 42−45% yields.5c A
variety of arylidene (3as−3au) and even alkylidene malonates
(3au), which are often unsuccessful in photocatalyzed
methods,5c proved to be viable substrates in this protocol.
Unsaturated lactones reacted effectively with 4-cyanopyridine
giving rise to the cyclic pyridylation products (3aw−3ax). In
addition, a preliminary effort to achieve asymmetric induction
was explored via use of a cinnamamide bearing a chiral
auxiliary. Unfortunately, a mixture of diastereoisomers (dr 1/1)
was detected in 73% yield (3ay), which could be easily isolated
by column chromatography.
To better understand the reaction mechanism, we

conducted a series of cyclic voltammetric experiments (Figure
1). First, similar reductive potentials of benzalacetone (−2.12
V) and 4-cyanopyridine (−2.33 V) were observed, although 4-
cyanopyridine proved to be slightly harder to reduce than
benzalacetone (Figure 1a). Second, the effect that Ni(acac)2
and Na2CO3 exert on the reduction process was further
explored (Figure 1b−e). It revealed that no significant
reduction peak of Ni(acac)2 or Na2CO3 could be detected
(curve a, Figure 1b−e), which suggested they were redox-inert
within the potential window under examination. Interestingly,
introducing Ni(acac)2 resulted in the disappearance of the
reduction peak arising from 4-cyanopyridine within the
potential window (curve b vs c, Figure 1b), while an increase
in reductive peak current of benzalacetone was detected (curve
b vs c, Figure 1c). This result indicated that metal additive
Ni(acac)2 dampened the reduction of 4-cyanopyridine and
promoted the reduction of benzalacetone. As a result,
Ni(acac)2 could significantly differentiate the reduction process
of the substrates, which could be attributed to the coordination
between Ni(acac)2 and 4-cyanopyridine.19 By contrast,
inorganic base Na2CO3 marginally affected the reduction of
4-cyanopyridine (curve b vs c, Figure 1d), and slightly
increased peak current of benzalacetone (curve b vs c, Figure
1e). Third, the effect of Ni(acac)2 was further studied by

Scheme 4. Evaluation of Enone and Cyano Pyridine Scopea

aReaction conditions: undivided cell, graphite rod (0.6 × 10 cm), Ni
plate (1.8 × 1.5 cm2, J = 9.3 mA·cm−2), 1 (1 mmol), 2 (3 mmol),
Ni(acac)2 (0.1 mmol), Na2CO3 (3 mmol), nBu4NClO4 (1 mmol),
DCE/CH3CN (7/3 mL, v/v), 50 °C, 3 h. bGram-scale reaction: 1
(50 mmol), 2a (150 mmol).

Scheme 5. Evaluation of Other Electron-deficient Alkenes

aReaction conditions: undivided cell, graphite rod (0.6*10 cm), Ni
plate (1.8 *1.5 cm2, J = 9.3 mA·cm−2), 1 (1 mmol), 2 (3 mmol),
Ni(acac)2 (0.1 mmol), Na2CO3 (3 mmol), nBu4NClO4 (1 mmol),
DCE/CH3CN (7/3 mL, v/v), 50 °C, 3 h.
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varying the ratio of the additive with substrate 1 (Figure 1f). As
shown in Figure 1f, increasing the ratio of Ni(acac)2 led to
significant increase of the position (absolute value even higher
than 2.6 V) of reductive peak of 4-cyanopyridine. Even though
we lowered the ratio of Ni(acac)2 to 10 mol %, it still made 4-
cyanopyridine harder to reduce.
On the basis of the experimental observations, related

mechanistic study, and potentiostatic electrolysis control
experiments (for details, see Supporting Information),16,18b a
plausible mechanism is proposed and is illustrated in Figure 2.
At the outset, a radical anion intermediate I is generated by a
single-electron transfer (SET) to 2a. In the presence of
Na2CO3, intermediate I tautomerizes to enolate species II,
which is a stabilized radical with a larger conjugated system.
Subsequently, the stabilized radical II could proceed via path a
or path b. In path a, radical II undergoes a radical addition to
4-cyanopyridine with the assistance of the coordination effect
of Ni(acac)2 delivering adduct III. The resulting adduct III is
readily reduced to carbanion IV. Finally, the desired product
3a is generated via a sequential cyanide loss and protonation.

For path b, a radical anion V is in situ generated from the
reaction of 4-cyanopyridine, although it is less reducible. Then
a radical coupling between II and V affords adduct VI, which
as a tautomer of IV produces the product 3a via similar steps.
In conclusion, a general and efficient pyridylation of

electron-deficient alkenes has been achieved via a novel
electroreductive approach. This method enables a comple-
mentary approach to access pyridine derivatives, which are
notoriously difficult or simply inaccessible by traditional
methods. The mild conditions, ease of operation, and good
scalability make this approach more appealing in synthetic
applications. Moreover, the important role of Ni(acac)2
differentiating two substrates is demonstrated by a series of
cyclic voltammetric experiments. Further exploration of the
reaction mechanism and enantioselective pyridylation is
currently underway in our laboratory.
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Figure 2. Proposed mechanism.
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