

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Reactions with 2-Thiothymine; Selective Cyclization of S-Substituted 2-Thiothymine

Mohamed M. Youssef ^a & Ayman M. S. Youssef ^a ^a Cairo University, Giza, Egypt Version of record first published: 27 Oct 2010.

To cite this article: Mohamed M. Youssef & Ayman M. S. Youssef (2003): Reactions with 2-Thiothymine; Selective Cyclization of S-Substituted 2-Thiothymine, Phosphorus, Sulfur, and Silicon and the Related Elements, 178:1, 67-81

To link to this article: http://dx.doi.org/10.1080/10426500307818

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTIONS WITH 2-THIOTHYMINE; SELECTIVE CYCLIZATION OF S-SUBSTITUTED 2-THIOTHYMINE

Mohamed M. Youssef and Ayman M. S. Youssef Cairo University, Giza, Egypt

(Received March 2, 2002; accepted June 18, 2002)

2-Thiothymine (I) undergoes S-alkylation when treated with some halo compounds such as methyl and ethyl iodides. The S-alkyl derivatives **II** are treated with hydrazine hydrate to produce the hydrazine derivative **III**, which condensed with p-chlorobenzaldehyde to give p-chlorobenzaldehydepyrimidinehydrazone derivative IV. Compound **II**_a reacts with phosphorus oxychloride to give 4-chloro derivative V. The chlorine atom in V undergoes nucleophilic substitution with p-chloroaniline and anthranilic acid to produce drivatives $VI_{a,b}$. Dehydrative cyclization of VI_b yields the pyrimido[6,1-b]quinazolin-10-one derivative VII. Treatment of V with ammonia solution gives the diamino derivative VI_d . Reaction of V with sodium azide produces the tetrazolo[1,5-c]pyrimidine derivative VIII. Compound I undergoes S-alkylation with α -haloketones followed by cyclization to produce the thiazolo[3,2-a]pyrimidine derivatives X_{a-c} . Reaction of I with bromomalononitrile produces thiazolo[3,2a)pyrimidine-2-carbonitrile derivative XII. Treatment of XII with formic acid, formamide and ammonium thiocyanate produces thiazolo[3,2-a:4,5-d]dipyrimidine derivatives XIII_{a-c}. Finally, reacting XII with malononitrile yields ppyrido[2',3':4,5]thiazolo[3,2a]pyrimidine-3-carbonitrile derivative **XIV**.

Keywords: 2-Thiothymine; active chloro derivative; nucleophilic substitution; pyridothiazolopyrimidine; pyrimidoquinazoline; tetra-zolopyrimidine; thiazolodipyrimidine; thiazolopyrimidine

In spite of the fact that much literature is published on 2-thiouracil, very few communications are published regarding 2-thiothymine. Only one of these publications discussed chemical reactions of 2-thiothymine.¹ All the others reported its uses in the formation of nucleosides^{2–6} and as anti-HIV agents.^{7.8}

Address correspondence to M. M. Youssef, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt. E-mail: mmmyousef@yahoo.com

Because of its potential biological importance and the lack of work published dealing with its chemistry, we would like here to report some reactions of 2-thiothymine as well as its uses as a precursor for the synthesis of some biologically important bi- and tricyclic fused heterocycles such as thiazolopyrimidine and thiazolodipyrimidine derivatives.

2-Thiothymine(I) was synthesized after a method published in 1910^9 by formylation of ethyl propionate with ethyl formate in presence of sodium metal. The produced ethyl 2-formylpropionate underwent cyclocondensation with thiourea to give **I**.

Compound I undergoes S-alkylation when it is treated with some halo compounds. Thus, treatment of I with methyl or ethyl iodide yielded the corresponding S-alkyl derivatives $II_{a,b}$ respectively. That alkylation took place at the sulphur atom could be proved by reacting each of $II_{a,b}$ with hydrazine hydrate in boiling dioxane to produce, the same sulphur free compound, 2-hydrazino derivative III.

Analytical, IR, and ¹H-NMR spectral data are in agreement with the proposed structure **II**. The hydrazino derivative **III** displayed IR absorption bands at 3321, 3205, 3151 cm⁻¹ (NH₂ and NH) and 1685 (CO). Its ¹H-NMR spectrum (DMSO-d₆) showed signals at δ 1.77 ppm (s, 3H, CH₃), 4.48 (s, 2H, NH₂, D₂O exchangeable), 7.39 (s, 1H, pyrimidine H6), 8.26 (s, 1H, NH, D_2O exchangeable), and 8.65 (bs, 1H, NH, D_2O exchangeable).

The hydrazino derivative **III** condensed with p-chlorobenzaldehyde to give the p-chlorobenzaldehydepyrimidylhydrazone derivative **IV**. Analytical and spectral data of **IV** are in agreement with the proposed structure (Experimental).

IV

The S-methyl derivative II_a , containing only one active hydrogen atom, reacts smoothly with phosphorus oxychloride, in dry dioxane, to give 4-chloro-5-methyl-2-methylthiopyrimidine (**V**), which gave compatible elemental analyses. Its IR spectrum revealed the disappearance of both NH and CO groups.

The chlorine atom at position 4 in compound \mathbf{V} shows high activity towards some nucleophiles.

Thus, reaction of **V** with some weak nucleophiles such as aromatic amines, namely, p-chloroaniline and anthranilic acid yielded the 4-(p-chlorophenylamino)- and the 4-(o-carboxyphenylamino)pyrimidine derivatives $\mathbf{VI}_{a,b}$.

Compound **VI**_a gave compatible elemental analyses and IR data. The ¹H-NMR spectrum (DMSO-d₆) of **VI**_a showed signals at δ 2.14 ppm (s, 3H, CH₃), 2.41 (s, 3H, SCH₃), 7.37 (d, 2H, aromatic protons), 7.74 (d, 2H, aromatic protons), 8.01 (s, 1H, pyrimidine H₆), and 8.63 (s, 1H, NH, D₂O exchangeable). The IR spectrum of VI_b displayed absorption bands at 3200–2800 cm⁻¹ (br, OH + NH) and 1685 (CO). The mass spectrum of **VI**_b showed the molecular ion peak at m/z 275 (100%).

Compound **VI**_b underwent cyclization by dehydration upon fusion at 270°C to produce 4-methyl-1-methylthio-10H-pyrimido[6,1-b]quinazolin-10-one (**VII**). The IR spectrum of **VII** revealed the disappearance of any absorption bands at 3200–2800 cm⁻¹, except for the expected –OH absorption (Experimental). Its mass spectrum showed the molecular ion peak at m/z 257 (100%).

Compound V undergoes nucleophilic substitution with thioglycolic acid to produce 2-methylthio-5-methylpyrimidine-4-ylthioacetic acid (**VI**_c), which displayed IR absorption bands at 3200–2900 cm⁻¹ (br, OH) and 1690 (CO).

Diaminopyrimidines are known in literature to have biological activity.^{10–12} Therefore, we tried to synthesize a pyrimidine derivative containing two amino groups. Thus, treatment of **V** with concentrated ammonia solution (strong nucleophile) resulted in replacement of both chlorine atom at 4-position, and the methylthio group at 2-position, to produce 5-methylpyrimidine-2,4-diamine (**VI**_d) in poor yield.

The produced diaminopyrimidine derivative VI_d displayed IR absorption bands at 3330–3170 cm⁻¹ (NH₂). Its ¹H-NMR spectrum (DMSO-d₆) showed signals at δ 1.82 ppm (s, 3H, CH₃), 3.43 (s, 2H, NH₂, D₂O exchangeable), 4.45 (s, 2H, NH₂, D₂O exchangeable), and 7.53 (s, 1H, pyrimidine H₆).

Similarly, compound **V** reacted with hydrazine hydrate in boiling dioxane and gave the corresponding 2,4-dihydrazino derivative VI_e . Analytical, IR, and ¹H-NMR spectral data are in agreement with the proposed structure VI_e (Experimental).

/

- a, $R^1 = NH-C_6H_4$ -CI-p, $R^2 = SCH_3$
- b, $R^1 = NH-C_6H_4$ -COOH-o, $R^2 = SCH_3$
- c, $R^1 = SCH_2COOH$, $R^2 = SCH_3$
- d, $R^1 = R^2 = NH_2$

e, $R^1 = R^2 = NHNH_2$

Compound **V** reacted with sodium azide in dimethyl-formamide to produce 8-methyl-5-methylthiotetrazolo[1,5-c]pyrimidine (**VIII**).

VIII

The mass spectrum of **VIII** revealed the molecular ion peak at m/z 181 (82.9%) and the base peak at m/z 86.

In continuation, alkylation of \mathbf{I} with α -haloketones yielded the corresponding S-alkylated derivatives. Thus, treatment of \mathbf{I} with each of chloroacetone, phenacyl bromide, and 3-chloropentan-2,4-dione in ethanolic sodium ethoxide solution yielded the corresponding S-acetonyl-, S-phenacyl-, and S-diacetylmethyl derivatives $\mathbf{IX}_{\mathbf{a-c}}$ respectively.

Compounds IX_{a-c} gave compatible data in elemental analyses, IR and ¹H-NMR spectra (Experimental).

Dehydration of IX_{a-c} by polyphosphoric acid gave the corresponding substituted thiazolo[3,2-a]pyrimidine derivatives X_{a-c} , respectively, rather than the isomeric structure X'.

The IR spectra of compounds **X** showed the absence of any absorption bands in the NH region and absorptions near 1640 cm⁻¹ (CO). The ¹H-NMR spectrum of **X**_a, as an example, showed signals at δ 1.95 ppm (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 6.94 (s, 1H, thiazole H₅), and 8.02

(s, 1H, pyrimidine H₆). The mass spectrum of X_a showed the molecular ion peak at m/z 180 (100%).

Preferring structure \mathbf{X} over \mathbf{X}' was based on ¹H-NMR studies (see later).

Furthermore, compound **I** was treated with a mixture of chloroacetic acid, acetic anhydride, and the proper aromatic aldehyde, in acetic acid containing anhydrous sodium acetate, to produce the 2-arylidene thiazolo[3,2-a]pyrimidinedione derivatives $\mathbf{XI}_{\mathbf{a}-\mathbf{d}}$.

a, Ar = $-C_6H_4$ -Cl-p b, Ar = $-C_6H_4$ -OCH₃-p c, Ar = \swarrow_s d, Ar = $-\swarrow_s$

Analytical, IR, and ¹H-NMR spectral data are in agreement with the proposed structure **XI**.

Reaction of compound **I** with monobromomalononitrile, in alcoholic potassium hydroxide, produced 3-amino-6-methyl-5-oxo-thiazolo[3,2-a] pyrimidine-2-carbonitrile (**XII**), most probably via the formation of **XII'**.

The IR spectrum of compound **XII** displayed absorption bands at 3354, 3301 cm⁻¹ (NH₂), 2200 (CN), and 1674 (CO). Its ¹H-NMR (DMSO-d₆) showed signals at δ 1.90 ppm (s, 3H, CH₃), 7.81 (s, 1H,

pyrimidine H_7), and 8.50 (s, 2H, NH₂, D₂O exchangeable). The mass spectrum of **XII** showed the molecular ion peak at 206 (100%).

The presence of the enaminonitrile moiety in compound **XII** could be proved by its reactions with each of formic acid, formamide and ammonium thiocyanate to produce thiazolo[3,2-a:4,5-d]dipyrimidine derivatives **XIII**_{a-c} respectively.

Agreeable analytical and spectral data are obtained for **XIII** (Experimental).

Reactions of **XII** with formic acid and formamide may be take place as shown in Scheme 1.

Ultimately, compound **XII** reacted with malononitrile in ethanol containing a catalytic amount of piperidine to yield 2,4-diamino-8-methyl-9-oxopyrido[2',3':4,5]Thiazolo[3,2-a]pyrimidine-3-carbonitrile (**XIV**). Analytical and spectral data of **XIV** are in agreement with the proposed structure (Experimental).

Structure **X** could be preferred over **X'** by comparing chemical shifts (δ) of pyrimidine H-6 proton in $\mathbf{II}_{a,b}$ (7.72 ppm) with those for each of the cyclized products \mathbf{X}_a (8.02 ppm), \mathbf{XI}_b (7.72 ppm), \mathbf{XII} (7.81 ppm), and \mathbf{XIII}_b (7.81 ppm). It is clear that δ values for H-7 proton in the cyclized structures **X**, **XI**, **XII**, and **XIII** did not suffer from any significant changes from the pyrimidine H-6 in the open structure **II** (difference is within 0.3 ppm). We previously reported¹³ that in pyrimidines, cyclization involving a certain nitrogen atom causes a high field shift for its neighboring proton by a value of >1 ppm, whereas cyclization involving the other nitrogen atom would not affect δ value of the same proton. Consequently, we could conclude that cyclization reactions carried out in this article involves N-3 rather than N-1 and thus sructure **X** and the related cyclized products could be preferred.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded (KBr) on a Pye Unicam SP-1000 spectrophotometer. ¹H-NMR were obtained with a Varian ¹H-Gemini 200 spectrometer and chemical shifts are expressed in δ (ppm) using TMS as the internal standard. The elementary analyses were performed by the Microanalytical Data Center, Cairo University, Egypt.

Compounds I were prepared according to literature procedure.⁹

2-Alkylthio-3,4-dihydro-5-methylpyrimidin-4-ones Ila.b

A mixture of an equimolar amounts of **I** (1.42 g, 0.01 mmol), alkyliodide and potssium hydroxide (0.65 g, 0.01 mmol) in 30 ml absolute ethanol was heated under reflux for 2 h, cooled, and then poured into water (70 ml). The precipitated solid was collected and crystallized from dioxane to give **IIa,b**. Compound IIa was obtained in 90% yield; m.p. 247°C; IR spectrum: 3136 cm⁻¹ (NH), 2974 (CH), and 1652 (CO). ¹H-NMR spectrum (DMSO-d₆): δ 1.85 ppm (s, 3H, CH₃), 2.11 (s, 3H, SCH₃), 3.55 (bs, 1H, NH, D₂O exchangeable), and 7.72 (s, 1H, pyrimidine H₆). Analysis: C₆H₈N₂OS (156.31). Requires: C, 46.10; H, 5.15; N, 17.99; S, 20.51%. Found: C, 46.1; H, 5.1; N, 17.8; S, 20.4%.

Compound **II**_b was obtained in 85% yield; m.p. 185°C; IR spectrum: 3145 cm⁻¹ (NH), 2980 (CH), and 1650 (CO). ¹H-NMR (DMSO-d₆): δ 1.26 ppm (t, 3H, CH₃), 1.85 (s, 3H, CH₃), 4.20 (q, 2H, CH₂), 4.52 (bs, 1H, NH, D₂O exchangeable), and 7.72 (s, 1H, pyrimidine H₆). Analysis: C₇H₁₀N₂OS (170.34). Requires: C, 49.35; H, 5.91; N, 16.51; S, 18.86%. Found: C, 49.3; H, 5.8; N, 16.5; S, 18.9%.

3,4-Dihydro-2-hydrazino-5-methylpyrimidin-4-one (III)

A mixture of each of $II_{a,b}$ (0.01 mmol) and hydrazine hydrate (1.5 ml, 0.03 mmol) in dioxane (30 ml) was heated under reflux for 5 h, the reaction mixture was poured into cold water, whereby the solid soprecipitated was filtered off, dried, and crystallized from dilute dioxane. The yield of compound III was 61%; m.p. 230°C; IR spectrum: 3321, 3205, 3151 cm⁻¹ (NH₂ and NH), 2985 (CH), and 1685 (CO). ¹H-NMR spectrum (DMSO-d₆): δ 1.77 ppm (s, 3H, CH₃), 4.48 (s, 2H, NH₂, D₂O exchangeable), 7.39 (s, 1H, pyrimidine H₆), 8.26 (s, 1H, D₂O exchangeable), and 8.65 (bs, 1H, NH, D₂O exchangeable). Analysis: C₅H₈N₄O (140.13). Requires: C, 42.85; H, 5.74; N, 39.98%. Found: C, 42.7; H, 5.7; N, 39.9%.

2-(4-Chlorophenyl)methylenehydrazino-3,4-dihydro-5-methylpyrimid-in-4-ones (IV)

A mixture of 0.01 mmol of **III** and an equimolar amount of p-chlorobenzaldehyde in 50 ml of absolute ethanol was refluxed for 3 h, the solid that formed on dilution with water, was collected, dried, and crystallized from acetic acid; m.p. 243°C; IR spectrum: 3310, 3130 cm⁻¹ (NH) and 1680 (CO). Analysis: $C_{12}H_{11}ClN_4O$ (262.68). Requires: C, 54.86; H, 4.21; N, 21.32; Cl, 13.49%. Found: C, 54.9; H, 4.2; N, 21.1; Cl, 13.3%.

4-Chloro-5-methyl-2-methylthiopyrimidine (V)

A mixture of $\mathbf{H}_{\mathbf{a}}$ (1.56 g, 0.01 mmol) in dry dioxane (10 ml) and phosphorus oxychloride (2.5 ml) was heated under reflux for 2 h, cooled, and poured into ice. The precipitated solid was collected, dried, and crystallized from methanol to give 1.04 g (60%) of **V**; m.p. 35°C; IR spectrum: 2980 cm⁻¹ (CH). Analysis: C₆H₇ClN₂S (174.60). Requires: C, 41.27; H, 4.01; N, 16.04; S, 18.36; Cl, 20.30%. Found: C, 41.3; H, 4.0; N, 16.1; S, 18.2; Cl, 20.3%.

4-(p-Chlorophenylamino)-5-methyl-2-methylthiopyrimidine VI_{a,b}

A mixture of $\mathbf{V}(0.01 \text{ mmol})$ and an appropriate primary aromatic amine (0.01 mmol) in dry dioxane (20 ml) was heated under reflux for 1 h, the reaction mixture was poured onto cold water, whereby the solid produced so precipitated was filtered off, dried, and crystallized from dioxane/water.

4-(p-Chlorophenylamino)-5-methyl-2-methylthiopyrimidine (Vl_a)

Yield (80%); m.p. 140°C; IR spectrum: 3228 cm⁻¹ (NH) and 2975 (CH). ¹H-NMR spectrum (DMSO-d₆): δ 2.14 ppm (s, 3H, CH₃), 2.41 (s, 3H, SCH₃), 7.37 (d, 2H, aromatic protons), 7.74 (d, 2H, aromatic protons), 8.01 (s, 1H, pyrimidine H₆), and 8.63 (s, 1H, NH, D₂O exchangeable). Analysis: C₁₂H₁₂ClN₃S (265.75). Requires: C, 54.23; H, 4.54; N, 15.80; S, 12.06; Cl, 13.33%. Found: C, 54.3; H, 4.5; N, 15.7; S, 12.1; Cl, 13.3%.

4-(o-Carboxyphenylamino)-5-methyl-2-methylthiopyrimidine (VI_b)

Yield (80%); m.p. 255°C; IR spectrum: 3200–2800 cm⁻¹ (br, OH + NH) and 1685 (CO). ¹H-NMR spectrum (DMSO-d₆): δ 2.14 ppm (s, 3H, CH₃), 2.14 (s, 3H, SCH₃), 8.02 (s, 1H, pyrimidine H₆), 8.61 (s, 1H, NH, D₂O exchangeable), and 10.73 (s, 1H, COOH, D₂O exchangeable). Analysis: C₁₃H₁₃N₃O₂S (275.31). Requires: C, 56.71; H, 4.75; N, 15.26; S, 11.65%. Found: C, 56.6; H, 4.7; N, 15.3; S, 11.7%.

4-Methyl-1-methylthio-10H-pyrimido-[6,1-b]quinazoline-10-one (VII)

Compound **VI**_b (0.01 mmol) was heated at 270°C on an oil bath for half an hour, the reaction mixture was then triturated with absolute ethanol. The solid product, so formed, was filtered off, dried, and crystallized from dioxane to yield (80%) of **VII**; m.p. 283°C; IR spectrum 1690 cm⁻¹ (CO). Analysis: $C_{13}H_{11}N_3OS$ (257.29). Requires: C, 60.68; H, 4.30; N, 16.33; S, 12.46%. Found: C, 60.7; H, 4.2; N, 16.3; S, 12.5%.

4-Carboxymethylthio-5-methyl-2-methylthiopyrimidine (VI_c)

A mixture of V (0.01 mmol) and thioglycollic acid (0.01 mmol) in dry dioxane (20 ml) was heated under reflux for 3 h then cooled. The

precipitated solid was collected, dried, and crystallized from dioxane to give (70%) of **VI**_c; m.p. 245°C; IR spectrum 3200–2900 cm⁻¹ (br, OH) and 1690 (CO). Analysis: $C_8H_{10}N_2O_2S_2$ (230.29). Requires: C, 41.72; H, 4.37; N, 12.16; S, 27.84%. Found: C, 41.7; H, 4.3; N, 12.2; S, 27.9%.

5-Methylpyrimidine-2,4-diamine (VI_d)

A mixture of **V** (0.01 mmol) and concentrated ammonia solution was heated under reflux for 2 h, the solid thus formed after evaporation, was collected, dried, and crystallized from ethanol to give (30%) of **VI**_d; m.p. 190°C; IR spectrum 3330–3170 cm⁻¹ (NH₂). ¹H-NMR spectrum (DMSO-d₆): δ 1.82 ppm (s, 3H, CH₃), 3.43 (s, 2H, NH₂, D₂O exchangeable), 4.45 (s, 2H, NH₂, D₂O exchangeable), and 7.53 (s, 1H, pyrimidine H₆). Analysis: C₅H₈N₄ (124.13). Requires: C, 48.37; H, 6.48; N, 45.13%. Found: C, 48.4; H, 6,6; N, 45.1%.

2,4-Dihydrazino-5-methylpyrimidine (VIe)

A mixture of **V** (0.01 mmol) and Hydrazine hydrate (0.05 mmol) in dioxane (20 ml) was heated under reflux for 5 h, the reaction mixture was evaporated, cooled, whereby the solid so-precipitated was filtered off, dried, and crystallized from water. The yield of compound **VI**_e was 60%; m.p. 183°C; IR spectrum 3320–3180 cm⁻¹ (NH₂). The ¹H-NMR spectrum (DMSO-d₆): δ 1.83 ppm (s, 3H, CH₃), 3.47 (s, 2H, NH₂, D₂O exchangeable), 4.12–4.31 (bs, 3H, NH₂ + NH, D₂O exchangeable), 7.35 (s, 1H, NH, D₂O exchangeable), and 7.52 (s, 1H, Pyrimidine H₆). Analysis: C₅H₁₀N₆ (154.16). Requires: C, 38.95; H, 6.53; N, 54.51%. Found: C, 38.8; H, 6.5; N, 54.5%.

8-Methyl-5-methylthiotetrazolo[1,5]pyrimidine (VIII)

A mixture of **V** (0.01 mmol) and sodium azide (0.01 mmol) in dimethyl formamide (20 ml) was stirred at room temperature for 12 h, the reaction mixture was heated on a water bath for 1 h, then poured onto ice/water whereby the solid product that precipitated, was filtered off, dried, and crystallized from methanol. Compound **VIII** was obtained in 64% yield; m.p. 100°C; IR spectrum 2950 cm⁻¹ (CH). Analysis: C₆H₇N₅S (181.20). Requires: C, 39.76; H, 3.88; N, 38.64; S, 17.69%. Found: C, 39.7; H, 3.8; N, 38.5; S, 17.7%.

Alkylation of I. Preparation of IX_{a-c}

A mixture of an equimolar amounts of I (0.01 mmol) and an appropriate α -haloketone in ethanolic sodium ethoxide solution (20 ml) was heated,

				Analysis		
				Calc.	Found	
				%C	%C	
				%H	%H	
	Molecular		$\mathbf{m}.\mathbf{p}.^{\circ}\mathbf{C}$	%N	%N	IR (KBr)
Compound	formula	Yield %	Solvent	%S	%S	cm^{-1}
IXa	$\mathrm{C_8H_{10}N_2O_2S}$	70	195	48.47	48.4	3417, 3008 (NH),
	(198.22)		Ethanol	5.08	5.1	1631 (CO)
				14.13	14.1	1566 (CO)
				16.17	16.1	
IX _b	$C_{13}H_{12}N_2O_2$	80	230	59.98	60.0	3421, 3213 (NH),
	(260.28)		Ethanol	4.64	4.6	1685 (CO),
				10.76	10.7	1639 (CO)
				12.31	12.3	
IX _c	$\mathrm{C_{10}H_{12}N_2O_3S}$	75	190	49.99	49.9	3031 (NH),
	(240.23)		Ethanol	5.02	5.0	1631 (CO),
				11.65	11.7	1587 (CO)
				13.34	13.2	
$\mathbf{X}_{\mathbf{a}}$	$C_8H_9N_2OS$	60	196	53.02	53.0	1640 (CO)
	(181.20)		Dioxane	5.00	5.0	
				15.45	15.3	
				17.69	17.7	
X _b	$C_{13}H_{11}N_2OS$	72	262	64.18	64.2	1635 (CO)
	(243.27)		Dioxane	4.55	4.5	
				11.51	11.5	
				13.18	13.1	
Xc	$C_{10}H_{10}N_2O_2S$	58	202	54.04	54.1	1650 (CO),
-	(222.24)		Ethanol	4.53	4.5	1642 (CO)
				12.60	12.6	
				14.42	14.5	

TABLE I Characterization Data of Compounds IX_{a-c} and X_{a-c}

 \textbf{IX}_{b} : $^{1}\text{H-NMR}$ spectrum (DMSO-d_6): δ 1.82 ppm (s, 3H, CH_3), 4.78 (s, 2H, CH_2), 7.30–8.04 (m, 6H, 5 aromatic protons + pyrimidine H_6) and 8.30 (bs, 1H, NH, D_2O exchangeable).

 X_{a} : ¹H-NMR spectrum (DMSO-d₆): δ 1.95 ppm (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 6.94 (s, 1H, thiazole H₅) and 8.02 (s, 1H, pyrimidine H₆).

under reflux for 3 h, the reaction mixture was poured onto water, the solid product formed was filtered off, and crystallized from the proper solvent (Table I).

Cyclization of IX_{a-c}. Synthesis of X_{a-c}

A suspension of 1 g of each of IX_{a-c} in 10 g of polyphosphoric acid was heated at 100–120°C on an oil bath for 1 h, the solution was left to cool, poured with stirring into ice/water, and basified with ammonium hydroxide solution. The solid that formed was collected, washed with water, and crystallized from the proper solvent to give X_{a-c} (Table I).

2-Arylidene Thiazolo[3,2-a]pyrimidinedione XI_{a-d}

A mixture of 0.01 mmol of each of I (1.42 g), (1.04 g) of chloroacetic acid, an appropriate aldehyde, and (2 g) of anhydrous sodium acetate was refluxed in 30 ml of glacial acetic acid and 15 ml of acetic anhydride for 3 h, the reaction mixture was poured into water. The precipitate that formed was filtered off, washed with water, dried, and crystallized from the proper solvent to produce XI_{a-d} (Table II).

3-Amino-6-methyl-5-oxothiazolo[3,2-a]pyrimidine-2-carbonitrile (XII)

A mixture of 0.01 mmol of each of I (1.42 g) and monobromomalononitrile was heated under reflux for 1 h in alcoholic potassium hydroxide

				Analysis		
				Calc. %C %H	Found %C %H	
Compound	formula	Yield %	Solvent	%S	%S	cm^{-1}
XIa	$C_{14}H_9ClN_2O_2S$	80	280	55.17	55.0	1720 (CO),
	(304.73)		Acetic acid	2.97	2.9	1681 (CO)
				9.19	9.2	
				10.52	10.6	
XI _b	$\mathrm{C_{15}H_{12}N_2O_3S}$	83	290	59.99	60.0	1684 (CO),
	(300.01)		dilute	4.02	4.0	1670 (CO)
			Acetic acid	9.32	9.2	
				10.67	10.7	
XIc	$\mathrm{C_{12}H_8N_2O_2S_2}$	70	340	52.16	52.1	1715 (CO),
	(276.30)		DMF	2.91	3.0	1640 (CO)
				10.13	10.2	
				23.20	23.1	
XI _d	$\mathrm{C_{15}H_{12}N_2O_4S}$	78	305	56.95	56.9	3340-3210 (OH),
	(316.31)		Acetic acid	3.81	3.8	1710 (CO),
				8.85	8.8	1680 (CO)
				10.13	10.1	

TABLE II Characterization Data of Compounds XIa-d

XIa: Cl, Requires: 11.63; Found: 11.5%.

XI_b: ¹H-NMR spectrum (DMSO-d₆): δ 1.98 ppm (s, 3H, CH₃), 3.89 (s, 3H, CH₃),

7.15-7.74 (q, 4H, aromatic protons), 7.72 (s, 1H, pyrimidine-H₆) and 8.1 (s, 1H, CH).

solution (20 ml). The reaction mixture was poured onto water. The precipitate, thus formed, was filtered off, washed with water, dried, and crystallized from dilut dimethylformamide. Compound **XII** was obtained in 70% yield; m.p. 282°C; IR spectrum 3354, 3301 cm⁻¹ (NH₂), 2200 (CN) and 1674 (CO). The ¹H-NMR spectrum (DMSO-d₆): δ 1.90 ppm (s, 3H, CH₃), 7.81 (s, 1H, pyrimidine H₇) and 8.50 (s, 2H, NH₂, D₂O exchangeable). Analysis: C₈H₆N₄OS (206.19). Requires: C, 46.59; H, 2.92; N, 27.16; S, 15.54%. Found: C, 46.5; H, 2.9; N, 27.1; S, 15.5%.

8-Methylthiazolo[3,2-a: 4,5-d]dipyrimidine-4,9-dione (XIII_a)

A mixture of compound **XII** (1 g) and formic acid (10 ml) was heated under reflux for 10 h, the solid product that separated upon cooling was filtered off and crystallized from dimethyl formamide in 64% yield; m.p. 315° C; IR spectrum 3178 cm⁻¹ (NH) and 1670, 1612 (2CO). Analysis: C₉H₆N₄O₂S (234.15). Requires: C, 46.16; H, 2.56; N, 23.92; S, 13.69%. Found: C, 46.2; H, 2.6; N, 23.8; S, 13.5%.

4-Amino-8-methylthiazolo[3,2-a: 4,5-d]dipyrimidine-9-one (XIII_b)

A mixture of compound **XII** (1 g) and formamide (10 ml), in presence of formic acid (5 ml) and dimethyl formamide (5 ml), was heated under reflux for 6 h, the solid product that separated upon cooling was filtered off and crystallized from dilute dimethyl formamide in 58% yield; m.p. 340° C; IR spectrum 3269, 3039 cm^{-1} (NH) and 1660 (CO). ¹H-NMR spectrum (DMSO-d₆): δ 1.86 ppm (s, 3H, CH₃), 3.41 (s, 2H, NH₂, D₂O exchangeable), 7.21 (s, 1H, Pyrimidine H₂), and 7.81 (s, 1H, Pyrimidine H₇). Analysis: C₉H₇N₅OS (233.21). Requires: C, 46.34; H, 3.01; N, 30.02; S, 13.74%. Found: C, 46.3; H, 2.9; N, 30.0; S, 13.6%.

Reaction of XII with Ammonium Thiocyanate. Preparation of XIII_c

A mixture of **XII** (1 g) and an excess amount of ammonium thiocyanate (3 g) was heated under reflux for 6 h in acetic acid (20 ml). The reaction mixture poured onto ice/water; the solid that separated was filtered off, dried, and crystallized from dilute dimethyl formamide, in 48% yield; m.p. 330° C; IR spectrum 3309, 3163 cm^{-1} (NH) and 1643 (CO). Analysis: $C_{10}H_8N_6OS_2$ (292.30). Requires: C, 41.09; H, 2.75; N, 28.74; S, 21.93%. Found: C, 41.0; H, 2.6; N, 28.7; S, 21.8%.

2,4-Diamino-8-methyl-9-oxopyrido[2',3':4,5]thiazolo-[3,2-a]pyrimidine-3-carbonitrile (XIV)

A mixture of (0.01 mmol) of each of **XII** and malononitrile was heated under reflux for 2 h in ethanol (20 ml) containing 3 drops of piperidine. The reaction mixture poured onto water; the solid so formed, was filtered off, dried, and crystallized from dilute dimethyl formamide, in 60% yield; m.p. 260°C; IR spectrum 3280, 3160 cm⁻¹ (NH₂), 2230 (CN) and 1650 (CO). Analysis: C₁₁H₈N₆OS (272.25). Requires: C, 48.52; H, 2.95; N, 30.86; S, 11.77%. Found: C, 48.5; H, 2.9; N, 30.8; S, 11.7%.

REFERENCES

- [1] M. Szajda and E. Wyrzykiewicz, Pol. J. Chem., 57(7–9), 1027 (1983).
- [2] N. E. Poopeiko, J. Poznanski, A. Drabikowska, J. Balzarini, E. De. Clercq, et al., Nucleosides Nucleotides, 14(3-5), 435 (1995).
- [3] T. Szabo, J. Stawinski, S. Carlson, and R. Norrestam, Acta Crystallogr. Sect. C, 51, 411 (1995).
- [4] C. B. Reese and C. V. N. S. Varaprasad, J. Chem. Soc. Perkin Trans. 1, 2, 189 (1994).
- [5] D. C. Agathocleous and G. Shaw, J. Chem. Soc. Perkin Trans. 1, 21, 2555 (1993).
- [6] S. B. Rajur and L. W. McLaughlin, Tetrahedron Lett., 33(41), 6081 (1992).
- [7] H. Tanaka, H. Takashima, M. Ubasawa, K. Sekiya, L. Nitta, et al., J. Med. Chem., 35(2), 337 (1992).
- [8] H. Tanaka, M. Baba, M. Ubasawa, H. Takashima, K. Sekiya, et al., J. Med. Chem., 34(4), 1394 (1991).
- [9] M. Wheeler and J. McFarland, Am. Chem. J., 43, 25 (1910); Beil, 24(1), 330 (1910).
- [10] B. Roth and C. C. Cheng, *Progress in Medicinal Chemistry*, edited by G. P. Ellis and G. B. West (Elsevier Biomedical Press, New York, 1982), vol. 19, p. 267.
- [11] E. F. Elslager, C. Hess, J. Johnson, D. Ortwine, V. Chien, and L. M. Werbel, J. Med. Chem., 24, 127 (1981).
- [12] E. F. Elslager, P. Jacob, and L. M. Werbel, J. Heterocyclic Chem., 9, 775 (1972).
- [13] S. M. Sherif, M. M. Youssef, Kh. M. Mobarak, and A. M. Abdel-Fattah, *Tetrahedron*, 49, 9561 (1993).