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Aryl Radicals Induced Desulfonylative ipso-Substitution of 
Diaryliodonium Salts: An Efficient Route to Steric Hindered 
Biarylamines 
Huangguan Chen,a Limin Wang a and Jianwei Han *a 

By using vicinal arylsulfonamide substituted diaryliodonium salts, a 
cascade of desulfonylation/aryl migration was promoted by 
triethylamine in synthesis of steric hindered biarylamines, which 
operated in a radical induced reaction pathway. The products were 
readily converted into a variety of important synthons. 
Furthermore, double coupling reactions in one pot with the product 
of N-methyl biarylamine provided a potentially attractive molecule 
in OLEDs.

The chemistry of diaryliodonium salts has been a topical subject 
of growing research interest.1 Their unique reactivity as highly 
electrophilic precursors caused by the hyper nucleofuge of the 
aryliodo moiety, enables to operate a variety of aromatic 
transfer reactions.2 For the mechanistic discussion of iodonium 
salts involved tranformations, the conclusive insight on reactive 
intermediates generally included aryl cation, aryl cation radical, 
iodonium ylide, zwitterionic iodonium or benzyne (Scheme 1, 
a).3 The mechanism proposals were explained by the employed 
substrates and reaction conditions, which were often closely 
balanced and in competition with each other by collection of 
the products.4 Gaunt and coworkers have proposed aryl cation 
species in the copper catalyzed arylations of arenes, alkenes 
and enamines.5 In particular, the use of diaryliodonium salts 
provides an access to aryl radicals. Formally, previous studies on 
cationic polymerization have revealed free iodoarene radicals 
as the key photoinitiator under photolysis.6 Related to synthetic 
methodology, Kita and coworkers pioneered the oxidative 
coupling reactions by a single-electron-transfer process, in 
which the charge-transfer complex of hypervalent iodine atom 
and aromatics generated cation radicals with the aid of TMSOTf 
in hexafluoroisopropanol.7 Three reports from the research 
groups of Zhang and Yu, Tobisu and Chatani, Wang and Ding,  

described diaryliodonium salts as aryl radical sources in 
arylations of arenes, heteroarenes and quinones under basic 
conditions or visible light-mediated photoredox catalysis.8 Very 
recently, Lakhdar and Gillaizeau recognized the generation of 
phosphinoyl radicals from the combination of 
diphenyliodonium salts with triethylamine (Et3N) in 
phosphorylations.9 Despite these elegant advances, the utility 
of diaryliodonium salts in radical processes still remains largely 
unexplored.
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Scheme 1. Arylations and novel reactivity pattern of ortho-
functionalized diaryliodonium salts.

On the other hand, biarylamines occupy a vital position in fine 
chemicals.10 Transition-metal catalyzed traditional coupling 
reactions (e.g. Suzuki, Kumada, Negeshi, Stille, Ullman reaction, 
Buchwald-Hartwig) or dehydrogenative couplings in synthesis 
of steric hindered biaryls always meet difficulties due to both 
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electronic and steric factors (Scheme 1, b).11 Of note, the 
intermolecular arylation of aliphatic amines using 
diaryliodonium salts were reported by Stuart and Olofsson in 
synthesis of a wide range of arylated amines (Scheme 1, b). 
However, biarylamines were not described in their reports.12 In 
view of the biarylamine synthesis via Ar-Ar bond-forming 
strategies, the benefit of radical process was generally 
considered since that steric factors did not affect the reactivity. 
However, the selectivity was a crucial issue in comparsion with 
metal-catalyzed coupling reactions.13 In this regard, 
diaryliodonium salts allow excellent regioselectivity by 
adjusting the auxiliary group when aryl radical as a highly 
reactive intermediate participates in the reactions.7,12 Recently, 
our laboratory have uncovered an intramolecular aryl migration 
of vicinal trifluoromethanesulfonate substituted 
diaryliodonium salts for the synthesis of steric hindered ortho-
iodo diaryl ethers (Scheme 1, c).2d The novel reactivity pattern 
of ortho-functionalized diaryliodonium salts inspires us to 
explore the further C-N bond formations. Herein, we present 
the base-promoted desulfonylation/aryl migration of vicinal 
aryl sulfonamide substituted diaryliodonium salts via aryl 
radical induced process (Scheme 1, d). It was worth to mention 
that biarylamines with steric hindrance are favored by this 
method.
Table 1. Desulfonylative aryl migration reaction.[a]

2aa

H
N

1a - e

MeCN, 80 oC, 12 h

N
O

N

3

S
O O

Et3N (2 equiv)

I Aux

N
S
O

OMes

OTf

Entry Auxiliary Scavenger Yield [%][b]

1 Phenyl (1a) / 86
2 4-Methoxyphenyl (1b) / 64
3 2,4,6-Trimethoxylphenyl (1c) / 53
4 2,4,6-Trimethylphenyl (1d) / 65
5 4-Nitrophenyl (1e) / 20

6[c] Phenyl (1a) TEMPO 37
7[d] Phenyl (1a) TEMPO Trace
8[e] Phenyl (1a) BHT Trace

[a] Standard conditions: 1 (0.3 mmol), Et3N (2 equiv.) in 5 mL MeCN, 80 
oC, 12 hours. [b] Isolated yield. [c] TEMPO = 2,2,6,6-
tetramethylpiperidine-1-oxyl (2 equiv.). [d] TEMPO (10 equiv.). [e] BHT= 
Butylated hydroxytoluene (10 equiv.).

To begin our studies, iodonium triflate (1a) was chosen as the 
model substrate and the desired product 2aa was isolated in 
86% yield when the reaction was performed in the presence of 
2.0 equivalent of Et3N in acetonitrile at 80 oC (Table 1, entry 1).14 
Then several substrates 1b-1e bearing various auxiliary groups 
were prepared and employed in the reaction. As a result, 
electron-donating 4-methoxyphenyl and bukyl 2,4,6-
trimethylphenyl as auxiliary group gave 2aa in comparable 
yields of 64% and 65%, respectively. While 4-nitrophenyl 1e 
resulted in a poor yield of 20% (Table 1, entry 5). Specifically, 1c 
bearing 2,4,6-trimethoxylphenyl only gave 53% yield of 2aa 
(Table 1, entry 3). When the radical scavenger of TEMPO 
(2,2,6,6-tetramethylpiperidine-1-oxyl) or BHT (butylated 
hydroxytoluene) was introduced to the reaction, it was found 
that the reaction was inhibited by decreasing the yield of 2aa 
significantly (Table 1, entries 6-8). Moreover, the radical 

trapping product 3 in the reaction of 1a with TEMPO was 
detected by ESI-MS spectra.14 To show the effect of reactivity 
caused by the auxiliary group, EPR spin-trapping experiments 
were conducted for the reaction of iodonium salts 1a-1e with 
Et3N in the presence of α-phenyl-N-tert-butylnitrone (PBN) at 
room temperature.14 The EPR spectra revealed the formation of 
aryl-PBN radical adducts which were characterized by hyperfine 
coupling constants (aN = 14.7 G and aH = 2.6 G).15 Interestingly, 
the intensity of 1a is much larger than the others, which was 
consistant with the best yield of 2aa.

We subsequently examined the structural diversity of various 
N-containing iodonium salts by assessing the substitution 
effects on the aryl motif and N-substituents. Firstly, substrates 
1 with a broad range of substituents on the benzene ring (Ar1) 
were first investigated. As shown in Table 2, electron-neutral, -
donating or -withdrawing substituents were generally well-
tolerated, affording the desired products 2aa-2an bearing 
hydrogen (2aa), methyl (2ab and 2ac), methoxy (2ad), phenyl 
(2ae), halogen (2af-j), nitro (2ak), trifluoromethyl (2al), cyano 
(2am) and ester (2an) functionalities in good to excellent yields 
of 41-99%. We next turned our attention to the substituents on 
the nitrogen of diaryliodonium salts. It was pleased to find that 
substrates with various R groups also gave the desired 
biarylamines 2ba-2ka in good yields of 40-75%. Specifically, the 
reactions went smoothly to afford amines 2ba and 2ca bearing 
alkyl groups in 68% and 75% yields, respectively. Products 2da-
2ga with N-substituents of aromatic rings were also obtained in 
56-74% yields. Moreover, substrates with benzyl or substituted 
benzyl groups were compatible in this reaction, the amines 2ha-
2ka were furnished in 40-66% yields. Then, we sought to 
examine the scope of diverse aryl sulfonyl groups (Ar2), the 
generality of the protocol was also presented in Table 2. 
Substrates 1 bearing ortho-substituted aryls of Ar2 with steric 
hindrance were well-tolerated in the reaction and afforded the 
desired products 2f-2k in the form of single product with yields 
of 56-70%. Notably, steric demanding iodonium salts facilitate 
the outcome of the reaction. The case of 2l bearing 2,4,6-
triisopropylphenyl was accomplished in an excellent yield of 
94% under the standard conditions. Moreover, iodonium salts 
1 with less hindered Ar2 were also successfully employed in this 
context. While the sole product of 2m with electron-donating 
methoxy group in the para-position of Ar2 was isolated in 69% 
yield, several pair of products were observed in formation of 
biarylamines (2n-2s) along with the cyclic amides (2n’-2s’), 
which is consistent with radical chemistry.16 2n-2s were isolated 
in 44-66% yields by ipso-substitution together with 2n’-2s’ as 
minor products in 9-31% yields, which can be rationalized in 
both pathways of ipso-substitution and direct radical addition.

To gain more insights into the plausible radical mechanism, 
deuteration experiments were carried out in order to 
determine the source of hydrogen. When the deuterated 
solvent of MeCN-d3 was empolyed in the reaction, the signal of 
N-H disappeared as shown in 1H-NMR spectra.14 It implied that 
the solvent of MeCN served as the hydrogen source. Therefore, 
a rational reaction pathway is proposed (Scheme 2). Firstly, the 
association of Et3N with iodonium salts 1 forms an electron-
donor-acceptor (EDA) complex 4, which was thermally activated 
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to generate the aryl radical 5 with excellent regioselectivity. EPR 
spectra confirmed stable radical of 7 which was formed by 
radical trapping experiment with PBN (6). The radical 5 can go 
through two alternative reaction pathways depending on the 
substituents of the aryl sulfonyl group.16 In the formation of 

cyclic amides, the radical 5 goes [1,6]-addition. The cyclic amide 
2n' was obtained by aromatization from intermediate 8. 
Otherwise, a spirocyclic intermediate 9 was generated by [1,5]-
substitution, and the desired biarylamine 2n was formed 
through desulfonylation and  hydrogen abstraction.

Table 2. Scope of diverse N-containing diaryliodonium salts.[a]

I Ph

N
S

R

O
OAr2

Ar1

OTf

Et3N (2 equiv)

MeCN, 80 oC, 12 h
H
N

R

1 2aa - ka & 2f - s

S
N

R
O O

2n' - s'

Ar2

Ar1

Ar2

Ar1

H
N

H
N

H
N

H
N

H
N

H
N

H
N

H
N

H
N

H
N

2ab, 72% 2ac, 89% 2ad, 83% 2ae, 74%2aa, 86%

2af, X = F, 41%
2ag, X = Cl, 99%
2ah, X = Br, 88%

2ai, X = Cl, 78%
2aj, X = Br, 77%

2ak, 53% 2al, 74% 2am, 80% 2an, 70%

H
N

H
N H

N
n

X
2ba, n = 0, 68%
2ca, n = 3, 75%

2da, X = H, 56%
2ea, X = CH3, 61%
2fa, X = tBu, 65%
2ga, X = Br, 74%

X

2ha, X = H, 66%
2ia, X = CH3, 64%
2ja, X = OCH3, 40%
2ka, X = NO2, 46%

H3CO Ph X
X

O2N F3C NC

H
N

H
N

2l, 94%

X

H
N

2k, 56%

H
N

2j, 65%

H
N

2f, X = CH3, 68%
2g, X = F, 70%
2h, X = Cl, 66%
2i, X = Br, 63%

iPr

iPr iPr S
N

O O

H
N

2o, 66% 2o', 26%

S
N

O O

H
N

2n, 44% 2n', 31%

S
N

O O

H
N

2p, 56% 2p', 22%

S
N

Ph

O O

H
N

2q, 52% 2q', 19%

Ph

S
N

CF3

O O

H
N

2r, 45% 2r', 21%

CF3

S
N

NO2

O O

H
N

2s, 64% 2s', 9%

NO2

H
N

2m, 69%

O

N-R

Ar1

Ar2

O

O

[a] Reaction conditions: diaryliodonium salts 1 (0.3 mmol), Et3N (0.6 mmol) in 5 mL MeCN, 80 oC, 12 hours; Isolated yield after column 
chromatography.
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Scheme 2. The proposed mechanism.
Next, biarylamines as a family of synthetically versatile 

synthons were converted into useful aromatic building blocks. 

As shown in Scheme 3, the N-H group of 2 was easily substituted 
by phenyl (10), acetyl (11), and methyl (14) groups in excellent 
yields of 70-99%, in which methyl-substituted biarylamine 14 
was further transformed to 15 with aniline in an excellent yield 
of 90%. Moreover, in the presence of palladium catalysts, the 
intramolecular coupling reaction furnished 12 in 71% yield. The 
iodination product 13 was afforded in 65% yield, which could be 
used as an coupling synthon in further transoformations. To 
further demonstrate the potential utility of the novel 
desulfonylation/aryl migration reaction, an attractive molecule 
16 was synthesized in 80% yield by double Buchwald-Hartwig 
coupling reactions with 1,6-dibromopyrene in one pot, which is 
a potentially useful compound in the field of organic light 
emitting diodes (OLEDs).17
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10, from 2aa, 70%
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14, from 2i, 91%

15, 90%
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c

d e

f

N
N
H

g

N N

16, from 2aa, 80%

Scheme 3. Derivatization of biarylamines. Reagents and 
conditions: (a) PhI, Pd(OAc)2/(t-Bu)3P, NaOtBu, toluene, 100 oC; (b) Ac2O, 
Et3N, DMAP, DCM, 25 oC; (c) Pd(OAc)2, PhI(OAc)2, toluene, 25 oC; (d) 
Pd(OAc)2, PhI(OAc)2, I2, DCM, 25 oC; (e) HCHO, HCO2H, 100 oC; (f) PhNH2, 
Pd(OAc)2/(t-Bu)3P, NaOtBu, toluene, 100 oC; (g) 1,6-dibromopyrene, 
Pd(OAc)2/(t-Bu)3P, NaOtBu, toluene, 100 oC.

In summary, we have developed a base-promoted 
desulfonylation/aryl migration cascade of diaryliodonium salts, 
which provides an efficient route to get access to steric 
hindered biarylamines. The reaction features wide substrate 
scope and good functional group tolerance. Further 
investigation of the detailed reaction mechanism and the 
application of this transformation are ongoing in our laboratory.
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