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A number of structurally related biologically active pyrrole —Scheme 1. Possible Biogenetic Sequences Relating Proline/
2-aminoimidazole metabolites have been isolated worldwide from ©mithine to Oroidin (1) and Dispacamide (2)

marine sponges belonging to the Agelasidae, Axinellidae, and Br Br N X""NH,
Halichondriidae familie3.Among these is oroidini),? which is - HN—C ]/\/4\
the formal biogenetic building block and is considered to be the HN.~7 H Br
key precursor in the elaboration of polycyclic8s “oroidin” N XN Yo path 1
P e ¢ : ; ! Nt j/\/\H = o f :
erivatives? The isolation of dispacamide A2)* from phylo- N N~ Br proline
genetically related sponges raises the question as to whitloof H 1 oH H 3 .:'h.
2 is the forerunner. These two compounds are frequently found in NI orthine
sponges together with their closely related polycyclic derivatives. ) HN 2 pah2 o ¢}
Thus, the common metabolic intermediatesand 2 are good N
candidates for linking amino acid precursors to the pyrrole N~7 H o NI N, H
2-aminoimidazole family. HQN_<N HzN/kNH 5
Although these compounds are important for their pharmacologi- H © 2

cal activitie§ and for chemotaxonomic consideratidnsheir
biosynthesis remains in question. From an ecological point of view,
the antipredatory role of oroidin-based alkaloids could be their most

important biological functiofi.Kitagawd and later Braeckman and - -
. o - i NH x_NH - NH
Van Soestproposed that proline, ornithine, and guanidine are prob- 2 x proline . step 1 step 2 . dispacamide A 2

Scheme 2. Sequential Pyrrole and 2-Aminoimidazolinone
Sections Formation

7 and derivatives

able precursors of both the bromopyrrole and 2-aminoimidazolinone "¢ guanidine - 2. 07N 0PN
moieties (Scheme 1, paths 1 and 2). Ornithine and proline have Q H)
been respectively used in the synthesis of “oroidin-based” dibromo- NH, © NH, O:("NH
phakellin by Bichi® and dibromophakellstatin by Ronid<erri® HN—( HN_<\NH HN’QNH
has conducted what is so far the only biosynthetic experiment in 6 7

cell cultures of the sponge which produces stevensine (odfline).
The study showed that{C]-labeled proline, ornithine, and histidine
were incorporated into stevensine. Natural compoaisd4 were g4 9.8 ~INH
proposed as intermediates. We have considered that the pseudo- TV e CO,Me
dipeptide pyrrole-proline-guanidiné (Scheme 2) could be the

Scheme 3 2@

b, S N__O

precursor leading to the amide-connectegiNg pyrrole and o~ N 0" N

2-aminoimidazolinone sections. Our choice was also influenced by 10 1

the intriguing fact that the metabolism of proline in some plants - ‘ dore =

and microorganisms is known to be stress depen@efithough N NH c XN NH

the ecological role of proline in sponges is not known, one can —

suppose that its role under stress conditions is also crucial. Thus, & NH

if proline is involved in G;Ns formation under oxidative conditions, HO \>-NH HO \}NH 1)

this would be in accordance with the ecological role of “oroidin- 0 N-R¢ Ry N-R; Ry, HN—

based” alkaloids used by sponges as a chemical arsenal for their

defense. The first specific step in pyrrole 2-aminoimidazole 13(R‘ H, Ry = Boc) fQ}%%S‘ oh EZ;EZ,C) 6
14(Ry = Boc, R, = H) 1=H, Ry

biosynthesis would involve proline-based peptide synthesis of 14 (Ry =Boc, Ry = H)

(Scheme 2), followed by oxidation of the proline to pyrrole section aReagents and conditions: (a) gz, EDCI, DMAP, 0°C, 90%; (b)
and then by the oxidation rearrangement of proline-guanidine Naylgg';fo(cd)?rﬁﬁ (©) TH('; BO(T_lgllJ)arll\lldlgﬁ r(\lfezﬂux 13)1%82‘;?;

an (1] guaniaine a equiv, (1)
m0|e_ty tq the 2- am|n0|m|dazollnon§_)( We have tested step 2,' and 12 (429); () CHClp, Boc-guanidine, rt, 1 nightl3 + 14 (4296): (f)
considering that the self-catalyzed intramolecular transamination CH.Cl,, TFA, rt, quantitative.

reaction transforming into 7 would be the critical step of the

biomimetic process. The unsymmetrical compoundl showed high sensitivity to
The required pseudo-peptid® (Scheme 3) was prepared from  nucleophilic agents. To our delight, in the presence of guanidine,

pyrrole-2-carboxylic acidg) andL-proline methyl ester9) using 11 gave intermediat® in 44% yield, together with the oxidized

standard reaction'§:1* Activation of 10 via N1—-C cyclization to 2-aminoimidazolinond2in 42% yield. Running the same reaction

11 was cleanly performed in THF in the presence of NaH &€0 with Boc-guanidine led to the 2-aminoimidazolinone regioisomers
10252 = J. AM. CHEM. SOC. 2004, 126, 10252—10253 10.1021/ja047574e CCC: $27.50 © 2004 American Chemical Society
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Scheme 4. Possible Peroxide Intermediates of air oxygen. This result also points to dispacamide2igs the
forerunner of oroidin 1). Natural compound3 and4 are probably

NH 0 hydrolysis products of oroidinl{ and not the precursors. We are
100r11 > 5 5 ‘\/éc continuing our investigations in order to deepen our understanding
16d

of the mechanism of the reaction and to discover additional

}ga & gﬁimme transformations linking the triad pyrrole-proline-guanidine with
16¢ (X = Boc-guanidine) other polycyclic “oroidin-based” alkaloids. The study of the pH-
dependent behavior of the key intermediafeis underway and
Scheme 5 4 will be reported in due course.
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