This article was downloaded by: [Texas A&M University Libraries] On: 14 November 2014, At: 08:20 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

ORGANOPHOSPHORUS CHEMISTRY, 33¹ ON THE REACTION OF TERVALENT PHOSPHORUS NUCLEOPHILES WITH 2-FURFURYLIDENE-, AND 2-THIENYLIDENE-1, 3-INDANDIONES

Maha D. Khidre ^a , Hala M. Abou-yousef ^b & Mohamed Refat H. Mahran ^b ^a Department of Pesticide Chemistry , National Research Centre , Cairo, Egypt ^b Central Agricultural Pesticides Luboratory , Dokki, Cairo, Egypt Published online: 04 Oct 2006.

To cite this article: Maha D. Khidre , Hala M. Abou-yousef & Mohamed Refat H. Mahran (2000) ORGANOPHOSPHORUS CHEMISTRY, 33¹ ON THE REACTION OF TERVALENT PHOSPHORUS NUCLEOPHILES WITH 2-FURFURYLIDENE-, AND 2-THIENYLIDENE-1,3-INDANDIONES, Phosphorus, Sulfur, and Silicon and the Related Elements, 160:1, 181-194, DOI: <u>10.1080/10426500008043679</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426500008043679</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform.

However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions Phosphorus, Sulfur and Silicon, 2000, Vol. 160, pp. 181-194 Reprints available directly from the publisher Photocopying permitted by license only © 2000 OPA (Overseas Publishers Association) Amsterdam N.V. Published under license by the Gordon and Breach Publishers imprint. Printed in Malaysia

ORGANOPHOSPHORUS CHEMISTRY, 33¹ ON THE REACTION OF TERVALENT PHOSPHORUS NUCLEOPHILES WITH 2-FURFURYLIDENE-, AND 2-THIENYLIDENE-1,3-INDANDIONES^{*}

MAHA D. KHIDRE^a, HALA M. ABOU-YOUSEF^b and MOHAMED REFAT H. MAHRAN^{a†}

^aDepartment of Pesticide Chemistry. National Research Centre, Cairo, Egypt and ^bCentral Agricultural Pesticides Laboratory, Dokki, Cairo, Egypt

(Received September 07, 1999; In final form December 09, 1999)

2-Furfurylidene-. (<u>1</u>a) and 2- thienylidene- 1,3- indandione (<u>1</u>b) produce the respective 1:1 adducts (<u>8</u> a-f) upon reaction with the appropriate dialkyl phosphite (3 a-c). The reaction of <u>1</u>a,b with trialkyl phosphite (2a-c) yield a mixture of the corresponding phosphonates (<u>7</u>a-d) (major) and (**8**a-d) (minor). Triphenylphosphine (2d) and hexamethylphosphorustriamide (2e) also reacted with <u>1</u>a,b. The produced betaines (<u>10</u>a-c) were alkylated with methyl iodide to yield the respective phosphonium iodides (<u>11</u>a-d). Possible reaction mechanisms were discussed. Compatible elemental and spectroscopic results were gained for the new products.

Keywords: 2-Heteroylidene-1,3-indandiones; alkyl phosphites; tertiary phosphines; phosphonates; phosphonium salts

INTRODUCTION

Many organophosphorus compounds broadly used as pesticides, encorporate heterocyclic moieties in thier structures^{2,3}. Examples are the insecticides and acaricides; Curacron ®, Dursban ®, Supracide ®, Actellic ®, Hostathion ® and Knox-out ®.

In the search for additional representatives belonging to this class of active materials, we have now prepared new organophosphorus deriva-

^{*} Dedicated to Professor M.M. Sidky on the occasion of his 70th birthday.

[†] Author to whom correspondence should be addressed.

tives incorporating a furan and/or a thiophene moiety. Molecular design for the new products was based upon reacting 2-furfurylidene-1,3-indandione (1a) and/or 2- thienylidene- 1,3- indandione (1b) with the appropriate organophosphorus reagents. The α , β -unsaturated carbonyl system in compounds <u>1</u> is expected to facilitate the addition of phosphorus nucleophiles⁴⁻⁷.

RESULTS AND DISCUSSION

We have found that 2-furfurylidene-1,3- indandione (1a) reacts with trimethyl phosphite (2a, TMP) in the absence of solvent at 100 °C to give a mixture of two products which were resolved by column chromatography. The first (major, 80%) was assigned structure 7a for the following reasons: a) its microanalyses and molecular weight determination (MS) corresponded to $C_{17}H_{17}O_6P$. (b) the IR spectrum of <u>7</u>a (KBr, cm⁻¹) showed strong absorption bands at 1700 (C= O), 1590, 1610 (C = C, furan and aromatic), 1315 (P = O, free) ⁸ and 1015 (P O CH₃)⁸. (c) the ³¹P NMR spectrum of 7a showed a +ve shift at 21.40 ppm which is in agreement with a phosphonate structure⁹. (d) its ¹HNMR spectrum (CDCl₃, δ ppm scale) showed protons of the $P(O)(OCH_3)_2$ group as two doublets each with ${}^{3}J_{HP}$ = 12 Hz at 3.65 and 3.8 ppm; indicating the non-magnetic equivalency of the OCH₃ groups due to the asymmetry of the molecule¹⁰. Apparently, this asymmatry due to presence of a stereo-centre would render the two methoxyl groups diastereotropic and hence anisochronous, resulting in the observed splitting pattern $^{10-12}$. The spectrum also showed signals at 4.15 (3H, OCH₃, s), 4.90 (1H, <u>HC</u>-P, d, ${}^{2}J_{HP}$ = 30 Hz) and at 6.30 - 8.60 (7H, aromatics and furans, m). (e) The mass spectrum of 7a showed the molecular ion peak at m/z 348 (63.7%) which undergoes cleavage at the C-P bond via ejection of a P (O) (OCH₃)₂ radical to afford the base peak "A" (X=O) at m/z 239. (f) The ¹³C NMR spectrum of adduct <u>7</u>e, taken as an example, consisted of 20 signals. Those due to carbon atoms attached to the oxygen and phosphorus atoms appeared in the sp³ region¹⁵ in the following sequence: 15.40 (CH₃), 16.22 (CH₃), 32.39 (CH₃), 34.53 (P-CH), 62.70 (CH₂), 62.76 (CH₂) and 68.67 ppm (O-CH₂). The signal due to the $\underline{C} = O$ group appeared at 193.06 ppm. Signals due to carbon atoms of the thiophene ring appeared at 139.46, 120.20, 124.57 and 126.58. The aromatic and unsaturated carbon atoms (8C) appeared as a cascade of signals 121.31, 126.96, 127.06, 129.85, 132.08, 132.41. 138.22 and at 139.50 ppm.

The second product (minor; 5%) was assigned structure <u>8a</u> for the following reasons: Its microanalyses and molecular weight determination (MS) corresponded to $C_{16}H_{15}O_6P$. Its ³¹P NMR spectrum (*vs.* 85% $H_3PO_{4,}$) gave a signal at + 19.18 ppm (phosphonate)⁹. The ¹HNMR spectrum of <u>8a</u> (CDCl₃; δ ppm) showed protons of the magnetically non-equivalent OCH₃ groups attached to phosphorus as double doublets (³J_{HP}=12 Hz) at 3.5 and 3.7. The <u>HC</u>-P proton (H<u>a</u>) appeared as a double doublet (²J_{HP}= 26 Hz and J_{HH} = 4.5 Hz) at 4.30 and 4.60. Similarly, the <u>HC</u>-- C_{1}^{I} ---P proton (H<u>b</u>) also gave two doublets (³J_{HP} = 12 Hz and J_{HH}= 4.5 Hz) at 3.55 and 3.72. The furans and aromatics (7H) gave a multiplet in the 6.1-8 ppm region. The mass spectrum of 8a showed the molecular ion peak at m/z 334 (100%) which undergoes cleavage at the C-P bond *via* ejection of a *P (O)(OCH₃)₂ radical to afford cation "B" (X=O) at m/z 225 (75.4%). Moreover, <u>8a</u> was unequivocally prepared and identified (m.p. and comparative IR and ¹HNMR spectra) upon heating <u>1a</u> with dimethyl phosphite (DMP, <u>3a</u>) at 100 °C in the absence of solvent. The aforementioned spectral data are in favour of the keto-form <u>8a</u>. However, existence of 8a in the alternative enol form (<u>9</u>, R = OCH₃); particularly in polar solvents, cannot be excluded. In favour of the latter idea is the finding that 8a reacts with methyl iodide in boiling acetone in presence of anhydrous K₂CO₃ to yield <u>7a</u> (m.p. and comparative IR & ¹HNMR spectra).

The reaction of $\underline{1}a$ with triethyl-, ($\underline{2}b$) and triisopropyl phosphites also yielded a binary mixture of $\underline{7}b$, $\underline{8}b$ and $\underline{7}c$, $\underline{8}c$, in each case which could be resolved by column chromatography and identified by microanalytical and spectroscopic measurements.

In the same sense, 2-thienylidene-1,3- indandione (<u>1</u>b) reacted with trialkyl phosphites (<u>2</u> a-c) in absence of solvent. In each reaction, a binary mixture of products (cf. <u>7</u> d-f and <u>8</u> d-f) was obtained. Compounds <u>8</u> d-f were obtained and identified (m.p., comparative IR and ¹H-NMR spectra) by treating <u>1</u>b with dimethyl, diethyl and diisopropyl phosphites, respectively in absence of solvent at 100°C.

Structural support for $\underline{7}d$ are (a) correct elementary and molecular weight determinations (MS) corresponded to $C_{17}H_{17}O_5PS$. (b) Its IR spectrum (KBr, cm⁻¹) revealed the presence of strong absorption bands at 1700 ($\geq C = O$). 1610, 1600, 1590 (C = C), 1315 (P = O, free) and 1020 (P - O - CH₃). (c) The ³¹P NMR spectrum (\underline{vs} , 85% H₃PO₄,) recorded a +ve shift at 20.18 ppm (phosphonate)⁹. Its ¹HNMR spectrum (CDCl₃, δ scale ppm) showed protons of the P(O)(OCH₃)₂ group as two doublets (each with ³J_{HP} = 12 Hz) at 3.60 and 3.75. Signals at 4.20 (3H, OCH₃, s) and at 6.9 - 7.5 (7H, thienyl and benzene ring protons, m) were also observed in the spectrum. The doublet (²J_{HP} = 30 Hz) present at δ 4.95 ppm is attributed to the <u>CH</u>-P proton.

The mass spectrum of $\underline{7}d$ showed the molecular ion peak at m/z 364 (24.6%) which ejected a $^{\circ}P(O)$ (OCH₃)₂radical to give the base peak "A" (X=S) at m/z 255.

Evidences for structure <u>8</u>d are: correct elementary and molecular weight determinations (MS) were compatible with the molecular formula; $C_{16}H_{15}O_5PS$. Its ³¹P NMR spectrum (CD Cl₃, <u>vs</u>. 85% H₃PO₄) recorded a +ve shift at 19.24 ppm (phosphonate)⁹. The ¹H NMR spectrum of <u>8</u>d

(CDCl₃, δ ppm) showed protons of the P (O)(OCH₃)₂ group as two doublets (each with ³J_{HP} = 12 Hz) at 3.60 and 3.70. The <u>HC</u> P proton (H<u>a</u>) appeared as two doublets (each with ²J_{HP} = 28 Hz) at 4.70 and 4.45; the <u>HC</u>-C-P proton (H<u>b</u>) also gave two doublets each with (³J_{HP} = 12 Hz) at 3.65 and 3.55. Protons of the thiophene ring and benzene ring (7H) gave a multiplet in the 6.75 – 8.00 ppm region. The mass spectrum of 8d showed the molecular ion peak at m/z 350 (100%) which ejects a [•]P(O)(OCH₃)₂ radical to give ion "B" (X = S) at 241 (93%). Upon treatment with CH₃I in boiling acetone in the presence of anhydrous K₂CO₃. compound <u>8d</u> yielded <u>7d</u>.

It is worthy to note that the 1:1 adducts ($\underline{8}$ a-f) formed *via* reacting ($\underline{1}a$,b) with the appropriate dialkyl phosphite ($\underline{3}$ a-c, DAP) regenerate the starting materials upon heating above their m.ps, under reduced pressure.

The behaviour of <u>1</u>a,b with tertiary phosphines, namely, triphenylphosphine (TPP, <u>2</u>d) and hexamethylphosphorustriamide (HMPT, <u>2</u>e) was also investigated. Thus <u>1</u>a,b reacted with TPP in boiling THF to give brown crystalline products for which the phosphonium betaine structures <u>10</u>a and <u>10</u>c were respectively assigned. In the same sense, <u>1</u>a,b reacted with hexamethylphosphorustriamide (<u>2</u>e, HMPT) to give the respective betaines <u>10</u>b and <u>10</u>d. Correct elemental and spectroscopic structural support were gained for all adducts. Compounds <u>10</u> a-d were converted upon reaction with methyl iodide to give the respective phosphonium iodides <u>11</u>a-d. The ¹H NMR spectrum of compound <u>11</u>a (in D₂O) showed a signal at 3.30 ppm (OCH₃).

It is evident that the reaction of $\underline{1}$ a,b with the tervalent phosphorus reagents $\underline{2}$ a-c proceeds *via* nucleophilic attack by phosphorus on the terminal \underline{C} atom of the conjugated system in $\underline{1}$ to afford the intermediate phosphonium species $\underline{4}$. In the case $R = C_6H_5$ or = N(CH₃)₂, this resonance stabilized structure (cf. <u>10</u>) constitutes the final products. In the case R= O-alkyl, the intermediate $\underline{4}$ undergoes a process of intramolecular (or most probably intermolecular) group translocation¹³ to afford adducts <u>7</u> a-f (major). During the same process, intermediate $\underline{4}$ (R = O-alkyl.) can be solvated by unavoidable moisture as do many phosphobetaine structures^{13,14} to give intermediate <u>6</u> with pentacovalent phosphorus. The latter decomposes. *via* expulsion of ROH molecule to give compounds <u>8</u> a-f (minor). In favour of this idea is the finding that compounds <u>8</u> constitute the sole products when the reaction of <u>1</u>a,b with trialkyl phosphites <u>2</u> a-c is performed in the presence of controlled amounts of a protonating agent e.g., H_2O or CH_3COOH , (cf. experimental). However, the reaction of water with the zwitter ion <u>4</u> could give rapid protonation of the anion site which would generate hydroxide ion. The latter can attack the R group on the phosphorus (via an SN2 mechanism) to give the final products (<u>8</u>).

CONCLUSION

As a corollary to this work, new organophosphorus compounds encorporating heterocyclic moieties were prepared (cf. <u>7</u>, <u>8</u>, <u>10</u> and <u>11</u>). They possess structural functionalities to which many active principles used as pesticides owe their potentialities^{2,3}. In principle, attack by the P-reagents on the α , β unsaturated carbonyl system in <u>1</u> is carbophilic in nature; creating thus a *carbon-to-phosphrus* linkage in the new molecules. The intermediate phosphonium species (cf. <u>10</u>) initially formed in these reactions can be trapped by CH₃I to afford phosphonium iodide salts of type <u>11</u>.

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were recorded using UNICAM SP 1100 or PU 7912 infracords. The ¹HNMR spectra were recorded on Jeol GLMEX 270 MHz spectrometer (super conducting magnet) in CDCl₃ using TMS as an internal standard. ³¹P-NMR spectra were recorded with Jeol GLMEX 270 MHz spectrometer in CDCl₃ (vs 85% H₃PO₄). The mass spectra were obtained with Finnigan MAT-SSQ 7000 Spectrometer at 70 eV. 2-Furfurylidene-1,3-Indandione⁽¹⁶⁾, and 2-thienylidene-1,3-Indandione⁽¹⁷⁾ were prepared by known procedures. The phosphorus reagents <u>2</u>a-e and <u>3</u>a-c were available from Aldrich Co. The phosphites were freshly distilled before use.

Reaction of 2-furfurylidene-1,3-indandione 1a and 2-thienylidene-1,3-indandione 1b with Trialkyl phosphites 2a – c

General procedure

A mixture of <u>1a</u> (or <u>1b</u>) (0.005 mol) and trialkyl phosphites (trimethyl-, triethyl-, and triisopropyl phosphite, 0.05 mol) was heated at 100 °C for 4 hr in absence of solvent. The reaction mixture was then worked up by column chromatography. The fraction that eluted by 95:5 v/v pet. ether: acetone yielded phosphonates $\underline{7}$ a-f. The fraction eluted by 85:15 v/v pet. ether: acetone gave a substance which was collected, recrystallized to give phosphonate $\underline{8}$ a-f.

Phosphonate <u>8</u>a was also obtained by reacting <u>1a</u> (0.005 mol) with trimethyl phosphite (0.05 mol) at 100°C for 2 hr in presence of H₂O (1 ml). After evaporation of the volatile materials in *vacuo*, the residual substance was treated with pet. ether 40/60 (5 ml). The solid material was collected and recrystallized from cyclohexane to give <u>8</u>a (m.p., mixed m.p.), yield 90%.

Physical, analytical and spectral data of compounds 7(a - f) and 8(a - f) are presented in tables I and II.

Reaction of 2-furfurylidene-1,3-indandione 1a and 2-thienylidene – 1,3-indandione 1b with dialkyl phosphites 3 a-c

General procedure

A mixture of <u>1a</u> (or <u>1b</u>) (0.01 mol) and dialkyl phosphites (dimethyl-, diethyl-, and diisopropyl phosphite, 5 ml) was heated in the absence of solvent at 100 °C for 4 - 6 hr. After removing the volatile materials in *vacuo*, the residue was triturated with light petroleum and left to cool. The solid so formed was collected and recrystallized from a suitable solvent to give compounds <u>8</u>a-f. Physical and analytical data and IR spectra for compounds 8a-f are presented in tables I and II.

Action of heat on phosphonate 8a

Compound <u>8a</u> (0.05 g) was heated in a cold finger sublimator at 230 °C (bath temperature) under reduced pressure (5 mm/Hg) for 30 minutes. The compound that sublimed was collected (85%), recrystallized from ethyl alcohol to give greenish crystals, proved to be 2-furfurylidene – 1,3-indandione <u>1a</u>(m.p, mixed m.p 203 °C and comparative IR spectra).

Dimethyl phosphite was detected in the receiver by the development of a violet color on addition of 3,5-dinitrobenzoic acid in the presence of alkali¹⁸.

mthei	Yield ^a	m.p °C	Mol. Form (M. wt.)	Anal. (Calcd. /Found)				$M^+ m/z$	IR cm ⁻¹		
love	70			C	H	Р	S	. (%)	C = O	P = O	P –
4 7 7	75	86	C ₁₇ H ₁₇ O ₆ P	58.62	4.92	8.89	•	348	1700	1180	10
:20			348.29	59.02	5.01	8.99		(63.70)			
it 08	70	70	C ₂₀ H ₂₃ O ₆ P	61.53	5.93	7.93	-	390	1700	1180	10
es] a			390.37	61.27	6.04	7.96		(55.32)			
rari	85	90	C ₂₃ H ₂₉ O ₆ P	63.88	6.75	7.16	-	432	1700	1240	10
Lib			432.45	64.15	6.84	6.88		(45.05)			
sity	80	85	C ₁₇ H ₁₇ O ₅ PS	56.04	4.70	8.50	8.80	364	1700	1180	10
live			364.35	56.42	5.03	8.28	8.50	(24.67)			
1 Un	75	73	C ₂₀ H ₂₃ O ₅ PS	59.10	5.70	7.62	7.88	406	1700	1220	10
¢ N			406.43	58.85	5.32	8.00	7.52	(37.08)			
as A	85	70	C23H29O5PS	61.59	6.51	6.90	7.14	448	1689	1248	10
Tex			448.51	61.12	6.39	6.67	7.46	(25.08)			
by [80	73	C ₁₆ H ₁₅ O ₆ P	57.49	4.52	9.26	-	334	1720	1250	10
ded			334.26	57.18	4.81	9.50		(100)			
nloa	75	80	C ₁₈ H ₁₉ O ₆ P	59.67	5.28	8.54	-	362	1700	1200	10
5											

TABLE I Physical, analytical and IR spectral Data of compounds 7a-f, 8a-f, 10a-d and 11a-d

nd nd	Yielda	eld ^u m.p °C %	Mol. Form (M. wt.)	Anal. (Calcd. /Found)				$M^+ m/z$	$IR \ cm^{-1}$		
embe	%			С	Н	Р	5	. (%)	<i>C</i> = <i>O</i>	P = O	P
NoV			362.31	59.99	5.68	8.98		(66.42)			
14	85	85	C ₂₀ H ₂₃ O ₆ P	61.53	5.93	7.93	-	390	1720	1200	10
8:20			390.37	61.29	6.30	8.20		(33.35)			
at 0	75	110	C ₁₆ H ₁₅ O ₅ PS	54.85	4.31	8.84	9.15	350	1708	1182	10
[es]			350.32	55.12	4.73	9.21	8.99	(100)			
brar	70	70	C ₁₈ H ₁₉ O ₅ PS	57.13	5.06	8.18	8.47	378	1700	1200	10
y Lil			378.38	56.90	4.88	7.88	8.24	(40.19)			
rsit	80	90	C ₂₀ H ₂₃ O ₅ PS	59.10	5.70	7.62	7.88	406	1700	1200	10
nive			406.43	60.32	6.01	7.33	8.02	(41.78)			
Π	65	170	C ₃₂ H ₂₃ O ₃ P	79.00	4.76	6.36	-	486	1720	-	C-F
A&I			486.50	78.84	5.15	6.70		(7.01)			1
xas	70	140	C ₂₀ H ₂₆ N ₃ O ₃ P	62.00	6.76	7.99	-	387	1680	_	1
[Te			387.42	61.82	6.46	8.00		(5.54)			
l by	60	130	C ₃₂ H ₂₃ O ₂ PS	76.47	4.61	6.16	6.37	502	1720	_	1
adec			502.57	76.82	4.34	6.52	6.74	(15.51)			
Downlo	75	170	$C_{20}H_{26}N_{3}O_{2}PS$	59.53	6.49	7.67	7.94	403	1685	-	1

ovember 2014		
La La	Yielda	m.p °C
) 1	%	
3:2(
t O		_
s] a	85	> 300
nie		2 500
bra		
Ŀ	80	> 300
sity		
ver	87	> 300
Jni	07	> 500
МГ		
۲&۱	83	> 300
IS ∕		
e contraction de la contractio	Lization: 7 9	ovalahar
	fization. / _{b,c} , o _{a,c,l}	F Cyclonex
nafed.		
dec		
loa		
ΠM		
D_0		

<u>14</u> 1	Yield ^a %	m.p°C	Mol. Form (M wt)	And	ıl. (Calc	d. /Fou	nd)	$M^+ m/z$	$IR \ cm^{-1}$		
3:20			(С	H	P	s	,	<i>C</i> = <i>O</i>	P = O	P
at 0			403.48	59.23	6.61	7.25	7.90	(38.3)	-		
es] a	85	> 300	C ₃₃ H ₂₆ IO ₃ P	63.07	4.17	4.92	-	-	628	1709	
rari			628.44	63.32	4.57	5.20			(55.4)		
, Lib	80	> 300	C ₂₁ H ₂₉ IN ₃ O ₃ P	47.64	5.52	5.85	-	7.93	529	1700	
rsity			529.36	47.3	5.93	5.52		7.64	(38.94)		
nive	87	> 300	C33H26IO2PS	61.49	4.06	4.80	4.97	-	644	1720	
1 Ui			644.512	61.82	3.95	5.15	4.65		(33.35)		
A&N	83	> 300	$C_{21}H_{29}IN_3O_2PS$	46.24	5.35	5.67	5.87	7.70	545	1700	
tas A			545.42	46.55	5.73	5.25	4.93	7.46	(42.50)		
stalliz	ation: 7 _{b,c} , 8 _{a,c}	_{c,F} cyclohexan	e, 7_e pet. ether $40 - 60$), 7 _F , 8 _{b,c}	pet. eth	er 60 –	80, 10 _{b,d}	ethylacetat	e-ether, 11 _a	d DMF/H	0.

IR cm⁻¹

 $P-\epsilon$

14

14

14

14

TABLE II ³¹PNMR and ¹HNMR Spectral Data of Compounds <u>7</u>_{b-f}, <u>8</u>_{b-f} and <u>10</u>_{b,d}

AMR E	¹ HNMR ^a
4 Nov	1.2 (t, 3H, C-O-C- <u>CH</u> ₃), 1.4[d of t, 6 H,P-(O-C-(C <u>H</u> ₃) ₂], 4.1 [d of quint, 4 H, P-(O- <u>CH</u> ₂ -C) ₂], 4.75(quartet, 2H, C-O- <u>CH</u> ₂ -C) 1 H, $^{2}J_{HP} = 30$ Hz, P- <u>CH</u> -), 6.3–7 (m, 7H, aromatics and furans).
8:7(80) 2:5	1.2 [d, 6H, C-O-C-(\underline{CH}_3) ₂], 1.4 (m, 12 H, P-[O-C- (\underline{CH}_3) ₂] ₂ , 4.7 (d of sept., 2H, P-(O- \underline{CH} -C) ₂], 4.85(d, 1H ² J _{HP} = 30 Hz, P-5.2 (sept., 1H C-O- \underline{CH} -C), 6.2-7.5 (m, 7H, aromatics and furans).
s] at 08	1.2 (t, 3H, C-O-C- \underline{CH}_3), 1.35 [d of t, 6H, P-(O-C- \underline{CH}_3) ₂], 4.2[d of quint, 4H, P-(O- \underline{CH}_2 -C) ₂], 4.7(q, 2H, C-O- \underline{CH}_2 -C), 5.00 ${}^{2}J_{HP} = 26$ Hz, P- \underline{CH}_2), 6.9- 7.55 (m, 7H, aromatics and thiophenes).
brarie	1.25[d, 6H, C-O-C-(\underline{CH}_3) ₂], 1.35[m, 12H,P-(O-C-($C\underline{H}_3$) ₂) ₂], 4.65 [d of sept., 2 H, P-(O-CH-C) ₂], 4.85 (d, 1H ² J _{HP} = 30 Hz, P-C <u>H</u> -), 5.2 (sept., 1H, C-O-C <u>H</u> -C), 6.85 - 7.60 (m, 7H, aromatics and furans).
sitytka	1.20 [d of t, 6H, P-(O-C- <u>CH₃</u>) ₂], 4.00 (d of quint., 4H, P-(O- <u>CH₂-C</u>) ₂], 3.6 (2d, ${}^{3}J_{HP} = 12$ Hz, Hb, P-C- <u>CH</u>), 4.50 (2d, H <u>a</u> , 2, 26 Hz P-CH), 6.10- 8.00 (m, 7H, aromatics and furans).
Jniver	1.2 [m, 12 H, P-(O-C-(\underline{CH}_3) ₂) ₂], 3.65 (2d, Hb, ³ J _{HP} = 12 Hz P-C- \underline{CH} -), 4.3 (2d, H <u>a</u> , ² J _{HP} = 27 Hz, P- \underline{CH} -), 4.6 [d of Sept., 2H P-(O-C <u>H</u> -C-) ₂], 6.25-8.00 (m, 7H, aromatics and furans).
N&M (1.3 [d of t, 6H, P-(O-C-(<u>CH</u> ₃) ₂], 3.75 (d of quint., 4 H P-(O <u>CH</u> ₂ -C-) ₂], 4.0 (2d, H <u>b</u> , ${}^{3}J_{HP}$ = 12 Hz, P-C- <u>CH</u> -), 4.75 (2d, H <u>a</u> , ${}^{2}J_{HP}$ = 26 Hz, P- <u>CH</u> -), 6.85- 8.00 (m, 7H, aromatics and thiophenes).
exa s ⊭	1.2 [m, 12 H, P-(O-C-(\underline{CH}_{3}) ₂) ₂], 4.25 (2d, H <u>b</u> , ³ J _{HP} = 12 Hz, P-C- \underline{CH}), 4.7 (2d, H <u>a</u> , ² J _{HP} = 26 Hz, P- \underline{CH}), 4.65 (d of sept., 2 P-(O-C <u>H</u> -C) ₂], 6.80- 8.05 (7H, aromatics and thiophenes).
1 4 A	2.75 (m, 18H, P-[N-(<u>CH_3)</u> 2] ₃ , 5.45 (d, 1H, ² J _{HP} = 26 Hz P- <u>CH</u>), 6.25-8.00 (m, 7H, aromatics and furans).
e B D	2.80 (m, 18H, P-[N-(<u>CH</u> ₃) ₂] ₃ , 5.33 (d, 1H, ² J _{HP} = 26 Hz P- <u>CH</u> , 6.80- 8.20 (m, 7H, aromatics and furans).

The reaction of Phosphonates 8a, 8d with methyl iodide

A mixture of <u>8a</u> (0.2 g), methyl iodide (5 g) and anhydrous K_2CO_3 (5 g) in dry acetone (100 ml) was refluxed for 12 hr. The inorganic material was filtered and washed with a small amount of dry acetone. After evaporation of the filtrate and washings to dryness, the residue was recrystallized from pet. ether (b.r 40 – 60 °C) to give yellow crystals m.p 86°C proved to be <u>7a</u> (m.p, mixed m.p and comparative IR spectra).

Similary, compound <u>7d</u> was obtained (yield 80%) and identified (m.p, mixed m.p and comparative IR spectra) upon refluxing a mixture of <u>8d</u> (0.2 g), methyliodide (5 g) in acetone (100 ml) for 12 hr., in presence of anhydrous K_2CO_3 (5 g).

Reaction of 1 a,b with Triphenylphosphine 2d

General procedure

A mixture of <u>1a</u> (2.24 g, 0.01 mol) and TPP <u>2d</u> (0.01 mol) in dry tetrahydrofuran (50 ml) was refluxed for 12 hr. The solid product was collected and recrystallized from benzene to give <u>10</u>a

Similarly, 10b was isolated upon reacting 1b with 2d(cf. Tables I and II).

Reaction of 1 a,b with Hexamethyl phosphorustriamide 2e

General procedure

A mixture of <u>1a</u> (2.24 g, 0.01 mol) and HMPT <u>2e</u> (0.01 mol) in dry tetrahydrofuran (50 ml) was kept at room temperature for 2 hr. and the solid formed was collected then recrystallized from ethylacetate to give *10b*.

Similary, 10d was isolated upon reacting <u>1b</u> with <u>2e</u> (yield 85%). Physical, analytical and spectral data of compounds 10 (b,d) are presented in tables I and II.

The reaction of the phosphonium betaines 10a, 10d with methyl iodide

A mixture of 10a or 10d (0.2 gm), methyl iodide (3 gm) in dry tetrahydrofuran (50 ml) was left at room temperature for 6 hr. After evaporation of the solvent, the residue was recrystallized from DMF/H₂O to give white

crystals, m.p > 300° C. Physical, analytical data and IR spectra for compounds *11a*, *11d* are presented in tables I and II.

References

- For part 32 of this series, cf. T.S. Hafez; M.M. Henry and M.R Mahran, Phosphorus, Sulfur and Silicon, 1999, in press.
- K.H. Büchel (ed.) "Chemistry of Pesticides", Wiley Inter-science, New York, N.Y. (1983).
- H. Aizawa "Metabolic Maps of Pesticides" Vol. 2 pp. 138–178, Academic Press, Inc., USA (1989).
- 4. A. Mustafa, M.M. Sidky and F.M. Soliman, Tetrahedron, 23, 99 (1967).
- M.M. Sidky, F.M. Soliman and R. Shabana, Egyptian J. Chem., 15, 79 (1972); *ibid.*, 21, 37 (1978).
- M.M. Sidky, A.A. El-Kateb, M.R. Mahran, I.T. Hennawy and H.A. Abdel-Malek, Phosphorus, Sulfur and Silicon, 29, 11 (1986).
- M.R. Mahran, W.M. Abdo, N.M. Abd El-Rahman and M.M. Sidky, Phosphorus, Sulfur and Silicon, 45, 47 (1989).
- 8. M. Hesse, H. Meier and B. Zeek "Spektroskopische Methoden in der organischen Chemie". G. Thieme Verlag, (Stuttgart), 82 (1979).
- M.M. Crutchfield, O.H. Dungan, J.H. Letcher, V. Mark and J.R. van Wazer, in "Topics in phosphorus Chemistry", Vol. 5, Interscience Publishers, New York pp. 227-447 (1967).
- 10. F. Ramirez, O.P. Madan and S.R. Heller, J. Am. Chem. Soc., 87, 731 (1965).

- A.O. Fitton, J.P. Frost, P.G. Houghton and H. Suchitzky, J. Chem. Soc. Perkin I, 1691 (1979).
- M.D. Khidre, H.M. Abou-Yousef and M.R. Mahran. Phosphorus, Sulfur and Silicon, 140, 147 (1998).
- 13. M.R. Mahran, T.S. Hafez and M.M. Henary. Phosphorus, Sulfur and Silicon, 139, 13 (1998).
- 14. F. Ramirez, S.B. Bhatia and C.P. Smith, J. Org. Chem., 31, 4105 (1966).
- F. W-Wehrli and T. Wirthlin "Interpretation of Carbon-13 NMR Spectra", Heyden & Sons Ltd., (London, U.K.) (1978).
- 16. W. Wislicenus und Kötzle, Ber., 30, 2143, (1897).
- 17. NG. PH. BUU-Hoï, NG. HOÀN. and DENISE LAVIT., J. Chem. Soc., 2130-4 Part III (1950).
- 18. B.C. Saunders and B.P. Stark, Tetrahedron, 4, 187 (1958).