Article

Subscriber access provided by Washington University | Libraries

Solvent Controlled, Site-Selective N-Alkylation Reactions of Azolo-Fused Ring Heterocycles at N1-, N2- and N3-Positions, Including Pyrazolo[3,4-d]pyrimidines, Purines, [1,2,3]Triazolo[4,5]pyridines and Related Deaza-Compounds

Brett Carder Bookser, Michael I. Weinhouse, Aaron C. Burns, Andrew N. Valiere, Lino J. Valdez, Pawel Stanczak, Jim Na, Arnold L. Rheingold, Curtis E. Moore, and Brian Dyck *J. Org. Chem.*, Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00540 • Publication Date (Web): 23 May 2018 Downloaded from http://pubs.acs.org on May 23, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

TITLE

2 3	Solvent Controlled, Site-Selective N-Alkylation Reactions of Azolo-Fused Ring Heterocycles at N1-, N2- and N3-
4 5 6	Positions, Including Pyrazolo[3,4-d]pyrimidines, Purines, [1,2,3]Triazolo[4,5]pyridines and Related Deaza-
7	Compounds
9	
10	
11	Brett C. Bookser ^{*,†} , Michael I. Weinhouse [†] , Aaron C. Burns [†] , Andrew N. Valiere [†] , Lino J. Valdez [†] , Pawel Stanczak [‡] ,
12	
12	Jim Na', Arnold L. Rheingold ⁸ , Curtis E. Moore ⁸ and Brian Dyck ¹
15	
16	
17	Departments of [†] Medicinal Chemistry, [‡] Structural Biology and ^J Scientific Computing, Dart NeuroScience LLC, 12278
18	
19	Scripps Summit Dr., San Diego, CA 92131.
20	
21	
22 23	[§] Department of Chemistry, Crystallography Laboratory, University of California, San Diego, Urey Hall 5128, mail
24	
25	code 0358, 9500 Gilman Drive, La Jolla, CA 92093-0358.
26	
27	
28	
29	
30	
31	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
56	
57	
58	1
59	
60	ACS Paragon Plus Environment

14ABSTRACT

15

16 ¹⁷Alkylation of 4-methoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (**1b**) with iodomethane in THF using NaHMDS as base 18 19 electively provided N2-methyl product 4-methoxy-2-methyl-2*H*-pyrazolo[3,4-*d*]pyrimidine (**3b**) in 8/1 ratio over N1-21 $\frac{1}{22}$ methyl product (2b). Interestingly, conducting the reaction in DMSO reversed selectivity to provide a 4/1 ratio of 23 24N1/N2 methylated products. Crystal structures of product **3b** with N1 and N7 coordinated to sodium indicated a 25 ²⁶potential role for the latter reinforcing the N2-selectivity. Limits of selectivity were tested with 26 heterocycles which 28 ²prevealed that N7 was a controlling element directing alkylations to favor N2 for pyrazolo- and N3 for imidazo- and 30 31triazolo-fused ring heterocycles when conducted in THF. Use of ¹H-detected pulsed field gradient-stimulated echo 32 ³³(PFG-STE) NMR defined the molecular weights of ionic reactive complexes. This data and DFT charge distribution 34 35 36 calculations suggest close ion pairs (CIPs) or tight ion pairs (TIPs) control alkylation selectivity in THF and solvent 37 38separated ion pairs (SIPs) are the reactive species in DMSO. 39 40 ⁴¹INTRODUCTION 42 43 44 Fused 5,6-ring systems are found in 52 of the 100 top selling drugs.¹ In addition, nitrogen containing 45 46 ⁴⁷heterocycles are contained in 59% of small-molecule drugs.² Of these ring systems, the purine ring is the second most 48 49 ommon fused ring nitrogen heterocycle.² The prevalence is so common in drug discovery³ that the purine ring and 50^C 51 ⁵²₅₂similar 5,6-fused ring heterocycles have been described as "privileged structures".⁴ This may be a logical consequence 53

54of the importance of purine rings in a myriad of biological processes. Many drug discovery efforts towards purine 55

- ⁵⁶recognizing targets involve creative mimicking of the endogenous purine core. This is the case for kinases,⁵ purine
- 58
- 59
- 60

age 3 of 61 The Journal of Organic Chemistry receptors,⁶ phosphodiesterases⁷ and other important biological targets. Additionally, it has been observed that

¹ incorporation of an N atom to replace an aromatic CH group may provide substantial gains in potency and physical 2 3 4 chemical properties in drug discovery lead compounds.⁸ Synthetic access to these types of compounds often involves 5 substitution reactions of commercially available N-containing heteroaryls. Perhaps the simplest of these reactions is N-6 7 8 alkylation of a heteroaryl NH-position. Our understanding of how to perform this reaction in a site-selective manner on 9 $^{10}_{11}$ purine and purine-like ring systems continues to grow.⁹ Yet, challenges remain, as the ambident nature of the azole ring 12 $\frac{12}{13}$ anion complicates the ability to achieve site-selective *N*-alkylation (see Table 1). 14

15

¹⁶Table 1. Azolo-Fused Ring Heterocycle *N*-Alkylations Explored. 17

18 Y		Y			Y		Υ¬
$\begin{array}{c c} 19 \\ 20 \times 5 \\ 21 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	X ^ن ار	5	X ³ `X ²	+		+	
22 X' H		`X′	Ň		`χ′ Ν		X' N
23		2 /NI4	к N		2 (N2)		4 (NI2)
24		Z (IN I)		5 (NZ)		4 (113)
25	2	2					
26 <u>ring name (1)</u>	\mathbf{X}^2	X^3	X٥	<u>X′</u>			
27							
²⁸ 1 <i>H</i> -Indazole	Ν	CH	CH	CH			
29							
$^{30}_{21}$ 1 <i>H</i> -Pyrazolo[4,3- <i>c</i>]pyridine	Ν	CH	Ν	CH			
31							
32 aa1 <i>H</i> -Pyrazolo[3 4- <i>b</i>]pyridine	Ν	СН	СН	Ν			
	11	CII	CII	11			
34 251 H Durazolo[2 1 dinurimidina	N	СЦ	N	N			
351 H-Pyrazoro[5,4-a]pyrinnune	IN	СП	IN	IN			
	011	• •	CII	CII			
$^{3/1}H$ -Benzo[d]imidazole	CH	Ν	CH	СН			
38							
$^{39}_{10}$ 1 <i>H</i> -Imidazo[4,5- <i>c</i>]pyridine	CH	Ν	Ν	CH			
40							
$^{41}_{42}$ 3 <i>H</i> -Imidazo[4,5- <i>b</i>]pyridine	CH	Ν	CH	Ν			
42							
43 $449H_Purine$	СН	N	N	N			
44911-1 unite	CII	1	1	14			
45	N	NT	CII	CU			
461 <i>H</i> -Benzo[<i>a</i>][1,2,3]triazole	IN	IN	СН	СН			
47							
⁴⁶ 1 <i>H</i> -[1,2,3]Triazolo[4,5- <i>c</i>]pyridin	e N	Ν	Ν	CH			
49 50							
$^{50}_{51}$ 3 <i>H</i> -[1,2,3]Triazolo[4,5- <i>b</i>]pyridin	e N	Ν	CH	Ν			
5							
52							
57							
55							
55							

57

The Journal of Organic Chemistry Page 4 of 61 In medicinal chemistry these ring systems can become central core structural elements. In the example depicted ¹ in Figure 1, combining N1-, N2-, and N3-alkylations with the three possible mono-substitutions of the six-member ring, minimally nine different two-vector combinations are conceivable. Having site-control of the azole ring alkylation provides the ability to design compound structures to have specific size, shape and electronic features to complement protein binding pockets and achieve the highly potent, and specific binding interactions necessary to impact the 8 ¹⁰biological function desired for a pharmacological effect. On the contrary, compound library synthesis methods which 11 12 roduce an equal distribution of alkylation products from each core heterocycle, *i.e.* all azole nitrogen sites being 13p 14 15alkylated equally, may also be an advantage.

³¹Figure 1. Possible Vector Substitution Patterns in a 6-5 Ring System. 32

This report presents our study of the alkylation of the ring systems in Table 1 and how the X-ray crystal 34 35 ³⁶structure determination of one of the reaction products inspired a strategy to predict alkylation outcomes depending on 37 38 the nature of the azole, the solvent and the presence or absence of a N7 nitrogen atom. 39

- 41 42RESULTS AND DISCUSSION
- 43

40

33

2 3 4

5

6 7

9

16 17

44

45 The alkylation of 1H-pyrazolo[3,4-d]pyrimidines has typically been observed to be selective for N1 in various 46 47 onditions such as phase transfer catalysis in benzene,¹⁰ Cs₂CO₃ in DMF,¹¹ or Mitsunobu conditions in THF.¹² One 48C 49 ⁵⁰exception to this trend showed N2-alkylation selectivity for the specific heterocycle, 4,6-bis(methylthio)-1*H*-51 pyrazolo[3,4-d]pyrimidine, under conditions of NaH in THF.¹³ In our investigations of the one-pot S_NAr/alkylation 52 53^p 54 $_{55}^{57}$ reaction of **1a**, selective production of **3b**¹⁰ was observed and gravimetrically determined to be produced in greater than

- 56
- 57
- 58

60

ge 5 of 61 The Journal of Organic Chemistry 100% yield (Equation 1, **2b** was not isolated in this experiment). Various NMR experiments (¹H, ¹³C, 2D NOESY and ¹ 2D HMBC experiments in DMSO- d_6 , CDCl₃, THF- d_8 , and methanol- d_4) on the product produced identical data to that 2 3 observed for authentic compound **3b**.¹⁰ However, X-ray crystallography (see Figure 2) and microanalysis revealed this 4 5 product to be **3b** complexed with sodium iodide and water in the variable formula $[3b]_x[NaI]_y[H_2O]_z(5)$ which 6 7 corrected the observed yield to 65% based on the heavier of the two complexes, **5b**. 8 9

 29 availability of water with the higher hydrated complex **5a** fully separating the sodium and iodide ions. The relative 30 $^{31}_{32}$ geometry of N1 to N7 is nearly ideal to form neighboring apical ligand bonds both above and below two sodium ions in 33 $_{34}C_{2h}$ symmetric orientation in 5a.¹⁴ Six water molecules occupy the equatorial binding sites of the side-by-side 35 ³⁶octahedral sodium binding complexes. The N1-Na1 and N7-Na1' bond distances average 2.540 Å which agrees with 37 $^{38}_{39}$ previously published coordination complexes of sodium with pyrazolo¹⁵ or pyrimidinyl¹⁶ nitrogens. The Na-Na distance 40 ⁴⁰₄₁in **5a**, of 3.292 Å is more compressed, enforced by the N1 and N7 bonds, compared to that of the simple water bridged 42 43NaI complex (NaI)₂(H₂O)₄ which is 3.56 Å.¹⁷ By comparison, complex **5b** with only two water molecules, instead of 44 45 the six as in **5a**, contains sodium atoms bridged by iodides and water molecules similar to the reference compound 46 $\frac{4}{48}$ (NaI)₂(H₂O)₄.¹⁷ Yet similar to complex **5a**, the pyrazolopyrimidine N1 and N7 of **5b** occupy apical ligand bonds with 49 50N1-Na1 and N7B-Na2 bond distances averaging 2.511 Å. Interestingly, in order to accommodate bridging iodides, the 51 ⁵²heterocycles turn 90 degrees on the apical axis relative to complex **5a**. Also, in another striking difference, apical 53 ⁵⁴, bonding is N1-Na1-N1' in **5b** but is N1-Na1-N7' in **5a**. The Na1-Na2 intra-atomic distance is 3.951 Å in **5b** where the 56 57sodium atoms are bridged simultaneously by water and iodide. This distance, 0.656 Å longer than the Na1-Na1' length 58 5 59

¹ Å) or iodide (4.51 Å) in the reference compound (NaI)₂(H₂O)₄.¹⁷

2

60

ACS Paragon Plus Environment

In the optimization study, the alkylation of **1b** with iodomethane was studied in detail with N1/N2 (**2b/3b**) 45alkylation product ratios determined by HPLC of the crude products then confirmed by chromatographic purification. 47Solvent choice proved to be the primary factor determining alkylation selectivity under a variety of conditions as ⁴⁹/₋₋shown in Table 2. Less polar solvents like dioxane (entries 1-3) and THF (entries 4-5) favored production of the N2- $_{52}^{52}$ methyl product **3b** with the N1/N2 (**2b/3b**) product ratios varying from 1/5 to 1/10. Toluene and acetonitrile were 54ineffective as solvents perhaps due to solubility limitations (entries 9-10). Polar solvents DMSO (entries 6-7), DMF ⁵⁶(entry 11) and DMPU (entry 12) reversed the selectivity to favor production of the N1-product 2b with ratios of 2b/3b

ACS Paragon Plus Environment

60	ACS Paragon Plus Environment
58	8
57	
56	
54 57	
53	-
5	$\frac{1}{2}$
50	(27-27).
40	
47 7	products. ⁹ Other weak bases such as Hünig's base, Li ₂ CO ₃ , Na ₂ CO ₃ , and K ₂ CO ₃ were ineffective in THF (entries 22,
46	
44 44	complete recovery of the heterocycle 1b . Compare this to the use of MeMgCl to provide selective N7-alkylpurine
43	Grignard reagents such as <i>t</i> -BuMgCl and MeMgCl were not effective bases (entries 20-21) providing for
41 42	
4(
39	betoo large to form an effective tight ion-pair with N1.
37	vincreased N1/N2 product ratios when conducted in DMSO (entries 26 and 31). This is consistent with the cation being
36	
24 קי	(entries 30-31) also did not provide selectivity for the N2 product 3b and instead favored N1 (2b) in THF and provided
33	Larger cations, such as those derived by reactions with bases DBU (entry 23), P ₂ -Et (entries 24-26) and Cs ₂ CO ₃
31	Larger actions, such as these derived by reactions with bases DBU (entry 22). B. Et (entries 24.26) and Co.CO.
30	
28	DMSO, resulted in no further N1 selectivity, (see entries 17 and 18).
27	ינענענעט דינע זינע זינע דינע זינע דינעט דינע דינע דינעט דינעט דינע דינע דינעט דינע דינע דינעט דינ
26) TOMSO reaction was technically 2:1 DMSO/THE Moreover, rigorously evoluting THE by employing solid NeO4 Dy in
24	provided similar product ratios in THF or DMSO (entries 13-19). Since the bases typically were THF solutions, each
23	Like mathylds, other strong bases with counter-ions Li, ma, and K, which can inteversibly deprotofiate 10 ,
2	Like NaHMDS other strong bases with counter-ions Li Na and K which can irreversibly deprotonate 1b
20	
18	completion.
17	, v
15 16	belectrophile are used compare entries A to 5 and 6 to 7, except more time is required for the reactions to go to
14	the alkylating reagent. The reaction also occurs with essentially the same product composition when 1.5 equivalents of
12	
11	In this table and subsequent tables, most often 3 equivalents of indomethane or other electrophile were used as
9 10	
8	THF/DMSO produced a 1:1 distribution of 2b/3b (entry 8).
6 7	permung the more reactive solvated introgen amon to be arkylated. Notably, conducting the reaction in 10:1
5	permitting the more reactive solvated nitrogen anion to be alkylated. Notably, conducting the reaction in 10:1
3 4	and other polar solvents selectively provided 2b (55% yield, entry 6) consistent with a solvent separated ion pair and
ו 2	provide 30 (69% yield, entry 4) consistent with a tight ion pair (similar to 6) favoring reactivity at N2. Use of DMSO
1	anomide 2b (600) wield entry () consistent with a tight ion nois (similarty () forwing musticity at NO U. (DDMGO
	The Journal of Organic Chemistry Page 8 of 61 of 2/1 to 5/1. Thus, for substrate 1b , N2-site-selectivity can be effected by choosing THF or dioxane to preferentially

Page 9 of 61 The Journal of Organic Chemistry **Table 2. Regioselective** *N***-Alkylation Optimization**^{*a*}

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2		OMe I		OMe 	Q	Ме	
Image: Normal constraints Image: Normal constraints Normal constraints Normal constraints 1 16 2b 3b ⁶ (yield) ^c 1b ⁶ 2b ⁶ 13 1 NaOMe dioxane 80 °C/24h 8 72 (60) 5 1// 13 1 NaOMe dioxane 80 °C/24h 8 72 (60) 5 1// 14 2 NaHMDS dioxane 20 °C/7h 11 (8) 77 (45) 5 1// 16 4 NaHMDS THF 20 °C/1h 11 (8) 89 (69) 0 1// 18 4 NaHMDS THF 20 °C/2h 16 (0) 84 (68) 1 (2) 1// 23 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3// 24 7' NaHMDS DMSO 20 °C/1h 44 (38) 55 (40) 0 1// 25 8 NaHMDS 10-1 THF/DMSO 20 °C/1h 64 3// <td>3</td> <td></td> <td>N</td> <td>base, Mel</td> <td>N</td> <td>+ N</td> <td>N-</td> <td>_</td>	3		N	base, Mel	N	+ N	N-	_
$1b$ $2b$ $3b^{\circ}$ (yield) ^c $3b^{\circ}$ (yield) ^c $1b^{\circ}$ $2b^{\circ}$ 13 1 NaOMe dioxane 80° C/24h 8 $72 (60)$ 5 $1/$ 13 1 NaOMe dioxane 80° C/24h 8 $72 (60)$ 5 $1/$ 15 2 NaHMDS dioxane 20° C/7h $11 (8)$ $77 (45)$ 5 $1/$ 18 4 NaHMDS THF 20° C/1h $11 (8)$ $77 (45)$ 5 $1/$ 20° C/1h 11 (8) 89 (69) 0 $1/$ 21° NaHMDS THF 20° C/1h $11 (8)$ $84 (68)$ $1(2)$ $1/$ 21° NaHMDS DMSO 20° C/1h 75 $22 (13)$ $5(6)$ $3/$ 23° NaHMDS I0-1 THF/DMSO 20° C/1h $44 (38)$ $55 (40)$ 0 $1/$ 24° 7° NaHMDS DMF	5		N H		N N	Ň	Ň	
9 10 base solvent temp/time $2b^{b}$ (yield) c $3b^{b}$ (yield) c $1b^{b}$ $2b/c$ 13 1 NaOMe dioxane 80 °C/24h 8 72 (60) 5 1/c 14 2 NaHMDS dioxane 80 °C/0.5h 8 82 (48) 10 1/c 15 2 NaHMDS dioxane 20 °C/7h 11 (8) 77 (45) 5 1/c 18 4 NaHMDS THF 20 °C/1h 11 (8) 89 (69) 0 1/c 20 5 ^c NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/c 23 6 NaHMDS DMSO 20 °C/1h 44 (38) 55 (40) 0 1/c 24 7 ^c NaHMDS 10-1 THF/DMSO 20 °C/1h 44 (38) 55 (40) 0 1/c 25 9 NaHMDS 10-1 THF/DMSO 20 °C/1h 65 (52) 29 (18) 6 (9) 2/c </th <th>7 8</th> <th></th> <th>1b</th> <th></th> <th>2b</th> <th></th> <th>3b</th> <th></th>	7 8		1b		2b		3b	
11 NaOMe dioxane 80 °C/24h 8 72 (60) 5 1/ 13 1 NaOMe dioxane 80 °C/24h 8 72 (60) 5 1/ 15 2 NaHMDS dioxane 20 °C/7h 11 (8) 77 (45) 5 1/ 18 4 NaHMDS THF 20 °C/1h 11 (8) 89 (69) 0 1/ 20 5e NaHMDS THF 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 21 5e NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 24 7e NaHMDS DMSO 20 °C/48h 65 (52) 29 (18) 6 (9) 2/ 26 8 NaHMDS 10-1 THF/DMSO 20 °C/3h 0 110 89 30 10 NaHMDS acetonitrile 20 °C/3h 0 111 89 31 11 NaHMDS <t< td=""><td>9 10entry</td><td>ry base</td><td>solvent</td><td>temp/time</td><td>$2\mathbf{b}^{b}$ (yield) ^c</td><td>$\mathbf{3b}^{b}$ (yield) ^c</td><td>$\mathbf{1b}^{b}$</td><td>2b/3b^d</td></t<>	9 10entry	ry base	solvent	temp/time	$2\mathbf{b}^{b}$ (yield) ^c	$\mathbf{3b}^{b}$ (yield) ^c	$\mathbf{1b}^{b}$	2b/3b ^d
14 2 NaHMDS dioxane 80 °C/0.5h 8 82 (48) 10 1/ 17 3 NaHMDS dioxane 20 °C/7h 11 (8) 77 (45) 5 1/ 19 4 NaHMDS THF 20 °C/7h 11 (8) 89 (69) 0 1/ 20 5" NaHMDS THF 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 21 5" NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 223 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 23 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 6 (9) 2/ 24 7" NaHMDS DMSO 20 °C/1h 44 (38) 55 (40) 0 1/ 28 NaHMDS toluene 20 °C/3h 0 111 89 - 31 10 NaHMDS DMF 20 °C/1h 69 27 4 3/ 34 12	12 13 1	NaOMe	dioxane	80 °C/24h	8	72 (60)	5	1/9
16 17 17 18 4 NaHMDS dioxane 20 °C/7h 11 (8) 77 (45) 5 1// 19 19 19 4 NaHMDS THF 20 °C/1h 11 (8) 89 (69) 0 1// 20 20 23 3 5" NaHMDS THF 20 °C/24h 16 (0) 84 (68) 1 (2) 1// 22 3 4 7" NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3// 24 7 7" NaHMDS DMSO 20 °C/4h 65 (52) 29 (18) 6 (9) 2// 26 8 NaHMDS 10-1 THF/DMSO 20 °C/1h 44 (38) 55 (40) 0 1// 28 9 NaHMDS toluene 20 °C/3h 0 11 89 - 31 10 NaHMDS DMF 20 °C/1h 63 14 0 5// 34 12 NaHMDS DMF 20 °C/1h 63 14 0 5// 35 13 LiHMDS THF 20 °C/7h 15 85 0 1// 39 15 LiOr-Bu THF 20 °C/7h	$^{14}_{15}$ 2	NaHMDS	dioxane	80 °C/0.5h	8	82 (48)	10	1/10
18 4 NaHMDS THF 20 °C/1h 11 (8) 89 (69) 0 1/ 21 5° NaHMDS THF 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 22 6 NaHMDS DMSO 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 22 6 NaHMDS DMSO 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 23 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 24 7' NaHMDS DMSO 20 °C/1h 44 (38) 55 (40) 0 1/ 26 8 NaHMDS 10-1 THF/DMSO 20 °C/3h 0 0 100	16 17 3	NaHMDS	dioxane	20 °C/7h	11 (8)	77 (45)	5	1/7
20 5° NaHMDS THF 20 °C/24h 16 (0) 84 (68) 1 (2) 1/ 22 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 24 7° NaHMDS DMSO 20 °C/1h 73 (55) 29 (18) 6 (9) 2/ 24 7° NaHMDS 10-1 THF/DMSO 20 °C/1h 44 (38) 55 (40) 0 1/ 28 9 NaHMDS 10-1 THF/DMSO 20 °C/3h 0 0 100 29 10 NaHMDS toluene 20 °C/3h 0 11 89 31 11 NaHMDS DMF 20 °C/1h 63 14 0 5/ 34 12 NaHMDS DMPU 20 °C/1h 63 14 0 5/ 36 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 37 14 KHMDS THF 20 °C/3h 14 (6) 86 (47) 0 1/ 41	18 19 4	NaHMDS	THF	20 °C/1h	11 (8)	89 (69)	0	1/8
22 6 NaHMDS DMSO 20 °C/1h 73 (55) 22 (13) 5 (6) 3/ 24 7° NaHMDS DMSO 20 °C/4h 65 (52) 29 (18) 6 (9) 2/ 26 8 NaHMDS 10-1 THF/DMSO 20 °C/1h 44 (38) 55 (40) 0 1/ 28 9 NaHMDS toluene 20 °C/3h 0 0 100 - 30 10 NaHMDS acetonitrile 20 °C/3h 0 11 89 - 31 11 NaHMDS DMF 20 °C/1h 69 27 4 3/ 34 12 NaHMDS DMF 20 °C/1h 63 14 0 5/ 35 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 36 14 KHMDS THF 20 °C/7h 15 85 0 1/ 37 14 KHMDS THF 20 °C/7h 15 85 0 1/ 41 16 NaOr-Bu	$\frac{20}{21}$ 5 ^e	² NaHMDS	THF	20 °C/24h	16 (0)	84 (68)	1 (2)	1/5
24 7° NaHMDS DMSO 20 °C/48h 65 (52) 29 (18) 6 (9) 2/ 26 8 NaHMDS 10-1 THF/DMSO 20 °C/1h 44 (38) 55 (40) 0 1/ 27 9 NaHMDS toluene 20 °C/3h 0 0 100 - 28 9 NaHMDS toluene 20 °C/3h 0 11 89 - 30 10 NaHMDS acetonitrile 20 °C/3h 0 11 89 - 31 11 NaHMDS DMF 20 °C/1h 69 27 4 3/ 32 11 NaHMDS DMF 20 °C/1h 63 14 0 5/ 34 12 NaHMDS DMPU 20 °C/7h 15 85 0 1/ 35 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 36 14 KHMDS THF 20 °C/7h 15 85 0 1/ 37 14 KHMDS T	²² 6	NaHMDS	DMSO	20 °C/1h	73 (55)	22 (13)	5 (6)	3/1
1268NaHMDS10-1 THF/DMSO $20 °C/1h$ $44 (38)$ $55 (40)$ 01/ 28 9NaHMDStoluene $20 °C/3h$ 00100- 29 0NaHMDSacetonitrile $20 °C/3h$ 01189- 31 10NaHMDSDMF $20 °C/1h$ 69 27 4 $3/$ 32 11NaHMDSDMF $20 °C/1h$ 63140 $5/$ 33 12NaHMDSDMPU $20 °C/1h$ 63140 $5/$ 36 13LiHMDSTHF $20 °C/7h$ 158501/ 37 14KHMDSTHF $20 °C/4h$ 17 (9)81 (54)21/ 40 15LiOr-BuTHF $20 °C/2h$ 14 (6)86 (47)01/ 41 16NaOr-BuTHF $20 °C/2h$ 9 (8)89 (58)21/ 44 17NaOr-BuDMSO $20 °C/1h$ $62 (29)$ $25 (15)$ $12 (15)$ 2/ 44 17NaOr-BuDMSO $20 °C/1h$ $70 (37)$ $30 (18)$ 02/ 45 18NaOr-BuTHF $20 °C/5h$ $11 (11)$ $84 (48)$ 31/ 48 20r-BuMgClTHF $20 °C/6h$ 0199- 50 22Hüng's baseTHF $50 °C/24h$ 00 100 - 52 22Hüng's baseTHF $66 °C/7h$ </td <td>24 7^e</td> <td>² NaHMDS</td> <td>DMSO</td> <td>20 °C/48h</td> <td>65 (52)</td> <td>29 (18)</td> <td>6 (9)</td> <td>2/1</td>	24 7 ^e	² NaHMDS	DMSO	20 °C/48h	65 (52)	29 (18)	6 (9)	2/1
228 9NaHMDStoluene $20 ^{\circ}C/3h$ 00 100 - 30 10NaHMDSacetonitrile $20 ^{\circ}C/3h$ 01189- 31 11NaHMDSDMF $20 ^{\circ}C/1h$ 692743/ 32 11NaHMDSDMF $20 ^{\circ}C/1h$ 631405/ 33 12NaHMDSDMPU $20 ^{\circ}C/1h$ 631405/ 35 13LiHMDSTHF $20 ^{\circ}C/7h$ 158501/ 37 14KHMDSTHF $20 ^{\circ}C/7h$ 1586 (47)01/ 39 15LiOt-BuTHF $20 ^{\circ}C/2h$ 14 (6)86 (47)01/ 40 15LiOt-BuTHF $20 ^{\circ}C/0.5h$ 9 (8)89 (58)21/ 41 16NaOr-BuTHF $20 ^{\circ}C/0.5h$ 9 (8)89 (58)21/ 43 17NaOr-BuDMSO $20 ^{\circ}C/1h$ $62 (29)$ $25 (15)$ $12 (15)$ $2/$ 45 18NaOr-BuTHF $20 ^{\circ}C/5h$ 11 (11)84 (48)31/ 49 20r-BuMgClTHF $20 ^{\circ}C/6h$ 0199- 50 51 21MeMgClTHF $50 ^{\circ}C/24h$ 00100- 52 22Hüng's baseTHF $66 ^{\circ}C/7h$ 1197-	26 8 27	NaHMDS	10-1 THF/DMSO	20 °C/1h	44 (38)	55 (40)	0	1/1
$^{29}_{30}$ 10NaHMDSacetonitrile20 °C/3h01189- $^{31}_{31}$ 11NaHMDSDMF20 °C/1h692743/ $^{33}_{34}$ 12NaHMDSDMPU20 °C/1h631405/ $^{35}_{36}$ 13LiHMDSTHF20 °C/7h158501/ $^{37}_{38}$ 14KHMDSTHF20 °C/7h158501/ $^{37}_{38}$ 14KHMDSTHF20 °C/7h1586 (47)01/ $^{39}_{40}$ 15LiOr-BuTHF20 °C/5h14 (6)86 (47)01/ $^{41}_{42}$ 16NaOt-BuTHF20 °C/0.5h9 (8)89 (58)21/ $^{43}_{44}$ 17NaOt-BuDMSO20 °C/1h62 (29)25 (15)12 (15)2/ $^{44}_{44}$ 18NaOt-Bu'DMSO20 °C/5h11 (11)84 (48)31/ $^{45}_{46}$ 18NaOt-Bu'THF20 °C/5h11 (11)84 (48)31/ $^{49}_{46}$ 20t-BuMgClTHF20 °C/6h0199- $^{50}_{55}$ 21MeMgClTHF50 °C/24h00100- $^{52}_{53}$ 22Hünig's baseTHF66 °C/7h1197-	27 28 9	NaHMDS	toluene	20 °C/3h	0	0	100	
31 32 11 NaHMDS DMF 20 °C/1h 69 27 4 3/ 33 4 12 NaHMDS DMPU 20 °C/1h 63 14 0 5/ 35 36 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 37 38 14 KHMDS THF 20 °C/7h 15 85 0 1/ 39 40 15 LiOt-Bu THF 20 °C/4h 17 (9) 81 (54) 2 1/ 39 40 15 LiOt-Bu THF 20 °C/0.5h 9 (8) 89 (58) 2 1/ 41 41 16 NaOt-Bu THF 20 °C/0.5h 9 (8) 89 (58) 2 1/ 43 44 17 NaOt-Bu DMSO 20 °C/1h 62 (29) 25 (15) 12 (15) 2/ 44 45 18 NaOt-Bu' DMSO 20 °C/1h 70 (37) 30 (18) 0 2/ 47 49 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 51	29 30 10) NaHMDS	acetonitrile	20 °C/3h	0	11	89	
33 34 12 NaHMDS DMPU 20 °C/1h 63 14 0 5/ 35 36 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 37 38 14 KHMDS THF 20 °C/7h 17 9 81 (54) 2 1/ 39 40 15 LiOt-Bu THF 20 °C/5h 14 (6) 86 (47) 0 1/ 41 42 16 NaOt-Bu THF 20 °C/0.5h 9 (8) 89 (58) 2 1/ 43 44 17 NaOt-Bu DMSO 20 °C/1h 62 (29) 25 (15) 12 (15) 2/ 45 18 NaOt-Bu ^f DMSO 20 °C/5h 11 (11) 84 (48) 3 1/ 46 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 50 21 MeMgCl THF 50 °C/24h 0 0 100 - 51 21 MeMgCl THF 66 °C/7h 1 1 97 - 53	31 32 11	NaHMDS	DMF	20 °C/1h	69	27	4	3/1
35 36 13 LiHMDS THF 20 °C/7h 15 85 0 1/ 37 38 14 KHMDS THF 20 °C/4h 17 (9) 81 (54) 2 1/ 39 40 15 LiOt-Bu THF 20 °C/5h 14 (6) 86 (47) 0 1/ 41 42 16 NaOt-Bu THF 20 °C/0.5h 9 (8) 89 (58) 2 1/ 43 44 17 NaOt-Bu DMSO 20 °C/1h 62 (29) 25 (15) 12 (15) 2/ 44 45 18 NaOt-Bu ^f DMSO 20 °C/5h 11 (11) 84 (48) 3 1/ 46 47 19 KOt-Bu THF 20 °C/5h 11 (11) 84 (48) 3 1/ 49 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 50 51 21 MeMgCl THF 50 °C/24h 0 0 100 - 52 22 Hünig's base THF 66 °C/7h 1 1 97 -	33 34 12	2 NaHMDS	DMPU	20 °C/1h	63	14	0	5/1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 36 13	3 LiHMDS	THF	20 °C/7h	15	85	0	1/6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 38 14	4 KHMDS	THF	20 °C/4h	17 (9)	81 (54)	2	1/5
41_{42} 16NaOt-BuTHF $20 \degree C/0.5h$ 9 (8) $89 (58)$ 2 $1/2$ 43_{44} 17NaOt-BuDMSO $20 \degree C/1h$ $62 (29)$ $25 (15)$ $12 (15)$ $2/2$ 45_{46} 18NaOt-Bu ^f DMSO $20 \degree C/1h$ $70 (37)$ $30 (18)$ 0 $2/2$ 47_{46} 19KOt-BuTHF $20 \degree C/5h$ $11 (11)$ $84 (48)$ 3 $1/2$ 49_{48} 20t-BuMgClTHF $20 \degree C/6h$ 01 99 -50 51_{50} 21MeMgClTHF $50 \degree C/24h$ 00 100 -52 53_{53} 22Hünig's baseTHF $66 \degree C/7h$ 11 97 -50	³⁹ 15	5 LiOt-Bu	THF	20 °C/5h	14 (6)	86 (47)	0	1/6
$43 \\ 44 \\ 44 \\ 17 \\ NaOt-BuDMSO20 \degree C/1h62 (29)25 (15)12 (15)2/2 \\ 2/$	$^{41}_{42}$ 16	6 NaOt-Bu	THF	20 °C/0.5h	9 (8)	89 (58)	2	1/10
45 18 NaOt-Bu ^f DMSO 20 °C/1h 70 (37) 30 (18) 0 2/ 46 19 KOt-Bu THF 20 °C/5h 11 (11) 84 (48) 3 1/ 48 49 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 50 51 21 MeMgCl THF 50 °C/24h 0 0 100 - 52 53 22 Hünig's base THF 66 °C/7h 1 1 97 -	43 44	/ NaOt-Bu	DMSO	20 °C/1h	62 (29)	25 (15)	12 (15)	2/1
47 19 KOt-Bu THF 20 °C/5h 11 (11) 84 (48) 3 1/ 48 49 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 50 50 51 21 MeMgCl THF 50 °C/24h 0 0 100 - 52 53 22 Hünig's base THF 66 °C/7h 1 1 97 -	45 18	3 NaOt-Bu ^f	DMSO	20 °C/1h	70 (37)	30 (18)	0	2/1
49 20 t-BuMgCl THF 20 °C/6h 0 1 99 - 50 51 21 MeMgCl THF 50 °C/24h 0 0 100 - 52 53 22 Hünig's base THF 66 °C/7h 1 1 97 -	47 19) KOt-Bu	THF	20 °C/5h	11 (11)	84 (48)	3	1/8
50 51 21 MeMgCl THF 50 °C/24h 0 0 100 - 52 53 22 Hünig's base THF 66 °C/7h 1 1 97 -	48 49 20) <i>t</i> -BuMgCl	THF	20 °C/6h	0	1	99	
52 53 22 Hünig's base THF 66 °C/7h 1 1 97 -	50 51 21	MeMgCl	THF	50 °C/24h	0	0	100	
	52 53 22	2 Hünig's base	THF	66 °C/7h	1	1	97	
⁵⁴ ₅₅ 23 DBU THF 66 °C/5h 61 31 8 2/	54 55 23	3 DBU	THF	66 °C/5h	61	31	8	2/1
56 57 24 P2-Et ^g THF 20 °C/5min 80 (55) 20 0 4/ 58 9	56 57 24 58	P_2-Et^g	THF	20 °C/5min	80 (55) 9	20	0	4/1

ACS Paragon Plus Environment

	25	P ₂ -Et ^g	THF	The Journal of -78 °C/0.5h	of Organic Cher 60 (27)	mistry 36 (2)	4	2/1	Page 10 of 61
1	26	P_2 - Et^g	DMSO	20 °C/0.5h	85 (63)	15 (16)	0	6/1	
2 3	27	Li ₂ CO ₃	THF	65 °C/24h	0.4	0.6	99		
4 5 6 7	28	Na ₂ CO ₃	THF	66 °C/5h	2	6	92		
	29	K ₂ CO ₃	THF	66 °C/5h	13	53	32	1/4	
8	30	Cs ₂ CO ₃	THF	66 °C/1h	40	57	3	1/1	
10 11	31	Cs ₂ CO ₃	DMSO	20 °C/3h	77	18	5	4/1	

13

^{14*a*}Standard reaction conditions: compound **1b** (100 mg, 0.67 mmol) was dissolved or suspended in 3.3 mL of solvent at 0 ^{15°}C (except DMSO reactions were started at 15 °C), base (1 mmol) as a solution or solid (MHMDS and MO*t*-Bu with M ¹⁷⁼Li, Na, K; and *t*-BuMgCl were 1 or 2 M solutions in THF unless noted otherwise) was added followed by ¹⁸iodomethane (0.12 mL, 2 mmol) and the mixture was stirred at the designated temperature for the designated time. Then ¹⁹the mixture was diluted with CH₂Cl₂ and aqueous 1 M NH₄Cl, the organic layer separated and the aqueous layer ²⁰extracted with CH₂Cl₂ (3×). The combined organic extracts were dried (MgSO₄) and evaporated to crude product ²¹extracted with CH₂Cl₂ (3×). The combined from the crude product residue at 220 nm. ^cIsolated % yield after subjecting ²³the crude product residue to SiO₂ chromatography through a 12 g SiO₂ column eluted with a gradient of 10-100% ethyl ²⁴acetate in heptane. ^dRatio of HPLC peak areas. ^ePerformed with 1.5 instead of 3 equivalents of MeI (1 mmol). ^fSolid ²⁵NaO*t*-Bu was used. ^gN'''-[bis(dimethylamino)(ethylimino)phosphoranyl]-N,N,N',N'',N'',N''-hexamethyl-phosphorimidic ²⁷triamide.

- 28
- 29 30

60

With the systems NaHMDS/THF and NaHMDS/DMSO established to selectively produce either 2b or 3b upon 31 32 33 reaction of **1b** with iodomethane, the scope of the alkylation of **1b** was investigated with other electrophiles (Table 3).¹⁸ 34 35 $_{36}^{35}$ As expected, in THF, the alkylations generally occurred selectively on the N2 position with isolated yield ratios of 37 38N1/N2 (2/3) ranging from 1:2 (entry 9) to 1:17 (entry 2). Some THF reactions with hindered alkyl halide electrophiles, 39 ⁴⁰entries 3, 4, 6, 7, and 10, were slow to react at room temperature (20 °C) and required higher temperatures (microwave 41 ⁴²₄₃heating at 160 °C/0.75 h) to reach completion. Isolated yields of the major N2-products (3) from reactions conducted in 44 45THF were mostly > 50%. With very reactive electrophiles, entries 9 and 11, N2 selectivity became weaker. In the 46 ⁴⁷glycosylation reaction in THF (entry 11), no selectivity was observed and yet a higher yield of N2-product was 48 ⁴⁹obtained (1:1 N1/N2 ratio) compared to previous reports.¹⁹ 51 52 By comparison, reactions in DMSO, with all but two electrophiles (entries 6 and 10) showed N1-selectivity 53 54 N1/N2, 2/3 ratios of 2:1 up to 19:1, see Table 3). All DMSO reactions were performed at 20 °C. In general, yields of 55 56 57the major products, **2**, were satisfactory except for the challenging 4-iodotetrahydro-2*H*-pyran electrophile, entry 10. 58 10 59

Page 11 of 61 The Journal of Organic Chemistry **Table 3. Alkylation of 4-Methoxy-1***H***-pyrazolo**[**3,4-***d*]**pyrimidine** (**1b**)^{*a*}

58

59

60

1 2 3 4 5 6	N	DMe 1.5 eq NaHMDS 3 eq R-X THF or DMSO 20-66 °C/1-72h or	OMe N N N R	+ N		I-R					
7 8		MW 160 °C/45 min	NT (2)		NZ (3)	1					
9			<u>THF/D</u>	THF/DMSO in TH			HF ^v in DMSO ^v				
10 11 -	entry	R-X	<u>temp (°C)</u>	time (h)	N1 (%)	N2 (%)	N1/N2	N1 (%)	N2 (%)	N1/N2	
12 13	1	Me-I	20/20	1/1	2b (8)	3b (69)	1/9	2b (55)	3b (13)	4/1	
14 15	2	Et-I	20/20	24/0.5	2c (4)	3c (66)	1/17	2c (67)	3c (13)	5/1	
16 17	3	<i>i</i> -Pr-I	160/20	0.75/1.5	2d (6)	3d (32)	1/5	2d (41)	3d (9)	5/1	
18 19	4 ^{<i>c</i>}	1-iodo-2-methylpropane	160/20	0.75/144	2e (7)	3e (57)	1/8	2e (37)	3e (11)	3/1	
20	5	(bromomethyl)cyclopropane	65/20	48/144	2f (10)	3f (50)	1/5	2f (42)	3f (9)	5/1	
22	6	benzyl chloride	160/20	0.75/1	2g (4)	3g (56)	1/14	2g (40)	3g (41)	1/1	
23 24	7	1-bromo-2-methoxyethane	160/20	0.75/20	2h (18)	3h (48)	1/3	2h (57)	3h (3)	19/1	
25 26	8	3,3-dimethylallyl bromide	20/20	2/3	2i (4)	3i (56)	1/14	2i (50)	3i (0)	>10/1	
27 28	9	ethyl 2-chloroacetate	20/20	16/3	2j (28)	3j (57)	1/2	2j (59)	3j (24)	2/1	
29 30	10	4-iodotetrahydro-2H-pyran	160/20	0.75/19	2k (0)	3k (10)	<1/10	2k (6)	3k (4)	1/1	
31 32	11^d	compound 7	20/20	4/1	2l (32)	3l (28)	1/1	2l (24)	3l (12)	2/1	
33 34 35					211 (2)			211 (7)			

^{37*a*}See standard reaction conditions as described in Table 1 substituting R-X for methyl iodide. ^{*b*}Chromatographically ³⁸₂₉isolated yields. ^{*c*}Experiment in THF conducted with 3 mmol **1b**. ^{*d*}Only 1.5 equivalents of compound **7** was used. ₄₀Structures:

The N7-atom contributes key ligand-bonding interactions with sodium in the crystal structures **5a** and **5b** 55 56(Figure 2). To gauge the role of N7 in N2-alkylation site-selectivity in THF, 15 pyrazolo-fused rings with either CH or 57

ACS Paragon Plus Environment

	The Journal of Organic Chemistry Page 12 of 61 N at position 7 were compared (see Table 4). ¹⁸ Heterocycles were chosen with additional substituents that would be of
1 2	interest in medicinal chemistry for exploring a variety of substitution vectors (see Figure 1). In entries 1-4, heterocycles
3 4	with CH instead of N in position 7 (1m and 1n), showed no N2-selectivity in THF. Introduction of N7 in similar
5 6 7	heterocycles 10 and 1p , entries 5-8, in THF showed 1:10 and 1:5 N1/N2 ratios, respectively; while in DMSO the
, 8 9	selectivity reversed to 15:1 and 9:1 N1/N2, respectively. Heterocycles with a 4-methoxy substituent, entries 9-16,
10 11	showed similar N1/N2 selectivity effects when comparing THF to DMSO which was dependent on the presence of N7.
12 13 14	Heterocycles having CH instead of N in position 7, 1q and 1r, provided N1-selective alkylation in both solvents. But
15 16	heterocycles containing N7, 1s and 1b (<i>vida supra</i>) provided for N2-selectivity in THF, which again reversed to N1
17	when conducted in DMSO. Heterocycles containing a 4-chloro substituent had the same selectivity profile (entries 17-
20 21	22). Finally, the influence of steric hindrance from a 3-bromo substituent did little to redirect the THF alkylation away
22 23	from N2 when N7 was present (entries 25 and 29) giving 1:2 N1/N2 alkylation selectivity while heterocycles having
24 25	CH in position 7 showed good N1-selectivity (4:1 to >10:1) in both THF and DMSO (entries 23, 24, 27 and 28). This
27 28	study emphasized the importance of N7 to achieving N2-selective alkylation in THF. When CH was present instead of
29 30	N in position 7, alkylation almost always favored N1 in both solvents. Moreover, all of these heterocycles favored N1-
31	alkylation in DMSO.
34 35	
36 37	
39 39 40	
41 42	
43 44	
45 46 47	
48 49	
50 51	
52 53 54	
55 56	
57 58	12
60	ACS Paragon Plus Environment

Page 13 of 61 The Journal of Organic Chemistry **Table 4. Application to Other Pyrazolo-fused Ring Heterocycles**^{*a*}

37-

³⁸₃₉ See standard reaction conditions as described in Table 1. ^{*b*}Chromatographically isolated yields. 40^{c} See ref. 20a for methylation of **1n** in THF.

⊿⊃

In a recent report on selective N3-alkylation of imidazo-fused heterocycles using MeMgCl and THF,⁹ it was
⁴⁶observed that a steric component was necessary to drive the selectivity (see Scheme 1). For example, 4-chloro substrate
⁴⁸tag
⁴⁹tz exhibited complete N3-selectivity to product 4z while 4-H substrate 1a' was alkylated with no selectivity to products
⁵⁰sical and 4a' (see Equations 3 and 4). Thus, it was of interest to evaluate whether N1 vs N3 alkylation site selectivity
⁵²sical be influenced in imidazo-fused ring heterocycles when a proximal nitrogen atom (N7) was present, and
⁵⁵especially test whether selectivity would be independent of steric influence.

The Journal of Organic Chemistry Scheme 1. Literature N3-Selective Imidazo-Fused Ring Alkylation^a

Page 17 of 61 The Journal of Organic Chemistry **Table 5. Application to Imidazo-fused Ring Heterocycles**^{*a*}

1 2 3 4 5 6 7 8 9		$ \begin{array}{c} Y^{1} \\ X^{5} \\ Y^{2} \\ X^{7} \\ H \end{array} $	1.5 eq 3 e THF 20 °	NaHMDS, eq Mel or DMSO C/1-24h	$ \begin{array}{c} Y^{1} \\ X^{5} \\ Y^{2} \\ X^{7} \\ N1 (2) \end{array} $	$ \begin{array}{c} Y^{1} \\ X^{5} \\ Y^{2} \\ X^{7} \\ N \\ N3 (4) \end{array} $	
10	entry	heterocycle	time (h)	solvent	N1 (%) ^b	N3 (%) ^b	N1/N3
11 12 13 14 15		Br N N H			Br N	Br	
16 17	1	1b'	2	THF	2b' (52)	4b' (52)	1/1
18 10	2	1b'	2	DMSO	2b' (33)	4b' (33)	1/1
20 21 22 23		Br N H			Br N N	Br	
24 25	3	1c'	2	THF	2c' (14)	4c' (54)	1/4
26 27	4	1c'	2	DMSO	2c' (37)	4c' (6)	6/1
28 29 30 31 32		Br N H			Br N N	Br N N	
33 34	5	1d'	1.5	THF	2d' (19)	4d' (66)	1/3
35	6	1d'	1.5	DMSO	2d' (46)	4d' (37)	1/1
36 37 38 39 40 41							
42 43	7^c	1e'	3	THF/DMSO	2e' (42)	4e' (32)	1/1
44 45	8	1e'	3	DMSO	2e' (28)	4e' (24)	1/1
46 47 48 49 50 51							
52 53	9	1f'	2	THF	2f' (18)	4f' (56)	1/3
54 55	10 ^c	1f'	1.5	THF/DMSO	2f' (33)	4f' (29)	1/1
56	11	1f'	96	DMSO	2f' (34)	4f' (14)	2/1
57 58 59 60				AC	17 CS Paragon Plus Envi	ronment	

		<u></u>	The Journal of Organic Chemistry								
1 2 3											
4 5	12	1g'	5	THF	2g' (33)	4g' (42)	1/1				
6 7	13	1g'	5	DMSO	2g' (40)	4g' (15)	3/1				
8 9		OMe			OMe	OMe ,					
10 11 12 13											
14 15	14	1h'	1.5	THF	2h' (25)	4h' (55)	1/2				
16 17 18	15	1h'	1.5	DMSO	2h' (41)	4h' (23)	2/1				

^{20^a}See standard reaction conditions as described in Table 1. ^bChromatographically isolated yields. ^{21^c}Conducted in 10:1 THF/DMSO.

Finally, very little study has been made of the alkylation of triazolo-fused ring heterocycles.²² To conclude this 28study several triazolo-fused ring alkylations were examined in THF and DMSO and a small effect was observed ³⁰favoring N3-alkylation in THF when an N7 nitrogen atom was present (Table 6).¹⁸ Alkylation of heterocycles **1j**' and $^{52}_{33}$ 11' in THF favorably produced N3-alkyl products 4j' (43%) and 4l' (24%), respectively, with 1:1:2 N1/N2/N3 35alkylation ratios in both cases (entries 3 and 6). In DMSO, those heterocycles gave statistically distributed 1:1:1 ³⁷N1/N2/N3 product ratios (entries 4 and 7). Triazolo-fused ring heterocycles having CH instead of the N7 atom gave $_{40}^{59}$ different product distributions (entries 1, 2 and 5).

Page 19 of 61 The Journal of Organic Chemistry **Table 6. Application to Triazolo-fused Ring Heterocycles**^a

^{47*a*}See standard reaction conditions as described in Table 1. ^{*b*}Chromatographically isolated yields. ^{*c*}Product structures ⁴⁸/₄₉confirmed by X-ray crystallography, see Supporting Information. ^{*d*}See ref. 20a.

MECHANISM

The Journal of Organic Chemistry Pag Solvent polarity is known to have a dramatic effect on the regioselectivity of reactions in which the mecha	e 20 of 61 nism
¹ involves close ion pairs (CIPs) or solvent separated ion pairs (SIP). ^{23, 24, 25} In order to probe whether ion pairs play	ı a
$\frac{3}{4}$ role in the selectivities observed for alkylation reactions of azolo-fused ring heterocycles, especially those contain	ing
$_{6}^{5}$ N7 instead of CH at that position, computational analysis of anion charge density was performed on $1b^{*}$ and $1r^{*}$ (7)	Гable
 8 7). Comparative analysis of calculated charge density using density functional theory (DFT) calculations at the 9 	
¹⁰ B3LYP/6-31G**(d) level of theory for these anions (as well as tautomer anions $1b^{**}$ and $1r^{**}$) show charge densit	y is
$^{12}_{13}$ focused more on N1 than on N2 by about 0.2 charge units for each. ²⁶ Importantly, the DFT calculations indicate the 14	nat
15substitution of N for CH at position 7 (variable Y in Table 7) does not influence charge density concentration at N 16	1 in
¹⁷ both compounds, thus the N1-anion should be more reactive in each compound especially in a polar ion solvating	
²⁰ solvent like DMSO. This is supported experimentally with the N1-methyl derivative determined as the major prod	luct in
22methylation reactions of 1b and 1r conducted in DMSO with N1/N2 ratios of 4:1 and 3:1 (Table 4, entries 16 and 23)	12,
²⁴ respectively). ²³ However, the product distribution for reactions conducted in THF are 8-fold N2-selective for 1b a	nd
²⁶ ₂₇ nonselective for $1r$ (Table 4, entries 15 and 11, respectively), which indicates a separate THF solvent effect that is	9
28 29much more enhanced for molecules containing N7.	
30	
31	
32	
34	
35	
36	
37	
30	
40	
41	
42	
43	
45	
46	
47	
48	
49	
50	
52	
53	
54	
55	
50 57	
58 20	
59	

Page 21 of 61 The Journal of Organic Chemistry **Table 7. Density functional theory (DFT) charge distribution (vacuum).**^a

 $^{^{26}a}$ Calculations at the B3LYP/6-31G**(d) level of theory with the net charge set to -1.

 53 and **1r** and their chemical inertness, served as suitable standards to form internal calibration curves (ICCs).²⁹ For each ⁵⁴

- ⁵⁵₅₆ compound examined, the MW of its solution species aggregate (MW_{det}) as a NMR time average form^{28c} was determined
- 57
- 58
- 59
- 60

²⁹ To better understand the specific role of THF in reversing N1/N2 alkylation selectivities with azolo-fused ring 30 31 32heterocycles containing N7, the ¹H-detected pulsed field gradient-stimulated echo (PFG-STE) NMR method was 33 $^{34}_{35}$ applied to examine the solution N-sodio species of these two compounds and their neutral counterparts in THF- d_8 and 36 $_{37}^{30}$ DMSO- d_6 .^{27, 28, 29, 30} The method efficiently measures the diffusion coefficient D_t of molecules in solution. Since Log D_t 38 39relates directly to LogMW, this MW information can be used to interpret aggregation and solvation states of 40 ⁴¹molecules³¹ which in turn can be applied to mechanistic reasoning for the reactivity difference. Example applications 42 43 $^{43}_{44}$ on N-lithio-complexes^{29, 31b, 31d} indicate its potential for providing insight into how solution aggregates relate to reactive 45 46intermediates. 47 48 Each PFG-STE NMR experiment was conducted in THF-d₈ or DMSO-d₆ solutions containing naphthalene 49 50 51 analogs 7a, 7b and 7c as internal MW standards. The naphthalenes, because of their planar structural similarity to 1b 52

```
The Journal of Organic Chemistry
                                                                                                                                             Page 22 of 61
  by plotting Log D_{t,obs} to respective ICCs, (see Figure 3 for an example analysis). Table 8 lists the results of this analysis
<sup>1</sup> with proposed time average solution species having calculated MW (MW_{calc}) values that agree to within 10% or better
2
3
4
  (MW_{err}) with the MW_{det} of the test compound in solution.<sup>31</sup>
5
6
7
8
9
10
11
   7a, R<sup>1</sup> = R<sup>3</sup> = R<sup>4</sup> = H; R<sup>2</sup> = Me; MW 142
12
^{12}_{13}7b, R<sup>1</sup> = H; R<sup>2</sup> = R<sup>3</sup> = R<sup>4</sup> = Me; MW 170
14 7c, R^1 = R^4 = Et; R^2 = R^3 = H; MW 184
15
16
17
18
19
20
21
               -8.4
22
23
24
      LogD<sub>t,obs</sub>
25
               -8.6
26
                                7a
27
                                            7b
                                                 7c
28
29
30
               -8.8
                                                 1b*Na(THF)<sub>0.5</sub>
31
32
33
34
               -9.0
35
                      2.11
                                                      2.31 LogMW
                                                                                       2.51
36
37
38
39
<sup>40</sup>Figure 3. <sup>1</sup>H-detected pulsed field gradient-stimulated echo (PFG-STE) NMR MW<sub>det</sub> analysis of N-sodio form of
41
<sup>42</sup><sub>43</sub>heterocycle 1b<sup>*</sup> in THF-d<sub>8</sub> based on internal calibration curve (ICC) with standards 7a, 7b and 7c. ICC: y = -
44
450.3800x – 7.8670; R^2 = 1.0000. See Supporting Information for all PFG-STE analysis of 1b, 1r, 1b<sup>*</sup> and 1r<sup>*</sup> in THF-d_8
46
^{47}_{48} and DMSO-d_6.
49
50
51
52
53
54
55
56
57
58
                                                                            22
59
                                                             ACS Paragon Plus Environment
60
```

Page 23 of 61 The Journal of Organic Chemistry Table 8. Solution species MW_{det} from PFG-STE NMR determined diffusion coefficients $D_{t, obs}$ of 1b, 1r, 1b^{*}

¹ and 1r^{*} measured in THF-d₈ and DMSO-d₆.^a

13 14 15 16	entry	heterocycle	solvent ^b	D _{t,obs} (10 ⁻⁹ m ² /s)	MW _{det} (g/mol)	time average sol'n species	MW _{calc} (g/mol)	MWerr (%)
17 18	1	1b	THF	1.8510	187	1b (THF) _{0.5}	186	-1
19 20	2	1r	THF	2.4405	195	1r(THF) _{0.5}	185	+5
21 22	3	1b	DMSO	0.36733	246	1b(DMSO)	228	+10
23 24	4	1r	DMSO	0.38243	239	1r(DMSO)	227	+5
25	5	$1b^*$	THF	1.7840	209	1b*Na(THF)0.5	208	+0.5
26 27	6	$1r^*$	THF	1.5633	404	1r*Na(THF)3	387	+4
28 20	7	1b*	DMSO	0.36170	278	1b*(Na) _{0.5} (DMSO) _{1.5}	278	0
30 31	8	1r*	DMSO	0.37283	260	1r*(Na)0.5(DMSO)1.5	277	-7

 33a Values $D_{t,obs}$ for compounds are the average of at least 2 determinations from separate resolvable ¹H resonances for ³⁴₃₅94% of samples; 89% of $D_{\rm t, obs}$ SD values were \leq 5%. See Supporting Information for all curves and data. ^{*b*}For $D_{\rm t, obs}$ 36 based MW_{det} calculations, the protio-form of the NMR solvents are used since it was previously determined that 37deuterium containing solvents have MW_{det} values that agree with their protio-form MWs, see ref. 31d.

PFG-STE NMR analysis of the neutral compounds 1b and 1r revealed similar solution solvation states for the 44compound pair in THF and DMSO. In THF 1b and 1r are in equilibrium between desolvated and mono-THF solvated ⁴⁶molecular aggregates (Table 8, entries 1-2). While in DMSO, the compounds are each associated with one molecule of 49solvent (entries 3-4).³²

Remarkably, in THF the ionic compounds $1b^*$ and $1r^*$ exhibit starkly different aggregate forms with the former ⁵⁴having $MW_{det} = 209$ g/mol and the latter with $MW_{det} = 404$ (Table 8, entries 5-6). These values agree with time average

56solution species 1b*Na_{0.5}(THF)_{0.5} and 1r*Na(THF)₃.^{33, 34} These proposed aggregates support a mechanistic explanation

for why $1b^*$ in THF is more selective for N2-alkylation (1:8 N1/N2) compared to $1r^*$ (3:2 N1/N2) and by extension ¹ how other N7 containing azolo-fused ring heterocycles are selective for N2 or N3 (Tables 4-6). As described in Scheme 2, Equation 5, the N7 containing heterocycle $1b^*$ in THF exists as an aggregate with $MW_{det} = 209$ representing the 1:1 equilibrium of the close ion pair (CIP) $\mathbf{1b}^*$ Na(THF) (MW = 244) with the desolvated tight ion pair (TIP) $\mathbf{1b}^*$ Na (MW = 172).³⁵ This lack of solvent to coordinate the Na⁺ ion in the TIP enforces a tighter N1-Na bond because of additional ¹⁰through-space ligand bonding of N7 to Na and/or simply because N7 contributes, within the heterocycle bonding ¹²network, a through-bond electronic force to stabilize the N1-Na interaction. The resulting TIP N1-Na bond does not 15separate enough to allow N1 alkylation and instead N2 is alkylated. Additionally, invoking a N7-Na ligand bond allows ¹⁷rationalization for the formation of complex **5** containing the same bonding as observed by X-ray crystallography of the 19. ¹⁹₂₀isolated product (see **5a** in Figure 2). The contrasting alkylation behavior of $1r^*$ is understandable considering the much 22different aggregate in THF, $1r^*Na(THF)_3$.³⁴ The extra coordinating solvent likely contributes to a small degree of ion ²⁴pair separation and increased reactivity of the resulting SIP form $1r^{*}(THF)_{n}$, providing little discrimination between ²⁶₂₇alkylation of N1 *vs.* N2 (3:2 N1/N2). PFG-STE NMR of the ionic species $1b^*$ and $1r^*$ in DMSO- d_6 produced similar MW_{det} values of 278 and 260 $\frac{3}{32}$ g/mol (Table 8, entries 7-8), respectively. These values are consistent with the same mechanism being in effect in 34DMSO regardless of the presence of N7. The MW_{det} values describe time-averaged ion pairs $1b^*(Na)_{0.5}(DMSO)_{1.5}$ and ³⁶1r^{*}(Na)_{0.5}(DMSO)_{1.5} that represent 1:1 equilibrium mixtures of CIP/SIP forms (Scheme 2, Equations 7b and 7r). The stable CIP forms **1b***Na(DMSO) and **1r***Na(DMSO) each accept another molecule of DMSO which aids in the $\frac{1}{41}$ formation of SIPs containing solvated Na⁺ ions separate from 1b^{*}(DMSO)₂ and 1r^{*}(DMSO)₂, respectively. Then as 43predicted by DFT calculations (Table 7) and in agreement with ion pair theory^{23, 24} the SIP anions alkylate primarily at 45 the nitrogen with the most negative charge, N1, producing products 2b and 2r (4:1 2b/3b and 3:1 2r/3r).

Page 25 of 61 The Journal of Organic Chemistry Scheme 2. Ion Pair Theory Mechanisms for Solvent Controlled Site-Selective Pyrazolo-Fused Ring Heterocycle

2	00								-		
	6	Moloculor	waighta	$(\mathbf{M}\mathbf{M}\mathbf{M})$	oro	avpragad	in	unita	ofa	mo	L
2	20	widecular	weights		are	expressed	ш	units	01 2	/IIIO	L
	59		\mathcal{O}	· /		1			<i>c</i>	,	

¹₂ CONCLUSION

3

59

60

4 Understanding and controlling azolo-heterocycle alkylation site-selectivity is critical to many medicinal 5 6 chemistry programs. This study has demonstrated that in THF, pyrazolo-, imidazo- and triazolo-fused ring heterocycles 7 8 9 that contain N7 will preferentially alkylate at N2 (for pyrazolo-) or N3 (for imidazo- and triazolo-) in good to excellent 10 ¹¹selectivity. When conducted in DMSO, high selective alkylation of N1 is observed with pyrazolo- and imidazo-fused 12 13 14ring heterocycles containing N7. Even with CH instead of N7, pyrazolo-fused ring heterocycles exhibit generally good 15 16N1-selectivity in DMSO. However, imidazo-fused ring heterocycles lacking N7 show no selectivity in DMSO. In 17 ¹⁸DMSO, alkylation of triazolo-fused ring heterocycles is not selective with or without N7. Finally, equal alkylation 19 20 ²⁰₂₁product distribution amongst azole nitrogens, of interest for compound library production, can be achieved with 10-1 22 23THF/DMSO solvent mixtures. 24 25 X-ray crystal structures of sodium iodide complexes 5a and 5b and DFT calculations coupled with PFG-STE 26 27 28NMR MW analysis of the ionic reactive intermediates in solution support ion pair mechanistic interpretations. 29 ³⁰Interestingly, these data suggest that in THF, N7 contributes to a tight N1-Na bond in the intermediate TIP $1b^*(Na)$ 31 $^{32}_{33}$ (Equation 5); which, as applied to pyrazolo-, imidazo- and triazolo-fused heterocycles, blocks N1 alkylation and forces 34 35alkylation to the N2- or N3-azolo-nitrogen. This agrees with early ion pair theory²³ which determined that in THF, 36 ³⁷solvent separated anions with sodium cations (SIPs) make up less than 1% of the ionic species when compared to polar 38 $^{39}_{40}$ solvents such as HMPA or DMSO and that CIPs or TIPs predominate in THF. In further agreement with ion-pair 41 H2theory, the inability to form SIPs in THF led to decreased reactivity as witnessed in alkylations with bulky electrophiles 43 44that required higher temperatures to go to completion as compared to DMSO (Table 3). 45 46 This work has uncovered a new principle of alkylation site control in azolo-fused ring heterocycles containing 47 48 ⁴⁹the N7 atom. Reactions performed in THF will predictably alkylate preferentially at N2 or N3 and this is expected to 50 ⁵¹provide new opportunities for drug discovery projects to examine substituent effects into vector directions not 53 ⁵⁴previously recognized as being accessible from such a simple reaction. 55 56 57 58 26

Page 27 of 61 **ÉXPERIMENTAL SECTION**

1

59

60

The Journal of Organic Chemistry

2 General Information. All starting materials and reagents were purchased from commercial sources and used as 3 4 received unless otherwise noted. Microwave reactions were performed with a single mode operating Biotage Initiator⁺ 5 6 7 in sealed reaction vials at the indicated fixed temperature held constant for the designated reaction time. The 8 9 temperature within the microwave reaction vial was monitored by an IR sensor focused on a point on the reaction vial 10 ¹¹₁₂glass. Melting points were obtained on a Electrothermal IA-9100 Melting Point Apparatus and are uncorrected. The 13 14instrument was validated by melting a sample of 1-naphthoic acid, mp 160-161 °C (vendor reported mp 157-160 °C). 15 ¹⁶NMR spectra were recorded on 400 MHz and 600 MHz instruments. All ¹H and ¹³C NMR data were referenced to the 17 ¹⁸₁₉internal deuterated solvent relative to TMS at 0 ppm. Analytical HPLC was performed with a C₁₈ column (3 μ m, 3 \times 50 20 21mm) and the solvent system A: pH 4.5 aqueous buffer (20 mM KH2PO4) and B: acetonitrile; eluting 0% B (2 min), 0-22 ²³20% B (2.5 min), 20-75% B (3.5 min), 75% B (1 min) with a flow rate of 1.5 mL/min. Analytical LC/MS was 24 ²⁵₂₆performed on a UPLC-MS instrument equipped with a C₁₈ column (1.7 μ m, 2.1 × 50 mm) and the solvent system A: 27 280.1% HCOOH in H₂O and B: 0.1% HCOOH in acetonitrile, eluting 5-95% solvent B (0.75 min) with a flow rate of 1 29 ³⁰mL/min at a column temperature of 45 °C. Flash column chromatography (FCC) was performed on prepacked silica 31 $^{32}_{33}(SiO_2)$ columns eluted with the indicated solvents. Preparative HPLC Method 1: on a 30 mm \times 100 mm \times 2.5 μm 34 35(particle size) C₁₈ column with a gradient of acetonitrile (B) in water (A) (15 min) and 0.05% trifluoroacetic acid added 36 ³⁷as a modifier to both phases with a flow rate of 60 mL/min. Elution profiles were monitored by UV at 254 and 220 nm. 38 ³⁹Preparative HPLC Method 2: on a 30 mm \times 100 mm \times 5 μ m (particle size) C₁₈ column and the solvent system with a 9 40 41 ¹₄₂min gradient of acetonitrile (B) in water (A) and 0.1% trifluoroacetic acid added as a modifier to both phases with a 43 44 flow rate of 60 mL/min. Fractions collected from preparative HPLC were diluted with aqueous 1 M Na₂CO₃ and 45 ⁴⁶extracted with CH₂Cl₂ (3×50 mL); organic extract dried (MgSO₄) and evaporated to product residue. The standard 47 48 ⁴⁰/₄₉crystallization method to prepare samples for mp determination, microanalysis or X-ray crystallographic structure 50 51 determination, unless specified otherwise, was to dissolve 50 mg of sample in 0.5 mL THF in a 4 mL vial, place this 52 ⁵³inside a 20 mL vial containing 5 mL pentane, cap the outer vial and after standing at rt for 24-72 h, the resulting 54 ⁵⁵₅₆crystals were collected. C, H, I, N, and Na microanalysis were performed at a vendor where %I and %Cl were 57 58 27

The Journal of Organic Chemistry determined by ion chromatography and %Na was determined with ICP-OES. Single crystal X-ray diffraction studies

¹ were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K_{α} radiation ($\lambda = 0.71073$ Å).

4-Methoxy-1-methyl-1H-pyrazolo[3,4-d]pyrimidine (2b) and 4-Methoxy-2-methyl-2H-pyrazolo[3,4-¹⁰*d*]pyrimidine (3b). General Method 1. Methylation of Heterocycles in THF and DMSO. To 4-methoxy-1*H*-¹₁₃pyrazolo[3,4-*d*]pyrimidine (**1b**) (100 mg, 0.67 mmol) suspended or dissolved, respectively, in 3.3 mL of THF (at 0 °C) 15or DMSO (at 15 °C), was added 1 mL of a 1 M solution of NaHMDS in THF (1 mmol) followed by iodomethane (0.12 ¹⁷mL, 2 mmol) and each mixture stirred at 20 °C for 1h. Then the two reaction mixtures were separately diluted with ²⁰CH₂Cl₂ and aqueous 1 M NH₄Cl, the organic layers separated and the aqueous layers extracted with CH₂Cl₂ (3×15 22mL). The combined organic extracts from each experiment were dried (MgSO₄) and concentrated to crude product ²⁴residues. Purifications (FCC, SiO₂, 10-100% EtOAc/heptane) first afforded compound **2b** as a white solid (THF: 9 mg, ²⁶₂₇8% yield; DMSO: 60 mg, 55% yield): ¹H and ¹³C NMR (DMSO- d_6) were identical to that reported;^{10 1}H NMR (400 29MHz, CDCl₃) δ 8.54 (s, 1H), 8.00 (s, 1H), 4.14 (s, 3H), 4.08 (s, 3H); 2D NOESY NMR (400 MHz, CDCl₃) showed no ³relevant crosspeaks. X-ray crystallography confirmed the structure; see CCDC 1825997. Continued elution provided compound **3b** as a white solid (THF: 75 mg, 69% yield; DMSO: 14 mg, 13% yield): 37mp 177-180 °C (lit. mp 166-169 °C);¹⁰ ¹H and ¹³C NMR (DMSO-*d*₆) were identical to that reported;¹⁰ HSQC (DMSO-³⁹*d*₆) showed cross peaks of δ 8.61-125.1 (H3-C3); 8.52 to 154.6 (H6-C6); 4.15 to 40.5 (NCH₃ C-H); 4.07 to 53.9 (OCH₃ ⁴¹₄₂C-H); NOESY (DMSO- d_6) showed cross peaks from δ 8.61 to 4.15 (H3 to NCH₃); ¹H NMR (400 MHz, CDCl₃) δ 8.54 4640.9; 2D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2-CH₃ (δ 4.05) to H3 (δ 7.94); 1H NMR (400 ⁴⁸₄₉MHz, THF-*d*₈) δ 8.43 (s, 1H), 8.20 (s, 1H), 4.14 (s, 3H), 4.06 (s, 3H); 13C NMR (101MHz, THF-*d*₈) δ 165.9, 163.1, ⁵⁵₅₁155.6, 124.5, 104.2, 54.1, 40.9; HSQC (THF-*d*₈) cross peaks of δ 8.25-123 (H3-C3); 8.48 to 154.5 (H6-C6); 4.18 to 5339.5 (NCH₃ C-H); 4.10 to 53.0 (OCH₃ C-H); NOESY (THF- d_8) cross peaks of δ 4.18 to 8.24 (NCH₃ to H3); ¹H NMR ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 29 of 61 $(400 \text{ MHz}, \text{ methanol}-d_4) \delta 8.51 (s, 1H), 8.39 (s, 1H), 4.20 (s, 3H), 4.15 (s, 3H); X-ray crystallography confirmed the$

¹ structure; see CCDC 1825993.

4-Chloro-1-methyl-1*H*-pyrazolo[3,4-*d*]pyrimidine (2a) and 4-Chloro-2-methyl-2*H*-pyrazolo[3,4-*d*]pyrimidine (3a). Prepared from 4-chloro-1H-pyrazolo[3,4-d]pyrimidine (1a) (100 mg, 0.64 mmol) and iodomethane as described in General Method 1. THF and DMSO conditions: 20 °C/1.5 h. Purification (FCC, SiO₂, 10-100% ¹¹₁₂EtOAc/heptane) first afforded compound **2a** as a white solid (THF: 7 mg, 6% yield; DMSO: 51 mg, 47% yield): ¹H and 14 ¹³C NMR (DMSO-*d*₆) were identical to that reported.³⁶ Continued elution provided compound **3a** as a white solid (THF: 39 mg, 36% yield; DMSO: 12 mg, 11% yield): H (DMSO- d_6) was identical to that reported;³⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.16 (s, 1H), 4.31 (s, 3H); 222D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2-CH₃ (δ 4.31) to H3 (δ 8.16); ¹³C NMR (101 MHz, ²⁴CDCl₃) δ 160.0, 156.2, 154.8, 124.9, 113.4, 41.6. 1-Ethyl-4-methoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (2c) and 2-Ethyl-4-methoxy -2*H*-pyrazolo[3,4-*d*]pyrimidine (3c). Prepared from 4-methoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (1b) and 2-iodoethane (0.16 mL, 2 mmol) ³²as described in General Method 1. THF conditions: 20 °C/24 h. DMSO conditions: 20 °C/0.5 h. Purification (FCC, $^{34}_{35}$ SiO₂, 10-100% EtOAc/heptane) first afforded first afforded compound **2c** as a white solid (THF: 5 mg, 4% yield; 37DMSO: 80 mg, 67% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.50 (t, J=7.21 Hz, 3 H) 4.13 (s, 3 H) 4.48 (q, J=7.34 Hz, 2 ³⁹H) 7.28 (s, 1 H) 8.00 (s, 1 H) 8.53 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 154.9, 154.1, 130.9, 102.8, 54.1, $^{41}_{42}$ 42.5, 14.9. Anal. calcd for C₈H₁₀N₄O: C, 53.92; H, 5.66; N, 31.44. Found: C, 53.99; H, 5.35; N, 31.53. Continued elution provided compound **3c** as a white solid (THF: 78 mg, 66% yield; DMSO: 16 mg, 13% yield): ⁴⁷¹H NMR (400 MHz, CDCl₃) δ 1.65 (t, *J*=7.34 Hz, 3 H) 4.14 (s, 3 H) 4.47 (q, *J*=7.34 Hz, 2 H) 5.31 (s, 1 H) 7.29 (s, 1 $^{49}_{50}$ H) 8.01 (s, 1 H) 8.63 (s, 1 H); 2D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2-CH₂ (δ 4.47) to H3 52(δ 8.01); ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 161.5, 155.3, 122.0, 103.0, 53.9, 49.0, 15.3. Anal. calcd for C₈H₁₀N₄O: 54C, 53.92; H, 5.66; N, 31.44. Found: C, 54.22; H, 5.61; N, 31.14.

The Journal of Organic Chemistry Page 30 of 61 1-Isopropyl-4-methoxy-1H-pyrazolo[3,4-d]pyrimidine (2d) and 2-Isopropyl-4-methoxy-1H-pyrazolo[3,4-

¹ *d*]pyrimidine (3d). Prepared from 4-methoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (1b) and 2-iodopropane (0.20 mL, 2 2 3 mmol) as described in General Method 1. THF conditions: microwave heating to 160 °C/0.75 h. DMSO conditions: 20 4 5 °C/1.5 h. Purification [FCC, SiO₂, 5-65% polar solvent (9-1 EtOAc:MeOH) in heptane] first afforded compound 2d as 6 7 8 a white solid (THF: 8 mg, 6% yield; DMSO: 53 mg, 41% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.03 (s, 9 ¹⁰1H). 5.18 (spt, *J*=6.7 Hz, 1H), 4.16 (s, 3H), 1.59 (d, *J*=6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 154.7, 11 12 ¹²153.7, 130.7, 102.8, 54.1, 49.3, 22.0. LC/MS (ESI+) calcd for C₉H₁₂N₄O ([M + H]⁺) *m/z* 193.1; found 193.1. Anal. 14 15calcd for C₉H₁₂N₄O: C, 56.24; H, 6.29; N, 29.15. Found: C, 56.72; H, 6.16; N, 29.28. 16 17 18 Continued elution provided compound **3d** as a white solid (THF: 41 mg, 32% yield; DMSO: 11 mg, 9% yield): 19 ²⁰₂₁¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.00 (s, 1H), 4.74 (spt, *J*=6.7 Hz, 1H), 4.09 (s, 3H), 1.62 (d, *J*=6.6 Hz, 22 236H); 2D NOESY NMR (400 MHz, CDCl₃) showed crosspeaks from N2-CHCH₃ (δ 4.74 and 1.62) to H3 (δ 8.00); ¹³C 24 ²⁵NMR (101 MHz, CDCl₃) δ 165.1, 161.4, 155.4, 120.1, 102.8, 56.3, 53.9, 23.0. LC/MS (ESI+) calcd for C₉H₁₂N₄O ([M 26 27 ²/₂₈+ H]⁺) *m/z* 193.1; found 193.1. Anal. calcd for C₉H₁₂N₄O: C, 56.24; H, 6.29; N, 29.15. Found: C, 56.32; H, 6.29; N, 29 3029.31. 31 32 33 1-Isobutyl-4-methoxy-1H-pyrazolo[3,4-d]pyrimidine (2e) and 2-Isobutyl-4-methoxy-2H-pyrazolo[3,4-34 35 $3_{36}d$]pyrimidine (3e). The reaction in THF was according to General Method 1 using reagents: 4-methoxy-1*H*-37 38pyrazolo[3,4-d]pyrimidine (1b) (450 mg, 3 mmol), 15 mL THF, 4.5 mL of 1 M NaHMDS in THF (4.5 mmol), and 1-39 ⁴⁰iodo-2-methylpropane (1.0 mL, 9.0 mmol) with microwave heating at 160 °C for 45 min. The reaction in DMSO was 41 42 ⁴²₄₃according to General Method 1 using reagents: **1b** (100 mg, 0.67 mmol), 3.3 mL DMSO, 1.0 mL of 1 M NaHMDS in 44 45THF (1 mmol), 1-iodo-2-methylpropane (0.23 mL, 2.0 mmol), 20 °C/1.5 h. Purification [FCC, SiO₂, 5-50% polar 46 ⁴⁷solvent (9-1 EtOAc:MeOH) in heptane] first afforded compound **2e** as an oil (THF: 40 mg, 6% yield; DMSO: 51 mg, 48 ⁴⁹₅₀37% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.03 (s, 1H), 4.26 (d, *J*=7.3 Hz, 2H), 4.16 (s, 3H), 2.38 (quint, 51 52J=6.9, 13.8 Hz, 1H), 0.92 (d, J=6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 155.0, 154.8, 130.9, 102.5, 54.6, 53 5454.1, 29.2, 19.9. Anal. calcd for C10H14N4O: C, 58.24; H, 6.84; N, 27.17. Found: C, 57.94; H, 6.45; N, 26.90. 55 56 57 58

59

Page 31 of	The Journal of Organic Chemistry Continued elution provided compound 3e as a white solid (THF: 350 mg, 57% yield; DMSO: 15 mg, 11%
1 yield):	¹ H NMR (400 MHz, CDCl ₃) δ 8.63 (s, 1H), 7.94 (s, 1H), 4.18 (d, <i>J</i> =7.3 Hz, 2H), 4.13 (s, 3H), 2.43 (quint,
³ ₄ <i>J</i> =6.9,	13.7 Hz, 1H), 0.95 (d, J=6.7 Hz, 6H); 2D NOESY NMR (400 MHz, CDCl ₃) showed crosspeaks from N2-CH ₂
5 6 (δ 4.18 7) to H3 (δ 7.94); ¹³ C NMR (101 MHz, CDCl ₃) δ 165.2, 161.7, 155.5, 123.2, 103.0, 61.7, 54.0, 29.5, 19.8. Anal.
8 calcd f 9	or C ₉ H ₁₂ N ₄ O: C, 58.24; H, 6.84; N, 27.17. Found: C, 58.34; H, 6.84; N, 27.22.
10 11 12	1-(Cyclopropylmethyl)-4-methoxy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (2f) and 2-(Cyclopropylmethyl)-4-
13 14 metho	xy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (3f). Prepared from 4-methoxy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (1b) and
15 16(bromo 17	omethyl)cyclopropane (0.19 mL, 2 mmol) as described in General Method 1. THF conditions: 65 °C/48 h.
¹⁸ DMSC	conditions: 20 °C/144 h. Purification (FCC, SiO ₂ , 10-100% EtOAc in heptane) first afforded compound 2f as an
20 21oil (TH	IF: 14 mg, 10% yield; DMSO: 58 mg, 42% yield): ¹ H NMR (400 MHz, CDCl ₃) δ 8.56 (s, 1H), 8.05 (s, 1H), 4.33
23(d, <i>J</i> =7 24	7.1 Hz, 2H), 4.17 (s, 3H), 1.47 - 1.33 (m, 1H), 0.61 - 0.53 (m, 2H), 0.50 - 0.44 (m, 2H); ¹³ C NMR (101 MHz,
25CDCl3	δ 164.8, 154.9, 154.5, 131.0, 103.7, 54.2, 52.4, 11.3, 3.9. LC/MS (ESI+) calcd for C ₁₀ H ₁₂ N ₄ O ([M + H] ⁺) <i>m/z</i>
27 28205.1; 29	found 205.1. Anal. calcd for C10H12N4O: C, 58.81; H, 5.92; N, 27.43. Found: C, 58.93; H, 5.94; N, 26.73.
30 31 32	Continued elution provided compound 3f as a white solid (THF: 69 mg, 50% yield; DMSO: 12 mg, 9% yield):
³³ 1 ₁ H NM	IR (400 MHz, CDCl ₃) δ 8.65 (s, 1H), 8.16 (m, 1H), 4.28 (d, <i>J</i> =7.3 Hz, 2H), 4.16 (s, 3H), 1.53 - 1.39 (m, 1H),
³⁵ 36 ^{0.80} - 0	0.71 (m, 2H), 0.50 (s, 2H); 2D NOESY NMR (400 MHz, CDCl ₃) showed crosspeaks from N2-CH ₂ (δ 4.28) to
37 38H3 (δ 8 39	8.16); ¹³ C NMR (101 MHz, CDCl ₃) δ 165.3, 161.2, 155.4, 122.2, 103.3, 58.9, 54.1, 10.9, 4.4. LC/MS (ESI+)
⁴⁰ calcd f	or $C_{10}H_{12}N_4O$ ([M + H] ⁺) m/z 205.1; found 205.1. Anal. calcd for $C_{10}H_{12}N_4O$: C, 58.81; H, 5.92; N, 27.43.
42 43 ^{Found:}	C, 58.12; H, 5.87; N, 27.36.
44 45 46 47	1-Benzyl-4-methoxy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (2g) and 2-Benzyl-4-methoxy-1 <i>H</i> -pyrazolo[3,4-
⁴⁸ <i>d</i>]pyri	midine (3g). Prepared from 4-methoxy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (1b) and benzyl chloride (0.23 mL, 2
50 51mmol) 52	as described in General Method 1. THF conditions: microwave heating to 160 °C/0.75 h. DMSO conditions: 20
53°C/1 h. 54	Purification [FCC, SiO ₂ , 5-65% polar solvent (9-1 EtOAc:MeOH) in heptane] first afforded compound 2g as a
⁵⁵ white s	olid (THF: 7 mg, 4% yield; DMSO: 64 mg, 40% yield): ¹ H NMR (400 MHz, CDCl ₃) δ 8.61 (s, 1H), 8.07 (s,
57 58	31
60	ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 32 of 61 1H), 7.38 - 7.29 (m, 5H), 5.65 (s, 2H), 4.17 (s, 3H); ¹³ C NMR (101 MHz, CDCl ₃) δ 164.1, 155.3, 154.7, 136.3, 131.6,
¹ 128.7, 128.01, 127.97, 102.8, 54.2, 51.1; 2D HSQC and HMBC NMR (400 MHz, CDCl ₃) confirmed the structure.
Anal. calcd for $C_{13}H_{12}N_4O$: C, 64.99; H, 5.03; N, 23.32. Found: C, 65.04; H, 4.70; N, 22.90.
6 7 Continued elution provided compound 3g as a white solid (THF: 64 mg, 40% yield; DMSO: 66 mg, 41% yield): 8
⁹ ¹ H NMR (400 MHz, CDCl ₃) δ 8.65 (s, 1H), 7.91 (s, 1H), 7.44 - 7.33 (m, 5H), 5.59 (s, 2H), 4.12 (s, 3H); ¹³ C NMR (101 10
$^{11}_{12}$ MHz, CDCl ₃) δ 165.2, 161.7, 155.6, 134.5, 129.1, 128.8, 128.5, 123.0, 103.6, 58.0, 54.0; 2D HSQC and HMBC NMR
13 14(400 MHz, CDCl ₃) confirmed the structure. Anal. calcd for C ₁₃ H ₁₂ N ₄ O: C, 64.99; H, 5.03; N, 23.32. Found: C, 64.80;
16H, 5.05; N, 23.25. 17
 4-Methoxy-1-(2-methoxyethyl)-1H-pyrazolo[3,4-d]pyrimidine (2h) and 4-Methoxy-2-(2-methoxyethyl)-
21 22 2H-pyrazolo[3,4-d]pyrimidine (3h). Prepared from 4-methoxy-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (1b) and 1-bromo-2-
²⁵ ²⁴ methoxyethane (0.19 mL, 2 mmol) as described in General Method 1. THF conditions: microwave heating to 160 ²⁵
²⁶ _o C/0.75 h. DMSO conditions: 20 °C/20 h. Purification, from THF reaction: (FCC, SiO ₂ , 20-100% EtOAc in heptane)
²⁸ ₂₉ first afforded compound 2h as a white solid (25 mg, 18% yield): ¹ H NMR (400 MHz, CD ₃ OD) δ 8.54 (s, 1H), 8.12 (s,
³⁰ ³¹ 1H), 4.62 (t, <i>J</i> =5.5 Hz, 2H), 4.18 (s, 3H), 3.88 (t, <i>J</i> =5.4 Hz, 2H), 3.29 (s, 3H); ¹³ C NMR (101 MHz, CD ₃ OD) δ 164.2, ³²
³³ 155.0, 154.8, 131.0, 102.5, 70.0, 57.5, 53.6, 46.6; 2D HSQC and HMBC NMR (400 MHz, CD ₃ OD) confirmed the
³⁵ ₃₆ structure. Anal. calcd for C ₁₃ H ₁₂ N ₄ O: C, 51.92; H, 5.81; N, 26.91. Found: C, 51.93; H, 5.81; N, 26.78.
²⁸ ³⁹ Continued elution provided compound 3h as a white solid (66 mg, 48% yield): ¹ H NMR (400 MHz, CD ₃ OD) δ
⁴¹ ₄₂ 8.54 (s, 1H), 8.43 (s, 1H), 4.64 - 4.59 (m, 2H), 4.17 (s, 3H), 3.91 - 3.86 (m, 2H), 3.33 (s, 4H); ¹³ C NMR (101 MHz,
⁴³ ₄₄ CD ₃ OD) δ 165.8, 160.7, 155.2, 125.5, 102.8, 70.0, 57.7, 53.6, 53.6; 2D HSQC and HMBC NMR (400 MHz, CD ₃ OD)
46confirmed the structure. Anal. calcd for $C_{13}H_{12}N_4O$: C, 51.92; H, 5.81; N, 26.91. Found: C, 51.76; H, 6.00; N, 26.56. 47 48
The DMSO reaction was purified using Preparative HPLC Method 1, 10-40% B in A, to provide first
⁵¹ ₅₂ compound 3h as a white solid (4 mg, 3%) and then compound 2h (79 mg, 57%). ⁵³
54 55 56
57 58 32 59

Page 33 of 61 The Journal of Organic Chemistry 4-Methoxy-1-(3-methylbut-2-en-1-yl)-1H-pyrazolo[3,4-d]pyrimidine (2i) and 4-Methoxy-2-(3-methylbut-¹ 2-en-1-yl)-2H-pyrazolo[3,4-d]pyrimidine (3i). Prepared from 4-methoxy-1*H*-pyrazolo[3,4-d]pyrimidine (1b) and 3,3-dimethylallyl bromide (0.23 mL, 2 mmol) as described in General Method 1. THF conditions: 20 °C/2 h. DMSO conditions: 20 °C/3 h. Purification: (FCC, SiO₂, 0-50% EtOAc in heptane) first afforded compound 2i as an oil (THF: 6 8 mg, 4% yield; DMSO: 73 mg, 50% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.05 (s, 1H), 5.68 - 5.41 (m, ¹⁰1H). 5.07 (d, *J*=6.8 Hz, 2H), 4.18 (s, 3H), 1.88 (s, 3H), 1.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 155.0, $^{12}_{13}$ 154.2, 137.4, 131.1, 118.7, 102.7, 54.1, 45.2, 25.7, 18.1. LC/MS (ESI+) calcd for C₁₁H₁₄N₄O ([M + H]⁺) m/z 219.1; 15found 219.2. Anal. calcd for C₁₁H₁₄N₄O: C, 60.53; H, 6.47; N, 25.67. Found: C, 60.32; H, 6.47; N, 25.77. Continued elution provided compound **3i** as a white solid (THF: 81 mg, 56% yield; DMSO: 0 mg, 0% yield): ²³₂₁¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.01 (s, 1H), 5.71 - 5.38 (m, 1H), 5.03 (d, *J*=7.3 Hz, 2H), 4.16 (s, 3H), 1.85 23(d, *J*=12.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 161.7, 155.4, 140.7, 121.9, 117.0, 103.2, 53.9, 51.6, 25.8, ²⁵18.2; 2D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2-CH₂ (δ 5.03) to H3 (δ 8.01). Anal. calcd for ²/₂₈C₁₁H₁₄N₄O: C, 60.53; H, 6.47; N, 25.67. LC/MS (ESI+) calcd for C₁₁H₁₄N₄O ([M + H]⁺) *m/z* 219.1; found 219.1. 30Found: C, 59.72; H, 6.08; N, 25.12. Ethyl 2-(4-Methoxy-1H-pyrazolo[3,4-d]pyrimidin-1-yl)acetate (2j) and Ethyl 2-(4-Methoxy-2H-³⁶₃₆pyrazolo[3,4-d]pyrimidin-2-yl)acetate (3j). Prepared from 4-methoxy-1*H*-pyrazolo[3,4-d]pyrimidine (1b) and ethyl 38chloroacetate (0.21 mL, 2.0 mmol) as described in General Method 1. THF conditions: 20 °C/16 h. DMSO conditions: ⁴⁰20 °C/3 h. Purification: (FCC, SiO₂, 0-50% EtOAc in heptane) first afforded compound **2j** as a white solid (THF: 45 ⁴²/₄₃mg, 28% yield; DMSO: 97 mg, 59% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.08 (s, 1H), 5.22 (s, 2H), 454.22 (q, J=7.1 Hz, 2H), 4.15 (s, 3H), 1.25 (t, J=7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 164.1, 155.53, ⁴⁷155.45, 132.2, 102.9, 61.9, 54.3, 48.4, 14.1. Anal. calcd for C₁₀H₁₂N₄O₃: C, 50.84; H, 5.12; N, 23.72. Found: C, 50.98; ⁴⁹₅₀H, 4.92; N, 23.51. Continued elution provided compound **3***j* as a white solid (THF: 92 mg, 57% yield; DMSO: 40 mg, 24% yield): ⁵⁵¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.14 (s, 1H), 5.20 (s, 2H), 4.28 (q, *J*=7.2 Hz, 2H), 4.15 (s, 3H), 1.30 (t,

ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 34 of 61 J=7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 165.5, 161.5, 156.0, 124.9, 104.1, 62.5, 54.8, 54.1, 14.1; 2D ¹ NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2-CH₂ (δ 5.20) to H3 (δ 8.14). Anal. calcd for 2 3 C₁₀H₁₂N₄O₃: C, 50.84; H, 5.12; N, 23.72. Found: C, 50.63; H, 4.94; N, 23.37. 4 5 6 4-Methoxy-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidine (2k) and 4-Methoxy-2-7 8 9 (tetrahydro-2H-pyran-4-yl)-2H-pyrazolo[3,4-d]pyrimidine (3k). Prepared from 4-methoxy-1H-pyrazolo[3,4-10 11 pyrimidine (1b) and 4-iodotetrahydro-2H-pyran (0.29 mL, 2 mmol) as described in General Method 1. THF 12^{d} 13 14conditions: microwave heating to 160 °C/0.75 h. DMSO conditions: 20 °C/19 h. Purification, from THF reaction: [FCC, 15 ¹⁶SiO₂, 10-100% polar solvent (9-1 EtOAc:MeOH) in heptane]. From DMSO reaction: [FCC, SiO₂, 10-100% polar 17 ¹⁸_{-s}solvent (9-1 EtOAc:MeOH) in heptane] first afforded a mixture of $2\mathbf{k}$ and $1\mathbf{b}$. This mixture was subjected to 19 20 ⁻⁻₂₁preparative HPLC Method 2, 15-40% B in A, to first afford compound **1b** (52 mg, 52% yield) and then compound **2k** 22 23as a white solid [THF: none isolated (compound 1b 62 mg, 62% yield recovered); DMSO: 10 mg, 6% yield]: ¹H NMR 24 ²⁵(400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.04 (s, 1H), 5.00 (tt, *J*=4.2, 11.6 Hz, 1H), 4.20 - 4.12 (m, 5H), 3.63 (dt, *J*=2.0, 12.0 26 27 ²/₂₈Hz, 2H), 2.42 (dq, *J*=4.6, 12.4 Hz, 2H), 1.96 (td, *J*=2.1, 10.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 154.8, 29 30154.0, 131.0, 102.9, 67.1, 54.1, 53.8, 32.2. Anal. calcd for C₁₁H₁₄N₄O₂: C, 56.40; H, 6.02; N, 23.92. Found: C, 56.25; 31 ³²H, 6.11; N, 23.91. 33 34 35 Continued elution provided compound **3k** as a white solid (THF: 15 mg, 10% yield; DMSO: 7 mg, 5% yield): 36 37 38¹H NMR (400 MHz, CDCl₃) & 8.63 (s, 1H), 8.04 (s, 1H), 4.69 - 4.58 (m, 1H), 4.21 - 4.13 (m, 5H), 3.66 - 3.53 (m, 2H), 39 ⁴⁰2.29 - 2.18 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 161.3, 155.6, 120.3, 103.0, 66.6, 60.3, 54.0, 33.2; 2D 41 ⁴²₄₃NOESY NMR (400 MHz, CDCl₃) showed crosspeaks from N2-CH (δ 4.69-4.58) as well as N2-CHCH₂ (δ 2.29-2.18) 44 45to H3 (δ 8.04). Anal. calcd for C11H14N4O2: C, 56.40; H, 6.02; N, 23.92. Found: C, 56.31; H, 6.11; N, 23.95. 46 47 48 1-[2-Deoxy-3,5-di-O-(p-toluoyl)-β-D-erythro-pentofuranosyl]-4-methoxy-1H-pyrazolo[3,4-d]pyrimidine 49 50 $5_1(2l), 1-[2-Deoxy-3,5-di-O-(p-toluoyl)-\alpha-D-erythro-pentofuranosyl]-4-methoxy-1H-pyrazolo[3,4-d]pyrimidine (2ll)$ 52 ⁵³and 2-[2-Deoxy-3,5-di-*O*-(*p*-toluoyl)-β-D-erythro-pentofuranosyl]-4-methoxy-2*H*-pyrazolo[3,4-*d*]pyrimidine (3l).

55 ⁵⁶Prepared from 4-methoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (1b) and 2-deoxy-3,5-di-O-(p-toluoyl)-a-D-erythro-

57

54

58

60

Page 35 of 61 The Journal of Organic Chemistry pentofuranosyl chloride (7) (388 mg, 1.0 mmol) as described in General Method 1. THF conditions: 20 °C/4 h. DMSO ¹ conditions: 20 °C/1 h. Purification, from THF reaction: (the first chromatography system, FCC, SiO₂, 10-80% EtOAc in heptane). From DMSO reaction: (the first chromatography system, FCC, SiO₂, 10-80% EtOAc in heptane) first afforded a mixture of **2I** and **2II**. This mixture was subjected purification: (the second chromatography system, FCC, 8 SiO₂, 0-10% EtOAc in CH₂Cl₂) first afforded compound **2l** as a white solid (THF: 108 mg, 32% yield; DMSO: 81 mg, ¹⁰24% yield): ¹H and ¹³C NMR (DMSO-*d*₆) were identical to that reported.^{19b} Continued elution from the DMSO reaction second chromatography system provided compound 2ll as a white ¹⁶solid (THF: none isolated; DMSO: 23 mg, 7% yield): ¹H and ¹³C NMR (DMSO-*d*₆) were identical to that reported. ^{19b} Continued elution from the first chromatography system of the THF and DMSO derived products provided 22compound **3I** as a white solid (THF: 95 mg, 28% yield; DMSO: 39 mg, 12% yield): ¹H and ¹³C NMR (DMSO- d_6) were ²⁴identical to that reported; ^{19b} ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.27 (s, 1H), 7.96 (d, J=8.19 Hz, 2H), 7.76 (d, ²⁶₂₇*J*=8.19 Hz, 2H), 7.28 (d, *J*=7.95 Hz, 2H), 7.12 (d, *J*=7.95 Hz, 2H), 6.47 (t, *J*=5.99 Hz, 1H), 5.82 (td, *J*=3.27, 6.42 Hz, 291H), 4.72-4.80 (m, 2H), 4.56-4.65 (m, 1H), 4.09 (s, 3H), 3.26-3.35 (m, 1H), 2.96 (ddd, J=3.79, 6.48, 14.43 Hz, 1H). 312.44 (s, 3H), 2.37 (s, 3H); 2D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from H1' (δ 6.47), H5's (d 4.72-³³4.80), and H2' (3.26-3.35) to H3 (δ 8.27). 1-Methyl-1H-indazole (2m) and 2-Methyl-2H-indazole (3m). Prepared according to General Method 1 using ³⁹reagents: 1H-indazole (1m) (100 mg, 0.85 mmol), 4.2 mL of THF or DMSO, 1.3 mL of 1 M NaHMDS in THF (1.3 ⁴¹₄₂mmol), and iodomethane (0.16 mL, 2.5 mmol). THF conditions: 20 °C/96 h. DMSO conditions: 20 °C/1 h. THF 44reaction purification (FCC, SiO₂, 0-40% EtOAc/heptane) first afforded compound 2m as a white solid (55 mg, 49% 46yield): ¹H NMR (CDCl₃) was identical to that reported.³⁸ Continued elution provided compound **3m** as a white solid (35 mg, 31% yield): ¹H NMR (CDCl₃) was identical 52to that reported.39

The Journal of Organic Chemistry The DMSO reaction was purified using Preparative HPLC Method 2, 15-40% B in A, to provide first

¹ compound **3m** as a white solid (19 mg, 17%) and then compound **2m** (50 mg, 45%). 2

3
5-Bromo-1-methyl-1 <i>H</i> -indazole (2n) and 5-Bromo-2-methyl-2 <i>H</i> -indazole (3n). Prepared according to
⁷ General Method 1 using reagents (note the THF reaction has been reported): ^{20a} 5-bromo-1 <i>H</i> -indazole (1n) (150 mg, 8
⁹ 0.76 mmol), 3.8 mL DMSO (the THF reaction has been reported), ^{20a} 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and 10
¹¹ ₁₂ iodomethane (0.15 mL, 2.3 mmol). Conditions: 23 °C/4 h. Reaction purification (FCC, SiO ₂ , 0-40% EtOAc/heptane)
¹⁴ first afforded compound 2n as a white solid (77 mg, 48% yield): ¹ H NMR (CDCl ₃) was identical to that reported; ^{20b 1} H ¹⁵
16NMR (400 MHz, CDCl ₃) δ 4.07 (s, 3 H) 7.29 (d, <i>J</i> =8.80 Hz, 1 H) 7.47 (dd, <i>J</i> =8.86, 1.77 Hz, 1 H) 7.87 (d, <i>J</i> =1.34 Hz, 1 H) 7.7
¹⁸ H) 7.92 (d, J =0.73 Hz, 1 H); ¹³ C NMR (101 MHz, CDCl ₃) δ 35.6, 110.3, 113.5, 123.4, 125.4, 129.2, 131.9, 138.5; 2D
²⁰ ₂₁ NOESY NMR (400 MHz, CDCl ₃) showed a crosspeak from N1-CH ₃ (δ 4.07) to H7 (δ 7.29). ²² ₂₃
Continued elution provided compound 3n as a white solid (24 mg, 15% yield): ¹ H NMR (CDCl ₃) was identical values of the solid (24 mg, 15% yield): ¹ H NMR (CDCl ₃) was identical
²⁶ ₂₇ to that reported; ^{20b 1} H NMR (400 MHz, CDCl ₃) δ 4.22 (s, 3 H) 7.34 (dd, <i>J</i> =9.17, 1.83 Hz, 1 H) 7.58 (d, <i>J</i> =9.05 Hz, 1 H)
²⁸ ₂₉ 7.81 (d, <i>J</i> =1.71 Hz, 1 H) 7.85 (s, 1 H); ¹³ C NMR (101 MHz, CDCl ₃) δ 40.4, 115.0, 118.9, 122.1, 123.0, 123.20, 129.4, 30
31147.3; 2D NOESY NMR (400 MHz, CDCl ₃) showed a crosspeak from N1-CH ₃ (δ 4.22) to H3 (δ 7.85). 32
³⁴ 5-Bromo-1-methyl-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine (20) and 5-Bromo-2-methyl-2 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine
³⁰ 37(30). Prepared according to General Method 1 using reagents: 5-bromo-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine (10) (150 mg, 0.76)
³⁹ mmol), 3.8 mL of THF or DMSO, 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and iodomethane (0.14 mL, 2.3 40
⁴¹ mmol). THF conditions: 20 °C/2 h. DMSO conditions: 20 °C/4 h. Purification [FCC, SiO ₂ , 10-100% polar solvent (9-1
⁴³ ₄₄ EtOAc:MeOH) in heptane] first afforded compound 20 as a white solid (THF: 12 mg, 7% yield; DMSO: 74 mg, 46%
⁴³ ⁴⁶ yield): ¹ H NMR (400 MHz, CDCl ₃) δ 8.54 (d, <i>J</i> =2.2 Hz, 1H), 8.16 (d, <i>J</i> =2.2 Hz, 1H), 7.93 (s, 1H), 4.13 (s, 3H); ¹³ C
⁴⁸ NMR (101 MHz, CDCl ₃) δ 149.5, 148.6, 131.6, 130.9, 116.8, 112.3, 34.1. Anal. calcd for C ₇ H ₆ BrN ₃ : C, 39.65; H, 2.85; 49
⁵⁰ ₅₁ N, 19.82. Found: C, 39.87; H, 2.71; N, 19.68. ⁵² ⁵³
Continued elution provided compound 30 as a white solid (THF: 111 mg, 69% yield; DMSO: 5 mg, 3% yield):
⁵⁶ ₁ H NMR (400 MHz, CDCl ₃) δ 8.64 (d, <i>J</i> =2.3 Hz, 1H), 8.13 (d, <i>J</i> =2.3 Hz, 1H), 7.87 (s, 1H), 4.23 (s, 3H); ¹³ C NMR
58 36
60 ACS Paragon Plus Environment

Page 37 of 61 The Journal of Organic Chemistry (101 MHz, CDCl₃) δ 156.5, 152.2, 130.8, 122.8, 115.3, 113.2, 41.1; 2D NOESY NMR (400 MHz, CDCl₃) showed a ¹ crosspeak from N2-CH₃ (δ 4.23) to H3 (δ 8.13). Anal. calcd for C₇H₆BrN₃: C, 39.65; H, 2.85; N, 19.82. Found: C, 39.90; H, 2.72; N, 19.78. 1-Methyl-1*H*-pyrazolo[3,4-*d*]pyrimidine (2p) and 2-Methyl-2*H*-pyrazolo[3,4-*d*]pyrimidine (3p). Prepared according to General Method 1 using reagents: 1*H*-pyrazolo[3,4-*d*]pyrimidine (1p) (150 mg, 1.25 mmol), 6.2 mL of ¹¹₁₂THF or DMSO, 1.9 mL of 1 M NaHMDS in THF (1.9 mmol), and iodomethane (0.23 mL, 3.8 mmol). THF and DMSO 14conditions: 20 °C/4 h. Purification [FCC, SiO₂, 10-100% polar solvent (9-1 EtOAc:MeOH) in heptane] first afforded ¹⁶compound **2p** as a white solid (THF: 13 mg, 8% yield; DMSO: 45 mg, 27% yield): ¹H and ¹³C NMR (CDCl₃) were ¹⁸₁₉identical to that reported.⁴⁰ LC/MS (ESI+) calcd for C₆H₆N₄ ($[M + H]^+$) *m/z* 135.1; found 135.0. Continued elution provided compound **3p** as a white solid (THF: 63 mg, 38% yield; DMSO: 5 mg, 3% yield): ²⁴¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 9.11 (s, 1H), 8.12 (s, 1H), 4.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ²⁶₂₇159.03, 155.64, 154.71, 124.70, 113.33, 41.35; 2D NOESY NMR (400 MHz, CDCl₃) showed a crosspeak from N2- $_{29}$ CH₃ (δ 4.31) to H3 (δ 8.12). LC/MS (ESI+) calcd for C₆H₆N₄ ([M + H]⁺) m/z 135.1; found 135.0. Anal. calcd for ³¹C₆H₆N₄: C, 53.72; H, 4.51; N, 41.77. Found: C, 52.67; H, 4.22; N, 39.93. 4-Methoxy-1-methyl-1*H*-indazole (2q) and 4-Methoxy-2-methyl-2*H*-indazole (3q). Prepared according to 37General Method 1 using reagents: 4-methoxy-1H-indazole (1q) (100 mg, 0.67 mmol), 3.4 mL of THF or DMSO, 1.0 ³⁹mL of 1 M NaHMDS in THF (1.0 mmol), and iodomethane (0.12 mL, 2.0 mmol). THF and DMSO conditions: 20 °C/2 ⁴¹₄₂h. Purification (FCC, SiO₂, 0-50% EtOAc in heptane) first afforded compound 2q as a white solid (THF: 62 mg, 57% 44yield; DMSO: 71 mg, 65% yield): ¹H and ¹³C NMR (CDCl₃) were identical to that reported.³⁸ LC/MS (ESI+) calcd for $46C_9H_{10}N_2O([M + H]^+) m/z$ 163.1; found 163.1. Continued elution provided compound **3q** as a white solid (THF: 27 mg, 25% yield; DMSO: 25 mg, 23% yield): 52¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3 H) 4.21 (s, 3 H) 6.36 (d, *J*=7.34 Hz, 1 H) 7.19 - 7.24 (m, 1 H) 7.30 (d, *J*=8.32 ⁵⁴Hz, 1 H) 7.96 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) & 153.2, 150.7, 126.7, 122.1, 115.8, 109.7, 98.4, 55.2, 40.2.

The Journal of Organic Chemistry

¹ N, 17.27. Found: C, 65.73; H, 6.24; N, 17.00.

4-Methoxy-1-methyl-1*H*-pyrazolo[4,3-c]pyridine (2r) and 4-Methoxy-2-methyl-2*H*-pyrazolo[4,3-7 c]pyridine (3r). Prepared according to General Method 1 using reagents: 4-methoxy-1*H*-pyrazolo[4,3-c]pyridine (1r) (149 mg, 1.00 mmol), 5 mL of THF or DMSO, 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and iodomethane (0.19 12mL, 3.0 mmol). THF and DMSO conditions: 20 °C/2 h. Purification (FCC, SiO₂, 0-20% EtOAc in CH₂Cl₂) first 14afforded compound 2r as a white solid (THF: 81 mg, 50% yield; DMSO: 75 mg, 46% yield): ¹H NMR (400 MHz, 16 CDCl₃) δ 8.04 (d, J=0.73 Hz, 1H), 7.93 (d, J=6.11 Hz, 1H), 6.89 (dd, J=0.86, 6.11 Hz, 1H), 4.10 (s, 3H), 4.03 (s, 3H); ¹⁸/₁³C NMR (101 MHz, CDCl₃) δ 158.6, 145.1, 141.7, 132, 109.9, 99.0, 53.3, 35.7; 2D HSQC NMR (400 MHz, CDCl₃) ²¹supported ¹H NMR assignment of N1-CH₃ (δ 4.03) and H8 (δ 6.89); 2D NOESY NMR (400 MHz, CDCl₃) showed a 23crosspeak from N1-CH₃ (δ 4.03) to H8 (δ 6.89). LC/MS (ESI+) calcd for C₈H₉N₃O ([M + H]⁺) m/z 164.1; found 164.1. ²⁵Anal. calcd for C₈H₉N₃O: C, 58.88; H, 5.56; N, 25.75. Found: C, 58.73; H, 5.40; N, 25.59. Continued elution provided compound **3r** as a white solid (THF: 57 mg, 35% yield; DMSO: 30 mg, 18% yield): ³¹¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.79 (d, *J*=6.36 Hz, 1H), 7.11 (dd, *J*=0.67, 6.42 Hz, 1H), 4.18 (s, 3H), 4.07 ³³₃₄(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 152.9, 139.9, 124.2, 110.1, 105.7, 53.2, 40.3; 2D HSQC NMR (400 ³⁶₃₆MHz, CDCl₃) supported ¹H NMR assignment of N2-CH₃ (δ 4.18) and H3 (δ 7.98); 2D NOESY NMR (400 MHz, 38CDCl₃) showed a crosspeak from N2-CH₃ (δ 4.18) to H3 (δ 7.98). LC/MS (ESI+) calcd for C₈H₉N₃O ([M + H]⁺) m/z ⁴⁰164.1; found 164.1. Anal. calcd for C₈H₉N₃O: C, 58.88; H, 5.56; N, 25.75. Found: C, 58.19; H, 5.49; N, 25.30. 4-Methoxy-1-methyl-1*H*-pyrazolo[3,4-*b*]pyridine (2s) and 4-Methoxy-2-methyl-2*H*-pyrazolo[3,4-**b**]pyridine (3s). Prepared according to General Method 1 using reagents: 4-methoxy-1*H*-pyrazolo[3,4-*b*]pyridine (1s) ⁴⁸₄₉(150 mg, 1.0 mmol), 5 mL of THF or DMSO, 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and iodomethane (0.19 ⁵⁰₅₁mL, 3.0 mmol). THF and DMSO conditions: 20 °C/2 h. Purification [FCC, SiO₂, 0-100% polar solvent (9-1 53EtOAc:MeOH) in heptane] first afforded compound 2s as a white solid (THF: 9 mg, 5% yield; DMSO: 110 mg, 67% ⁵⁵vield): ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J*=5.38 Hz, 1H), 8.04 (s, 1H), 6.51 (d, *J*=5.50 Hz, 1H), 4.14 (s, 3H), 4.05 ACS Paragon Plus Environment

Page 39 of 61 The Journal of Organic Chemistry (s, 3H); ¹³ C NMR (101 MHz, CDCl ₃) δ 161.0, 152.6, 150.6, 129.6, 107.4, 97.9, 55.8, 34.1; 2D NOESY NMR (400
¹ MHz, CDCl ₃) showed a crosspeak from O-CH ₃ (δ 4.05) to H5 (δ 6.51). LC/MS (ESI+) calcd for C ₈ H ₉ N ₃ O ([M + H] ⁺) ²
³ <i>m/z</i> 164.1; found 164.0. Anal. calcd for C ₈ H ₉ N ₃ O: C, 58.88; H, 5.56; N, 25.75. Found: C, 58.74; H, 5.46; N, 25.32.
 Continued elution provided compound 3s as a white solid (THF: 50 mg, 30% yield; DMSO: 9 mg, 5% yield):
⁹ ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 8.73 (s, 1H), 8.64 (d, <i>J</i> =5.87 Hz, 1H), 6.81 (d, <i>J</i> =5.87 Hz, 1H), 4.19 (s, 3H), 4.12 (s, 10)
¹¹ ₁₂ 3H); ¹³ C NMR (101 MHz, DMSO- <i>d</i> ₆) δ 164.1, 154.9, 149.4, 125.3, 107.8, 97.8, 57.3, 40.7; 2D NOESY NMR (400
¹³ ₁₄ MHz, DMSO- <i>d</i> ₆) showed a crosspeak from O-CH ₃ (δ 4.12) to H5 (δ 6.81) and N2-CH ₃ (δ 4.19) to H3 (δ 8.73). LC/MS
¹⁶ (ESI+) calcd for C ₈ H ₉ N ₃ O ([M + H] ⁺) m/z 164.1; found 164.0. Anal. calcd for C ₈ H ₉ N ₃ O: C, 58.88; H, 5.56; N, 25.75.
¹⁸ Found: C, 43.39; H, 5.26; N, 18.36. 20
 4-Chloro-1-methyl-1<i>H</i>-pyrazolo[4,3-<i>c</i>]pyridine (2t) and 4-Chloro-2-methyl-2<i>H</i>-pyrazolo[4,3-<i>c</i>]pyridine
²⁴ (3t). Prepared according to General Method 1 using reagents: 4-chloro-1H-pyrazolo[4,3-c]pyridine (1t) (150 mg, 0.98
²⁶ ₂₇ mmol), 5 mL of THF or DMSO, 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and iodomethane (0.18 mL, 2.9 mmol).
²⁸ ₂₉ THF conditions: 20 °C/16 h. DMSO conditions: 20 °C/1 h. Purification (FCC, SiO ₂ , 0-50% EtOAc in heptane) first
³¹ afforded compound 2t as a white solid (THF: 70 mg, 43% yield; DMSO: 85 mg, 52% yield): ¹ H NMR (400 MHz, 32
$^{33}_{34}$ CDCl ₃) δ 8.15 (d, <i>J</i> =6.0 Hz, 1H), 8.10 (s, 1H), 7.22 (dd, <i>J</i> =0.7, 6.0 Hz, 1H), 4.07 (s, 3H); ¹³ C NMR (101 MHz, CDCl ₃)
$^{35}_{36\delta}$ 145.2, 143.9, 143.1, 133.0, 120.1, 103.6, 36.1; 2D NOESY NMR (400 MHz, CDCl ₃) showed a crosspeak from δ 4.07
37 38to δ 7.22. LC/MS (ESI+) calcd for C ₇ H ₆ ClN ₃ ([M + H] ⁺) <i>m</i> / <i>z</i> 168.0; found 168.0. Anal. calcd for C ₇ H ₆ ClN ₃ : C, 50.17;
⁴⁰ H, 3.61; N, 25.07. Found: C, 50.38; H, 3.37; N, 24.68. ⁴¹ 42
Continued elution provided compound 3t as a white solid (THF: 64 mg, 39% yield; DMSO: 45 mg, 27% yield):
⁴⁵ 46 ¹ H NMR (400 MHz, CDCl ₃) δ 8.10 (s, 1H), 8.04 (d, <i>J</i> =6.2 Hz, 1H), 7.44 (dd, <i>J</i> =0.9, 6.2 Hz, 1H), 4.26 (s, 3H); ¹³ C
⁴⁸ ₄₉ NMR (101 MHz, CDCl ₃) δ 151.2, 145.2, 141.4, 125.2, 119.5, 110.7, 40.8; 2D NOESY NMR (400 MHz, CDCl ₃)
⁵⁰ ₅₁ showed a crosspeak from δ 4.26 to δ 8.10. LC/MS (ESI+) calcd for C ₇ H ₆ ClN ₃ ([M + H] ⁺) <i>m/z</i> 168.0; found 168.0. Anal.
52 53calcd for C7H ₆ ClN ₃ : C, 50.17; H, 3.61; N, 25.07. Found: C, 50.08; H, 3.48; N, 24.43. 54
55 56
57 58 39
60 ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 40 of 61 4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine (2u) and 4-Chloro-2-methyl-2H-pyrazolo[3,4-b]pyridine ¹ (3u). Prepared according to General Method 1 using reagents: 4-chloro-1*H*-pyrazolo[3,4-*b*]pyridine (1u) (150 mg, 0.98 mmol), 5 mL of THF or DMSO, 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and iodomethane (0.19 mL, 2.9 mmol). THF conditions: 20 °C/4 h. DMSO conditions: 20 °C/1 h. Purification (FCC, SiO₂, 0-80% EtOAc in heptane) first afforded compound **2u** as a white solid (THF: 17 mg, 11% yield; DMSO: 72 mg, 44% yield): ¹H NMR (400 MHz, ¹⁰CDCl₃) δ 8.40 (d, *J*=4.9 Hz, 1H), 8.06 (s, 1H), 7.11 (d, *J*=5.0 Hz, 1H), 4.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 51.1, 148.9, 137.7, 130.3, 116.6, 115.3, 34.3. Anal. calcd for C7H6ClN3: C, 50.17; H, 3.61; N, 25.07. Found: C, 50.14; 13^{I} 15H, 3.42; N, 24.79. Continued elution provided compound **3u** as a white solid (THF: 132 mg, 81% yield: DMSO: no product ²¹isolated): ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J=4.6 Hz, 1H), 7.99 (s, 1H), 7.04 (d, J=4.8Hz, 1H), 4.25 (s, 3H); ¹³C 23NMR (101 MHz, CDCl₃) & 159.0, 151.1, 137.0, 123.0, 117.2, 115.0, 41.3; 2D NOESY NMR (400 MHz, CDCl₃) ²⁵showed a crosspeak from δ 4.25 to δ 7.99. Anal. calcd for C₇H₆ClN₃: C, 50.17; H, 3.61; N, 25.07. Found: C, 50.05; H, 28^{3.52}; N, 24.81. 3-Bromo-4-methoxy-1-methyl-1*H*-pyrazolo[4,3-c]pyridine (2v) and 3-Bromo-4-methoxy-2-methyl-2*H*-pyrazolo[4,3-c]pyridine (3v). Prepared according to General Method 1 using reagents: 3-bromo-4-methoxy-1H-36pyrazolo[4,3-c]pyridine (1v) (110 mg, 0.48 mmol), 2.4 mL of THF or DMSO, 0.72 mL of 1 M NaHMDS in THF (0.72 38mmol), and iodomethane (0.090 mL, 1.45 mmol). THF and DMSO conditions: 20 °C/4 h. Purification [FCC, SiO₂, 10-⁴⁰100% (10% EtOAc in CH₂Cl₂) to heptane] first afforded compound **2v** as a white solid (THF: 73 mg, 63% yield; ⁴²/₄₃DMSO: 65 mg, 56% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J*=6.11 Hz, 1H), 6.87 (d, *J*=6.24 Hz, 1H), 4.12 (s, 453H), 3.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 146.7, 142.8, 119.1, 109.3, 99.1, 53.6, 36.1. 2D NOESY NMR ⁴⁷(400 MHz, CDCl₃) showed a crosspeak from δ 3.99 to δ 6.87. LC/MS (ESI+) calcd for C₈H₈BrN₃O ([M + H]⁺) m/z 42.0/244.0; found 242.1/244.1. Anal. calcd for C8H8BrN3O: C, 39.69; H, 3.33; N, 17.36. Found: C, 39.65; H, 3.09; N, 5216.98.

The Journal of Organic Chemistry Continued elution provided compound **3v** as a white solid (THF: 18 mg, 15% yield; DMSO: 8 mg, 7% yield):

¹ ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J=6.36 Hz, 1H), 7.08 (d, J=6.36 Hz, 1H), 4.15 (s, 3H), 4.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 152.3, 140.3, 109.8, 107.9, 106.0, 53.5, 38.9. LC/MS (ESI+) calcd for C₈H₈BrN₃O ([M + H]⁺) m/z 242.0/244.0; found 242.1/244.1 Anal. calcd for C₈H₈BrN₃O: C, 39.69; H, 3.33; N, 17.36. Found: C, 40.29; H, 3.39; N, 16.94.

- 3-Bromo-4-methoxy-1-methyl-1H-pyrazolo[3,4-d]pyrimidine (2w) and 3-Bromo-4-methoxy-2-methyl-2H-14pyrazolo[3,4-d]pyrimidine (3w). Prepared according to General Method 1 using reagents: 3-bromo-4-methoxy-1H-¹⁶pyrazolo[3,4-*d*]pyrimidine (**1**w) (100 mg, 0.44 mmol), 2.2 mL of THF or DMSO, 0.65 mL of 1 M NaHMDS in THF 18 (0.65 mmol), and iodomethane (0.082 mL, 1.3 mmol). THF conditions: 20 °C/24 h. DMSO conditions: 20 °C/1 h. ²¹Purification (FCC, SiO₂, 10-100% EtOAc in heptane) first afforded compound **2w** as a white solid (THF: 29 mg. 27% 23yield; DMSO: 85 mg, 80% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 4.20 (s, 3H), 4.07 (s, 3H); ¹³C NMR ²⁵(101 MHz, CDCl₃) δ 163.9, 156.0, 155.3, 117.9, 103.0, 54.7, 34.4. 2D HMBC crosspeaks from δ 4.08 to 119.7 (NMe to ²/₂₈C3, 1,4 weak), δ 4.08 to 155.9 (NMe to C7a, 1,3 strong). Anal. calcd for C7H7BrN4O: C, 34.59; H, 2.90; N, 23.05. 30Found: C, 34.70; H, 2.53; N, 22.81. Continued elution provided compound **3w** as a white solid (THF: 50 mg, 47% yield; DMSO: 7 mg, 7% yield): H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 4.18 (s, 3H), 4.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 160.4, 38155.9, 107.2, 104.0, 54.4, 39.2. 2D HMBC crosspeaks from δ 4.18 to 106.8 (NMe to C3, 1,3 strong). Anal. calcd for ⁴⁰C₇H₇BrN₄O: C, 34.59; H, 2.90; N, 23.05. Found: C, 34.65; H, 2.66; N, 22.80. 3-Bromo-4-chloro-1-methyl-1H-pyrazolo[4,3-c]pyridine (2x) and 3-Bromo-4-chloro-2-methyl-2H-46pyrazolo[4,3-c]pyridine (3x). Prepared according to General Method 1 using reagents: 3-bromo-4-chloro-1H-⁴⁸₄₉pyrazolo[4,3-c]pyridine (1x) (140 mg, 0.60 mmol), 3 mL of THF or DMSO, 0.9 mL of 1 M NaHMDS in THF (0.90 51 mmol), and iodomethane (0.11 mL, 1.8 mmol). THF conditions: 20 °C/16 h. DMSO conditions: 20 °C/4 h. Purification 53(FCC, SiO₂, 0-30% EtOAc in heptane) first afforded compound **3x** as a white solid (THF: 15 mg, 10% yield; DMSO: 0 ⁵⁵mg, 0% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J*=6.2 Hz, 1H), 7.37 (d, *J*=6.2 Hz, 1H), 4.15 (s, 3H); ¹³C NMR

The Journal of Organic Chemistry Page 42 of 61 (101 MHz, CDCl₃) δ 151.0, 144.9, 141.6, 117.2, 111.2, 109.3, 39.6. Anal. calcd for C7H5BrClN3: C, 34.11; H, 2.04; N, ¹ 17.05. Found: C, 34.02; H, 1.83; N, 16.97. 2 3 4 Continued elution provided compound 2x as a white solid (THF: 88 mg, 61% yield; DMSO: 100 mg, 67% 5 6 7 yield): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J=6.1 Hz, 1H), 7.26 (d, J=6.0 Hz, 1H), 4.07 (s, 3H); ¹³C NMR (101 8 ⁹ MHz, CDCl₃) δ 145.5, 145.2, 143.9, 120.2, 117.8, 104.0, 36.4. 2D NOESY NMR (400 MHz, CDCl₃) showed a 10 $^{11}_{12}$ crosspeak from δ 4.07 to δ 7.26. Anal. calcd for C₇H₅BrClN₃: C, 34.11; H, 2.04; N, 17.05. Found: C, 34.19; H, 1.79; N, 13 1417.08. 15 16 17 3-Bromo-4-chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine (2y) and 3-Bromo-4-chloro-2-methyl-2H-18 19 pyrazolo[3,4-b]pyridine (3y). Prepared according to General Method 1 using reagents: 3-bromo-4-chloro-1H-21 22pyrazolo[3,4-b]pyridine (1y) (145 mg, 0.62 mmol), 3.1 mL of THF or DMSO, 0.94 mL of 1 M NaHMDS in THF (0.94 23 ²⁴mmol), and iodomethane (0.12 mL, 1.9 mmol). THF and DMSO conditions: 20 °C/16 h. Purification (FCC, SiO₂, 0-25 ²⁶₂₇50% EtOAc in heptane) first afforded compound 2y as a white solid (THF: 39 mg, 25% yield; DMSO: 102 mg, 66% 28 29yield): ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J=4.9 Hz, 1H), 7.13 (d, J=5.0 Hz, 1H), 4.12 (s, 3H); ¹³C NMR (101 30 ³¹MHz, CDCl₃) δ 151.5, 149.9, 138.3, 118.1, 117.0, 112.9, 34.5; 2D HSQC and HMBC NMR (400 MHz, CDCl₃) 32 ³³confirmed the structure. Anal. calcd for C7H5BrClN3: C, 34.11; H, 2.04; N, 17.05. Found: C, 34.26; H, 1.86; N, 16.97. 34 35 36 Continued elution provided compound **3v** as a white solid (THF: 66 mg, 43% yield; DMSO: 0 mg, 0% yield): 37 38 ³⁹¹H NMR (400 MHz, CDCl₃) δ 8.73 (br. s., 1H), 7.27 (d, J=4.9 Hz, 1H), 4.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 40 ⁴¹₄₂154.5, 148.8, 141.22, 118.0, 107.9, 39.8; 2D HSQC and HMBC NMR (400 MHz, CDCl₃) confirmed the structure. 43 44Anal. calcd for C7H5BrClN3: C, 34.11; H, 2.04; N, 17.05. Found: C, 34.4; H, 1.78; N, 16.82. 45 46 47 5-Bromo-1-methyl-1*H*-benzo[*d*]imidazole (2b') and 6-Bromo-1-methyl-1*H*-benzo[*d*]imidazole (4b'). 48 ⁴⁹₅₀Prepared according to General Method 1 using reagents: 5-bromo-1*H*-benzo[*d*]imidazole (**1b'**) (150 mg, 0.76 mmol), 51 523.8 mL of THF or DMSO, 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and iodomethane (0.14 mL, 2.3 mmol). THF 53 54 and DMSO conditions: 20 °C/2 h. Purification [FCC, SiO₂, 10-100% (9-1 EtOAc/MeOH) to heptane] afforded a 1:1 55 ⁵⁶mixture of compounds **2b'** and **4b'** as a white solid (THF: 167 mg, 104% yield; DMSO: 105 mg, 65% yield): ¹H NMR 58 42 59 ACS Paragon Plus Environment 60

Page 43 of 61 The Journal of Organic Chemistry (400 MHz, CDCl₃) for the 1:1 mixture of compounds **2b'** and **4b'** matched that observed for individual commercial ¹ samples. 6-Bromo-3-methyl-3*H*-imidazo[4,5-*b*]pyridine (2c') and 6-Bromo-1-methyl-1*H*-imidazo[4,5-*b*]pyridine (4c'). Prepared according to General Method 1 using reagents: 6-bromo-3H-imidazo[4,5-b]pyridine (1c') (150 mg, 0.76 mmol), 3.8 mL of THF or DMSO, 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and iodomethane (0.14 mL, 2.3 ¹¹₁₂mmol). THF and DMSO conditions: 20 °C/2 h. Purification [FCC, SiO₂, 10-100% (9-1 EtOAc/MeOH) to heptane] first 14afforded compound 2c' as a white solid (THF: 23 mg, 14% yield; DMSO: 60 mg, 37% yield): ¹H NMR (CDCl₃) was ¹⁶identical to that reported: 40 ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 145.7, 145.1, 136.4, 130.2, 113.8, 29.9; 2D NOESY ¹⁸NMR (400 MHz, CDCl₃) confirmed. Continued elution provided compound 4c' as a white solid (THF: 86 mg, 54% yield; DMSO: 10 mg, 6% yield): ²⁴¹H NMR (CDCl₃) was identical to that reported;^{41 13}C NMR (101 MHz, CDCl₃) δ 154.8, 146.3, 145.8, 127.6, 120.2, ²⁶1 14.1, 31.5; 2D NOESY NMR (400 MHz, CDCl₃) confirmed. 5-Bromo-3-methyl-3*H*-imidazo[4,5-*b*]pyridine (2d') and 5-Bromo-1-methyl-1*H*-imidazo[4,5-*b*]pyridine ³²(4d'). Prepared according to General Method 1 using reagents: 5-bromo-3*H*-imidazo[4,5-*b*]pyridine (1d') (150 mg, $^{34}_{35}$ 0.76 mmol), 3.8 mL of THF or DMSO, 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and iodomethane (0.14 mL, 2.3 37mmol). THF and DMSO conditions: 20 °C/1.5 h. Purification [FCC, SiO₂, 10-100% (9-1 EtOAc/MeOH) to heptane] ³⁹first afforded compound **2d'** as a white solid (THF: 30 mg, 19% yield; DMSO: 74 mg, 46% yield): ¹H NMR (CDCl₃) ⁴¹₁₂H NMR (CDCl₃) δ 8.00 (s, 1H), 7.91 (d, *J*=8.4 Hz, 1H), 7.38 (d, *J*=8.3 Hz, 1H), 3.90 (s, 3H); 2D NOESY NMR (400

¹²/₄₄MHz, CDCl₃) showed a crosspeak from δ 3.90 to δ 8.00; ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 144.7, 135.9, 134.4,

Continued elution provided compound 4d' as a white solid (THF: 106 mg, 66% yield; DMSO: 60 mg, 37%

46130.1, 122.1, 30.0. Anal. calcd for C₇H₆BrN₃: C, 39.65; H, 2.85; N, 19.82. Found: C, 40.12; H, 2.77; N, 19.65.

52yield): ¹H NMR (CDCl₃) δ 8.02 (s, 1H), 7.58 (d, J=8.4 Hz, 1H), 7.35 (d, J=8.3 Hz, 1H), 3.88 (s, 3H); 2D NOESY

- ⁵⁴NMR (400 MHz, CDCl₃) showed crosspeaks from δ 3.88 to δ 7.58 and 7.35; ¹³C NMR (101 MHz, CDCl₃) δ 156.0,

ACS Paragon Plus Environment

1 2.80; N, 19.76. 2 3

3	
4 4-Chloro-1-methyl-1 <i>H</i> -imidazo[4,5- <i>c</i>]pyridine (2e') and 4-Ch	loro-3-methyl-3 <i>H</i> -imidazo[4,5- <i>c</i>]pyridine
6 7 (4e'). Prepared according to General Method 1 with a modification using	g reagents: 4-chloro-1H-imidazo[4,5-c]pyridine
9 (1e') (150 mg, 0.98 mmol) was dissolved in 0.45 mL of DMSO and then 10	4.9 mL of THF or DMSO were added, then
$^{11}_{12}$ 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and finally iodomethane (0.18 mL, 2.9 mmol). THF/DMSO and DMSO
13 14conditions: 20 °C/3 h. Purification [FCC, SiO ₂ , 10-100% (9-1 EtOAc/M	eOH) to heptane] first afforded compound 4e'
¹⁶ as a white solid (THF/DMSO: 53 mg, 32% yield; DMSO: 40 mg, 24% y 17	rield): ¹ H NMR (CDCl ₃) was identical to that
¹⁸ reported; ^{42 13} C NMR (101 MHz, CDCl ₃) δ 151.1, 147.5, 141.0, 134.0, 12 20	28.7, 114.9, 34.0.
21 22 Continued elution provided compound 2e' as a white solid (THF)	/DMSO: 68 mg, 42% yield; DMSO: 46 mg,
²⁴ 28% yield): ¹ H NMR (CDCl ₃) was identical to that reported; ^{43 13} C NMR	a (101 MHz, CDCl ₃) δ 144.9, 142.7, 141.3,
²⁶ ₂₇ 140.4, 137.6, 104.9, 31.5. ²⁸	
 7-Chloro-3-methyl-3<i>H</i>-imidazo[4,5-<i>b</i>]pyridine (2f') and 7-Ch 	loro-1-methyl-1 <i>H</i> -imidazo[4,5- <i>b</i>]pyridine
³² (4f'). Prepared according to General Method 1 using reagents: 7-chloro-	3 <i>H</i> -imidazo[4,5- <i>b</i>]pyridine (1f') (100 mg, 0.65
³⁴ ₃₅ mmol), 3 mL of THF or DMSO were added, then 1.0 mL of 1 M NaHM	DS in THF (1.0 mmol), and finally
³⁶ 37iodomethane (0.12 mL, 2.0 mmol). In a third experiment (designated TH	IF/DMSO) compound 1f' (100 mg, 0.65 mmol)
³⁹ was dissolved in 0.3 mL of DMSO and then 3 mL of THF was added fol 40	llowed by 1.0 mL of 1 M NaHMDS in THF
$^{41}_{42}$ (1.0 mmol), and finally iodomethane (0.12 mL, 2.0 mmol). THF condition	ons 20 °C/2 h. DMSO conditions: 20 °C/96 h.
⁴³ ₄₄ THF/DMSO conditions: 20 °C/1.5 h. Purification [FCC, SiO ₂ , 10-100%	(9-1 EtOAc/MeOH) to heptane] first afforded
45 46compound 2f' as a light yellow solid (THF: 20 mg, 18% yield; DMSO: 3 47	37 mg, 34% yield; THF/DMSO: 36 mg, 33%):
⁴⁸ ¹ H NMR (CDCl ₃) was identical to that reported. ⁴⁴ 50	
51 52 Continued elution provided compound 4f' as a light yellow solid	(THF: 61 mg, 56% yield; DMSO: 15 mg, 14%
⁵⁵ 54yield; THF/DMSO: 32 mg, 29% yield): ¹ H NMR (CDCl ₃) was identical 55 56	to that reported. ⁴⁴
57 58 <i>AA</i>	
59 60 ACS Paragon Plus Environmer	nt
-	

Page 45 of 61 The Journal of Organic Chemistry 6-Chloro-9-methyl-9H-purine (2g') and 6-Chloro-7-methyl-7H-purine (4g'). Prepared according to General ¹ Method 1 using reagents: 6-chloro-9*H*-purine (**1g**') (150 mg, 1.0 mmol), 5.0 mL THF or DMSO were added, then 1.5 2 3 mL of 1 M NaHMDS in THF (1.5 mmol), and finally iodomethane (0.19 mL, 3.0 mmol). THF and DMSO conditions 4 5 20 °C/5 h. Purification [FCC, SiO₂, 30-100% (9-1 EtOAc/MeOH) to heptane] first afforded compound 2g' as a light 6 7 yellow solid (THF: 55 mg, 33% yield; DMSO: 68 mg, 40% yield): ¹H NMR (CDCl₃) was identical to that reported;⁴⁵ 8 9 ¹⁰¹³C NMR (101 MHz, CDCl₃) δ 152.1, 151.9, 150.9, 145.6, 131.4, 30.2. 11 12 13 Continued elution provided compound 4g' as a light yellow solid (THF: 70 mg, 42% yield; DMSO: 26 mg, 15% 14 15 ¹⁶yield); ¹H NMR (DMSO-*d*₆) was identical to that reported;^{45 13}C NMR (101 MHz, DMSO-*d*₆) δ 161.3, 162.3, 151.3, 17 ¹⁸1 42.4, 122.7, 33.9. 19 20 21 6-Methoxy-9-methyl-9H-purine (2h') and 6-Methoxy-7-methyl-7H-purine (4h'). Prepared according to 22 23 ²⁴General Method 1 using reagents: 6-methoxy-9*H*-purine (**1h**') (150 mg, 1.0 mmol), 5.0 mL THF or DMSO were added, 25 ²⁶₂₇then 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and finally iodomethane (0.19 mL, 3.0 mmol). THF and DMSO 28 29conditions 20 °C/1.5 h. Purification [FCC, SiO₂, 0-100% (9-1 EtOAc/MeOH) to heptane] first afforded compound 2h' 30 ³¹as a light yellow solid (THF: 41 mg, 25% yield; DMSO: 67 mg, 41% yield): ¹H NMR (CDCl₃) was identical to that 32 ³³reported.⁴⁵ 35 36 Continued elution provided compound **4h'** as a light yellow solid (THF: 90 mg, 55% yield; DMSO: 38 mg, 23% 37 38 ³⁹yield): ¹H NMR (CDCl₃) was identical to that reported.⁴⁵ 40 41 42 4-Chloro-1-methyl-1H-[1,2,3]triazolo[4,5-c]pyridine (2i'), 4-Chloro-2-methyl-2H-[1,2,3]triazolo[4,5-43 44 45c]pyridine (3i') and 4-Chloro-3-methyl-3H-[1,2,3]triazolo[4,5-c]pyridine (4i'). Prepared according to General 46 ⁴⁷Method 1 using reagents: 4-chloro-1*H*-[1,2,3]triazolo[4,5-c]pyridine (1i') (154 mg, 1.0 mmol), 5.0 mL THF or DMSO 48 ⁴⁹₅₀were added, then 1.5 mL of 1 M NaHMDS in THF (1.5 mmol), and finally iodomethane (0.19 mL, 3.0 mmol). THF 49 51 52conditions 20 °C/24 h. DMSO conditions 20 °C/2 h. Purification (FCC, SiO2, 0-10% EtOAc to heptane) first afforded 53 ⁵⁴compound **3i'** as a white solid (THF: 28 mg, 17% yield; DMSO: 42 mg, 25% yield): mp 97-99 °C; ¹H NMR (400 MHz, 55 ⁵⁶₋₋DMSO-*d*₆) δ 8.24 (d, *J*=5.99 Hz, 1H), 7.95 (d, *J*=5.99 Hz, 1H), 4.62 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.6, 58 45 59 **ACS Paragon Plus Environment** 60

The Journal of Organic Chemistry 142.0, 141.4, 139.1, 111.9, 44.2; 2D-NMR experiments HSQC and HMBC defined ¹³C and ¹H chemical shift ¹ assignments. LC/MS (ESI+) calcd for C₆H₅ClN₄ ($[M + H]^+$) m/z 169.0; found 169.1. Anal. calcd for C₆H₅ClN₄: C, 42.75; H, 2.99; N, 33.23. Found: C, 43.04; H, 2.94; N, 32.45. X-ray crystallography confirmed the structure; see CCDC 1825992. Continued elution provided compound 4i' as a white solid (THF: 30 mg, 18% yield; DMSO: 25 mg, 15% yield): ¹¹₁₂mp 120-121 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.27 (d, *J*=5.87 Hz, 1H), 8.10 (d, *J*=5.75 Hz, 1H), 4.55 (s, 3H); ¹³C 14NMR (101 MHz, DMSO-d₆) & 150.3, 141.3, 134.2, 128.3, 113.5, 37.1; 2D-NMR experiments HSQC and HMBC ¹⁶defined ¹³C and ¹H chemical shift assignments. LC/MS (ESI+) calcd for C₆H₅ClN₄ ($[M + H]^+$) m/z 169.0; found 169.0. ¹⁸Anal. calcd for C₆H₅ClN₄: C, 42.75; H, 2.99; N, 33.23. Found: C, 43.23; H, 2.89; N, 32.61. X-ray crystallography ²¹confirmed the structure; see CCDC 1825994. Continued elution (10-75% EtOAc to heptane) provided compound 2i' as a white solid (THF: 76 mg, 45% ²⁰yield; DMSO: 49 mg, 29% yield): mp 149-150 °C (lit.⁴⁶ mp 150-152 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.35 (d, 29J=5.87 Hz, 1H), 7.95 (d, J=5.87 Hz, 1H), 4.37 (s, 3H); 2D NOESY NMR (400 MHz, DMSO-d₆) showed crosspeaks ³¹from δ 4.37 to δ 7.95; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 143.6, 141.7, 139.5, 138.7, 106.2, 35.0; 2D-NMR ³³experiments HSQC and HMBC defined ¹³C and ¹H chemical shift assignments. LC/MS (ESI+) calcd for C₆H₅ClN₄ ([M ⁷₃₆+ H]⁺) *m/z* 169.0; found 169.1. Anal. calcd for C₆H₅ClN₄: C, 42.75; H, 2.99; N, 33.23. Found: C, 42.96; H, 2.80; N, 3832.89. X-ray crystallography confirmed the structure; see CCDC 1826000. 7-Chloro-3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridine (2j'), 7-Chloro-2-methyl-2H-[1,2,3]triazolo[4,5-b]pyridine (2j'), 7-Chloro-2H-[1,2,3]triazolo[4,5-b]pyridine (2j'), 7-Chloro-2H-[1,2,3]triazolo[4,5-b]pyridine (2j'), 7-Chloro-2H-[1,2,5]triazolo[4,5-b]pyridine (2j'), 7-Chloro-2H-[1,2,5]triazolo[4,5-5]triazolo[4,5-5]triazolo[4,5-5]tri 44b]pyridine (3j') and 7-Chloro-1-methyl-1H-[1,2,3]triazolo[4,5-b]pyridine (4j'). Prepared according to General 46Method 1 using reagents: 7-chloro-3H-[1,2,3]triazolo[4,5-b]pyridine (**1j**') (100 mg, 0.65 mmol), 3.2 mL THF or ⁴⁸DMSO were added, then 0.97 mL of 1 M NaHMDS in THF (0.97 mmol), and finally iodomethane (0.12 mL, 2.0 51 mmol). THF conditions 20 °C/48 h. DMSO conditions 20 °C/4 h. Purification (FCC, SiO₂, 0-5% EtOAc to CH₂Cl₂) 53first afforded compound 2j' as a white solid (THF: 21 mg, 19% yield; DMSO: 26 mg, 24% yield): ¹H NMR (400 MHz, ⁵⁵CDCl₃) δ 8.57 (d, *J*=4.89 Hz, 1H), 7.35-7.43 (m, 1H), 4.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 147.1, 136.5,

ACS Paragon Plus Environment

Page 47 of 135.5,	7 of 61 The Journal of Organic Chemistry 5, 119.9, 33.5; 2D-NMR experiments HSQC and HMBC defined ¹³ C and ¹ H chemical shift a	ssignments with cross
1 peaks i 2	as indicating a strong 3-bond CH ₃ (δ 4.39) to C3a (δ 147.1) and a weak 4-bond CH ₃ (δ 4.39) to	o C7a (δ 135.5)
$\frac{3}{4}$ connec	nectivity. Anal. calcd for C ₆ H ₅ ClN ₄ : C, 42.75; H, 2.99; N, 33.23. Found: C, 42.61; H, 2.54; N	, 32.87. X-ray
6 crystal 7	tallography confirmed the structure; see CCDC 1825996.	
9 10	Continued elution provided compound 3j' as a white solid (THF: 19 mg, 17% yield; DMS	O: 28 mg, 25%
11 12yield):	i): ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 - 8.63 (m, 1H), 7.42 (s, 1H), 4.62 (s, 3H); ¹³ C NMR (1	01 MHz, CDCl ₃) δ
13 14156.6, 15	6, 151.5, 135.9, 134.5, 121.7, 44.4; 2D-NMR experiments HSQC and HMBC defined ¹³ C and	d ¹ H chemical shift
16 _{assignt} 17	gnments with cross peaks indicating a weak 4-bond CH ₃ (δ 4.62) to C3a (δ 156.6) and a weak	4-bond CH ₃ (δ 4.62)
¹⁸ to C7a	7a (δ 135.9) connectivity. Anal. calcd for C ₆ H ₅ ClN ₄ : C, 42.75; H, 2.99; N, 33.23. Found: C, 4	ł2.56; H, 2.86; N,
20 2132.77. 22 23	7. X-ray crystallography confirmed the structure; see CCDC 1825999.	
24 25	Continued elution (5-50% EtOAc to CH ₂ Cl ₂) provided compound 4j' as a white solid (TH	F: 46 mg, 43% yield;
²⁶ DMSC	SO: 22 mg, 20% yield): ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 8.65 (d, <i>J</i> =4.77 Hz, 1H), 7.46 (d, J=4.77 Hz, 1H),	<i>I</i> =4.77 Hz, 1H), 4.60
28 29(s, 3H) 30	H); ¹³ C NMR (101 MHz, DMSO- <i>d</i> ₆) δ 158.8, 148.5, 127.6, 124.0, 122.6, 37.4; 2D-NMR exp	eriments HSQC and
31HMBC 32	BC defined ¹³ C and ¹ H chemical shift assignments with cross peaks indicating a weak 4-bond	CH_3 (δ 4.60) to C3a
³³ ₃₄ (δ 158.	58.8) and a strong 3-bond CH ₃ (δ 4.60) to C7a (δ 124.0) connectivity. Anal. calcd for C ₆ H ₅ Cl	N4: C, 42.75; H, 2.99;
³⁵ ₃₆ N, 33.2 37 38	3.23. Found: C, 42.92; H, 2.80; N, 32.94. X-ray crystallography confirmed the structure; see	CCDC 1825995.
39 40	6-Bromo-3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridine (2l'), 6-Bromo-2-methyl-2H-[1,2	,3]triazolo[4,5-
⁴¹ ₄₂ <i>b</i>]pyri	vridine (3l') and 6-Bromo-1-methyl-1H-[1,2,3]triazolo[4,5-b]pyridine (4l'). Prepared accord	ding to General
43 44Methoo	hod 1 using reagents: 6-bromo-3 <i>H</i> -[1,2,3]triazolo[4,5- <i>b</i>]pyridine (1 I') (150 mg, 0.75 mmol), 3	3.8 mL THF or
46DMSC 47	SO were added, then 1.1 mL of 1 M NaHMDS in THF (1.1 mmol), and finally iodomethane ((0.14 mL, 2.3 mmol).
48 49 49	F conditions 20 °C/4 h. DMSO conditions 20 °C/24 h. Purification (FCC, SiO ₂ , 0-5% EtOAc t	o CH ₂ Cl ₂) first
50 51afforde	rded compound 2l' as a white solid (THF: 18 mg, 11% yield; DMSO: 30 mg, 19% yield): ¹ H	NMR (400 MHz,
52 53CDCl3	Cl ₃) δ 8.71 (d, J=2.0 Hz, 1H), 8.51 (d, J=2.0 Hz, 1H), 4.36 (s, 3H); ¹³ C NMR (101 MHz, CD	Cl ₃) δ 151.3, 144.7,
⁵⁵ 137.9, ⁵⁶	9, 130.5, 115.5, 33.2; 2D-NMR experiment HMBC defined ¹³ C and ¹ H chemical shift assign	ments with cross
57 58 50	47	
60	ACS Paragon Plus Environment	

The Journal of Organic Chemistry Page 48 of 6 peaks indicating a strong 3-bond CH ₃ (δ 4.36) to C3a (δ 144.7) and a weak 4-bond CH ₃ (δ 4.36) to C7a (δ 137.9)
¹ connectivity. Anal. calcd for C ₆ H ₅ BrN ₄ : C, 33.83; H, 2.37; N, 26.30. Found: C, 34.15; H, 2.39; N, 26.24.
⁴ ₅ Continued elution provided compound 3l' as a white solid (THF: 23 mg, 14% yield; DMSO: 20 mg, 12% yield):
⁶ 7 ¹ H NMR (400 MHz, CDCl ₃) δ 8.79 (d, <i>J</i> =2.2 Hz, 1H), 8.38 (d, <i>J</i> =2.2 Hz, 1H), 4.55 (s, 3H); ¹³ C NMR (101 MHz,
 ⁹ CDCl₃) δ 154.3, 153.0, 137.5, 128.5, 117.8, 44.2; 2D-NMR experiment HMBC defined ¹³C and ¹H chemical shift
¹¹ ₁₂ assignments with cross peaks indicating a weak 4-bond CH ₃ (δ 4.55) to C3a (δ 154.3) and a weak 4-bond CH ₃ (δ 4.55)
 13 14to C7a (δ 137.5) connectivity. Anal. calcd for C₆H₅BrN₄: C, 33.83; H, 2.37; N, 26.30. Found: C, 34.22; H, 2.06; N, 15 1626 37
17 18
Continued elution provided compound 4l' as a white solid (THF: 39 mg, 24% yield; DMSO: 22 mg, 14% yield):
²¹ 22 ¹ H NMR (400 MHz, CDCl ₃) δ 8.75 (d, <i>J</i> =2.0 Hz, 1H), 8.13 (d, <i>J</i> =2.1 Hz, 1H), 4.32 (s, 3H); 2D NOESY NMR (400
²³ ²⁴ MHz, CDCl ₃) showed a crosspeak from δ 4.32 to δ 8.13; ¹³ C NMR (101 MHz, CDCl ₃) δ 156.0, 149.4, 126.6, 120.4, 25
$^{26}_{27}$ 119.1, 35.0; 2D-NMR experiment HMBC defined 13 C and 1 H chemical shift assignments with cross peaks indicating a
²⁸ 29weak 4-bond CH ₃ (δ 4.32) to C3a (δ 156.0) and a strong 3-bond CH ₃ (δ 4.32) to C7a (δ 126.6) connectivity. Anal. calcd
31 for C ₆ H ₅ BrN ₄ : C, 33.83; H, 2.37; N, 26.30. Found: C, 34.00; H, 2.14; N, 26.01. 32 33
Tris-[4-Methoxy-2-methyl-2 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine]-bis-[sodium iodide] hexahydrate (5a) and
³⁶ 37 Tetrakis-[4-Methoxy-2-methyl-2<i>H</i>-pyrazolo[3,4-<i>d</i>]pyrimidine]-tris-[sodium iodide] dihydrate (5b). To a
³⁸ ³⁹ heterogeneous mixture of 4-chloro-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidine (1a) (4.01 g, 26.0 mmol) in 104 mL dioxane was
$^{41}_{42}$ added 15 mL of a 25 weight % solution of sodium methoxide in methanol (65 mmol) and the mixture stirred at 80 °C
⁴³ ₄₄ for 1.5 h, then cooled to 20 °C. Then iodomethane (6.5 mL, 104 mmol) was added and the mixture stirred at 20 °C for 1
45 46h. Then silica gel (23 g) was added and the solvent evaporated. The resulting solid was loaded into a pre-column and 47
⁴⁸ / ₄₉ subjected to purification [FCC, SiO ₂ (120 g column), 1-20% methanol in EtOAc] and afforded compound 5 (4.79 g,
⁵⁰ $_{51}65\%$ yield based on a monomeric unit of the higher molecular oligomer 5b) as a white solid: mp 158-160 °C; ¹ H NMR
⁵² 53(400 MHz) ¹³ C NMR (101 Hz), 2D NOESY and 2D HMBC NMR experiments in DMSO- <i>d</i> ₆ , CDCl ₃ , THF- <i>d</i> ₈ , and
⁵⁵ methanol- d_4 were all identical to that observed for compound 3b .
57 58 48
59 60 ACS Paragon Plus Environment

The Journal of Organic Chemistry

Complex [C7H8N4O]3[NaI]2[H2O]6 (5a) single crystal X-ray diffraction studies. Crystals of compound 5a were grown by slow cooling of an EtOAc/hexane solution in an 80 °C sand bath. A $0.053 \times 0.021 \times 0.005$ mm piece of an orange plank was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and $\overline{\omega}$ scans. Crystal-to-detector distance was 40 mm and exposure time was 20 seconds per frame using a scan width of 1.0°. Data collection was 100% complete to 25.00° in θ . A total of 16912 reflections were collected covering ¹⁰the indices, $-33 \le h \le 33$, $-41 \le k \le 54$, $-8 \le l \le 8$. 3922 reflections were found to be symmetry independent, with a R_{int} independent. 13^{12} of 0.0642. Indexing and unit cell refinement indicated an *F*-centered, orthorhombic lattice. The space group was found 15to be Fdd2. The data were integrated using the Bruker SAINT software program and scaled using the SADABS ¹⁷software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the ²⁰proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL- 2014). 22All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their ²⁴parent atom using the appropriate HFIX command in SHELXL-2014. All other hydrogen atoms (H-bonding) were ²⁶located in the difference map. There relative positions were restrained using DFIX commands and their thermals fixed 29to that of the parent atom. Crystallographic data are summarized in the Supporting Information; see CCDC 1825998. Complex $[C_7H_8N_4O]_4[NaI]_3[H_2O]_2$ (**5b**) single crystal X-ray diffraction studies and microanalysis. Crystals of $_{35}^{37}$ compound **5b** were prepared by dissolving 86 mg of the white solid **5** into 6 mL of EtOAc in a 20 mL sealed vial at 80 °C. Then 3 mL of hexane were added while maintaining 80 °C which formed a small amount of white solid. An ³⁹additional 2 mL of EtOAc was added and the mixture heated at 80 °C for 10 min, then cooled to 60 °C and let sit at 60 ⁴¹°C for 2 h. Then cooled to 40 °C and then let sit at 40 °C for 2h. Finally, the mixture was cooled to 20 °C and crystals 44 collected under solution for X-ray diffraction and microanalysis. The microanalysis sample was prepared by decanting 46 the solvent and drying the sample under a stream of N₂ and then high vacuum at 20 °C for 16 h to provide 41 mg of **5b** ⁴⁸as a white crystalline solid: mp 160-162 °C. C, H, N microanalysis was conducted in a glovebox. Anal. calcd for ⁵⁵₅₁C₂₈H₃₆I₃N₁₆Na₃O₆: C, 29.44; H, 3.18; I, 33.33; N, 19.62; Na, 6.04. Found: C, 29.60; H, 3.05; I, 27.03; N, 19.58; Na, 535.90. Extra analysis found: Cl, 0.0090%.

¹ Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and $\overline{\omega}$ scans. Crystal-to-detector distance was 40 mm and exposure time was 2 seconds per frame using a scan width of 1.0°. Data collection was 99.9% complete to 25.00° in θ . A total of 26596 reflections were collected covering the indices, -20<=h<=19, -22<=k<=22, - $17 \le 1 \le 17$. 4089 reflections were found to be symmetry independent, with a R_{int} of 0.0539. Indexing and unit cell $\frac{10}{11}$ refinement indicated a primitive, orthorhombic lattice. The space group was found to be *P*bcn. The data were 13integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by ¹⁵direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure. All ¹⁷₁₈nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded 20hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using ²²the appropriate HFIX command in SHELXL-2014. All other hydrogen atoms (H-bonding) were located in the ²⁴₋₋difference map. Their relative positions were restrained using DFIX commands and their thermals freely refined. ²⁷Crystallographic data are summarized in the Supporting Information; see CCDC 1826001. Theoretical Calculations. The Density Functional Theory (DFT) calculations were carried out at the B3LYP/6-³²3 1G**(d) level of theory using Jaguar1 which is part of the Schrödinger Software.⁴⁷ All calculations were set to full 35minimization at the above level of theory, and the net charge is set to -1. ¹H Pulsed Field Gradient-Stimulated Echo (PFG-STE) NMR Experiments in THF-d₈ and DMSO-d₆. All 40NMR glass sample tubes were pre-rinsed with appropriate solutions A or B prior to transfer of 0.5 mL of each Sample ⁴²A-J solution to respective NMR tubes. Samples A-J were prepared with compositions as described in the following. Sample A. Compounds 7a, 7b, and 7c in THF- d_8 . Compounds 7a (43 mg, 0.3 mmol), 7b (51 mg, 0.3 mmol), $\frac{7}{48}$ and 7c (55 mg, 0.3 mmol) were dissolved in 6 mL of THF- d_8 and 4A molecular sieves were added. Then the mixture 50let sit at rt for 24 h.

Page 51 of	The Journal of Organic Chemistry Sample B . Compounds 7a , 7b , and 7c in DMSO- d_6 . Compounds 7a (43 mg, 0.3 mmol), 7b (51 mg, 0.3 mmol),
1 and 7 c	(55 mg, 0.3 mmol) were dissolved in 6 mL of DMSO- d_6 and 4A molecular sieves were added. Then the mixture
$\frac{3}{4}$ let sit a	at rt for 24 h.
6 7	Sample C. Compounds 1b, 7a, 7b, and 7c in THF- <i>d</i> ₈ . Compound 1b (4.5 mg, 0.03 mmol) was dissolved in 0.6
8 9 mL of 10	Sample A.
11 12	Sample D. Compounds 1r, 7a, 7b, and 7c in THF-d8. Compound 1r (4.5 mg, 0.03 mmol) was dissolved in 0.6
14mL of 15	Sample A.
16 17 18	Sample E. Compounds 1b, 7a, 7b, and 7c in DMSO- <i>d</i> ₆ . Compound 1b (4.5 mg, 0.03 mmol) was dissolved in
¹⁹ 0.6 mL 20	L of Sample B .
21 22 23	Sample F. Compounds 1r, 7a, 7b, and 7c in DMSO- d_6 . Compound 1r (4.5 mg, 0.03 mmol) was dissolved in
²⁴ ₂₅ 0.6 mL	L of Sample B .
27 28	Sample G. Compounds 1b [*] , 7a, 7b, and 7c in THF-d ₈ . Compound 1b (15 mg, 0.1 mmol) was dissolved in 2
29 30mL of 31	Sample A, then NaOt-Bu (14.4 mg, 0.15 mmol) was added with mixing.
32 33 34	Sample H. Compounds 1r [*] , 7a, 7b, and 7c in THF- <i>d</i> ₈ . Compound 1r (15 mg, 0.1 mmol) was dissolved in 2 mL
35of Sam 36	ple A, then NaOt-Bu (14.4 mg, 0.15 mmol) was added with mixing.
37 38 39	Sample I. Compounds 1b [*] , 7a, 7b, and 7c in DMSO- <i>d</i> ₆ . Compound 1b (15 mg, 0.1 mmol) was dissolved in 2
⁴⁰ mL of	Sample B , then NaO <i>t</i> -Bu (14.4 mg, 0.15 mmol) was added with mixing.
42 43 44	Sample J. Compounds $1r^*$, 7a, 7b, and 7c in DMSO- d_6 . Compound $1r$ (15 mg, 0.1 mmol) was dissolved in 2
45 46 ^{mL} of 47 48	Sample B , then NaOt-Bu (14.4 mg, 0.15 mmol) was added with mixing.
49 50 51 52	All samples were homogeneous except for Sample G. Sample G (0.5 mL) was filtered through a small plug of
54Celite	on cotton in a glass pipette directly into an NMR sample tube. Some concentrations were not as expected due to
56mechan 57	nical errors during the transfer of the volatile naphthalene reagents 7a , 7b , and 7c . The internal standards 7a , 7b
59	51
60	ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 52 of 61 and $7c$ were 75 mM in each solution as determined by ¹ H NMR integral comparison with known 50 mM concentrations
¹ of 1b and 1r in samples C , D and E . Sample F had a 60 mM concentration of 1r by comparison to 7a , 7b and 7c (as
3_4 determined in C-E). Based on the determined concentrations of internal standards 7a, 7b and 7c, as determined by
⁵ 6 integral comparison, the solution concentrations of the <i>N</i> -anionic compounds were as follows: Sample G, 9 mM $1b^*$;
8 Sample H, 75 mM 1r [*] ; Sample I, 50 mM 1b [*] ; Sample J, 75 mM 1r [*] . To each of the remainder of Samples G-J not
¹⁰ used for an NMR sample was added iodomethane (0.019 mL, 0.3 mmol) and the mixtures stirred 1 h and then analyzed
$^{12}_{13}$ by LC/MS. Each was found to contain the same composition of products previously described in Table 4, entries 14,
1510, 15, and 11, respectively, as identified by retention times and [M+H] signals.
4-Methoxypyrazolo[3,4- <i>d</i>]pyrimidin-1-ide (1b [*]). Sample G, ¹ H NMR (600MHz, THF- d_8) δ 8.23 (s, 0.12H), 19
²⁰ 8.01 (s, 0.12H), 4.02 (s, 0.37H); Sample I , ¹ H NMR (600MHz, DMSO- <i>d</i> ₆) δ 8.08 (s, 0.62H), 7.88 (s, 0.54H), 3.94 (s, 21
²² ₂₃ 3H).
4-Methoxypyrazolo [4 , 3 - <i>c</i>] pyridin-1-ide (1 \mathbf{r}^*). Sample H , ¹ H NMR (600MHz, THF- <i>d</i> ₈) δ 8.03 (s, 1H), 7.44 (d,
²⁷ ₂₈ <i>J</i> =5.9 Hz, 1H), 6.94 (d, <i>J</i> =6.1 Hz, 1H), 3.95 (s, 3H); Sample J , ¹ H NMR (600MHz, DMSO- <i>d</i> ₆) δ 7.85 (m, 1H), 7.30 -
307.26 (m, 1H), 6.92 - 6.87 (m, 1H), 3.87 (m, 3H). 31
 ³² ³³ ¹H PFG-STE NMR data were acquired at 27 °C on Bruker Avance III HD 600 equipped with a triple resonance ³⁴
³⁵ inverse detection TCI cryo-probe head (Bruker, Billerica, MA). In 1D ¹ H NMR experiments for observation of signals ³⁶
³⁷ $_{38}$ of each of the compounds 1b , 1b [*] , 1r , 1r [*] , 7a , 7b , and 7c in Samples A - J was used a data size of 65,536 complex
40points, a sweep width of 9615 Hz, an acquisition time of 3.41 s, and 16 scans were accumulated. Translational diffusion
⁴² constants, D_t , were measured by pulsed gradient simulated-echo (PFG-STE) NMR experiments. ^{27b, 27c} For each 43
⁴⁴ ₄₅ experiment, a series of 16 diffusion-weighted 1D ¹ H PFG-STE spectra were recorded in a two-dimensional manner,
46 47using a pair of gradient pulses of duration $\delta = 2.5$ ms that were separated by a delay of $\Delta = 100$ ms, with gradient 48
⁴⁹ strengths, G_D , ranging from 0.5 to 30 Gcm ⁻¹ . All NMR data were processed with the software TOPSPIN 3.2 (Bruker). 50
⁵¹ Translational diffusion coefficients, D_t , for particles in solution were determined using Equation 8 for the signal
53 54attenuation, Ψ_Q , in PFG-STE NMR experiments, ^{27a, 48} 55
56 57 Ψ_Q ,=exp{- QD_tT_{diff} }, (8)
58 52 59

ACS Paragon Plus Environment

```
ge 53 of 61 The Journal of Organic Chemistry With Q = (\gamma s G_D \delta)^2, where \gamma is the proton gyromagnetic ratio and s described the shape of the diffusion gradient, and
Page 53 of 61
<sup>1</sup> T_{diff} = \Delta - \delta/3. G_D was calibrated with the residual <sup>1</sup>H resonance in 99% <sup>2</sup>H<sub>2</sub>O by use of a self-diffusion coefficient for
2
3
  HDO at 25 °C of (1.902 \pm 0.002) x 10<sup>-9</sup> m<sup>2</sup>s<sup>-1</sup>.<sup>48</sup>
4
5
6
7
8
<sup>9</sup>ASSOCIATED CONTENT
11
12
13Supporting Information
14
15
<sup>16</sup>The Supporting Information is available free of charge on the ACS Publications website at DOI:
17
18
19
           <sup>1</sup>H, <sup>13</sup>C, and 2D NMR spectra, LC/MS chromatograms, X-ray crystallographic structures, DFT calculations, <sup>1</sup>H
20
21
22
           PFG-STE NMR analysis (PDF).
23
24
25
<sup>23</sup>AUTHOR INFORMATION
27
28
29Corresponding Author
30
31
<sup>32</sup>*E-mail: brettbookser@gmail.com
33
34
35
36ORCID
37
38
<sup>39</sup><sub>40</sub>Brett C. Bookser: 0000-0002-0822-7029
41
42
43Notes
44
<sup>45</sup>The authors declare no competing financial interest.
46
47
48
49
50ACKNOWLEDGMENTS
51
52We thank Professor Scott Denmark of the University of Illinois for helpful discussions and Dr. J. Guy Breitenbucher
53
^{54}_{--} for a critical reading of the manuscript.
55
56
57
58
                                                                          53
59
                                                           ACS Paragon Plus Environment
60
```

REFERENCES

1. Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs. J. Med. Chem. 2014, 57, 5845-5859.

- Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals *J. Med. Chem.* 2014, 57, 10257-10274.
- By way of example, in 2017, 8 of the 29 new small molecule drugs approved by the FDA contained an azolo-fused ring heterocycle. These were ribociclib, niraparib, copanlisib, abemaciclib, velpatasvir, pibrentasvir, macimorelin, and acalabrutinib. See Jarvis, L. M. The Year in New Drugs. *Chem. Eng. News* 2018, *96*, 26-30.
- 4. (a) Costantino, L.; Barlocco, D. Privileged Structures as Leads in Medicinal Chemistry. *Curr. Med. Chem.*, 2006, *13*, 65-85; (b) Song, Y.; Zhan, P; Zhang, Q.; Liu, X. Privileged Scaffolds or Promiscuous Binders: A Glance of Pyrrolo[2,1-*f*][1,2,4]triazines and Related Bridgehead Nitrogen Heterocycles in Medicinal Chemistry. *Curr. Pharm. Des.* 2013, *19*, 1528-1548; (c) Zhan, P.; Li, D.; Li, J.; Chen, X.; Liu, X. Benzimidazole Heterocycle as a Privileged Scaffold in Antiviral Agents. *Mini-Rev. Org. Chem.*, 2012, *9*, 397-410.
- Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares, G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comprehensive analysis of kinase inhibitor selectivity. *Nat. Biotechnol.* 2011, 1046-1051.
 - 6. (a) Adenosine and Adenosine Receptors; Williams, M., Ed.; Humana Press: Clifton, NJ, 1990; (b) Purinergic Approaches in Experimental Therapeutics; Jacobson, K. A., Jarvis, M. F., Eds.; Wiley-Liss: New York, 1997; (c) Appleman, J. R.; Erion, M. D. The therapeutic potential of agents acting *via* purine receptors. *Expert Opin. Invest. Drugs* 1998, *7*, 225-243; (d) Burnstock, G. Pathophysiology and Therapeutic Potential of Purinergic Signaling. *Pharmacol. Rev.* 2006, *58*, 58-86.
 - 7. Kehler, J. Targeting Phosphodiesterases in the CNS. *Compr. Med. Chem. III* **2017**, *7*, 384-407.
 - Pennington, L. D.; Moustakas, D. T. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. *J. Med. Chem.* 2017, *60*, 3552-3580.

ACS Paragon Plus Environment

 The Journal of Organic Chemistry

Chen, S.; Graceffa, R. F.; Boezio, A. A. Direct, Regioselective N-Alkylation of 1,3-Azoles. Org. Lett.
 2016, 18, 16-19.

- Rosemeyer, H.; Kaiser, K.; Seela, F. Spontaneous Hydroxylation of a Cyclization Intermediate of Allopurinol. J. Org. Chem. 1985, 50, 1847-1852.
 - Zacharie, B.; Connolly, T. P.; Rej, R.; Attardo, G.; Penney, C. L. A Short Synthesis of 4-Substituted 1-(Hydroxyalkyl)-1H-pyrazolo[3,4-d]pyrimidines. *Tetrahedron* 1996, 52, 2271-2278.

 Brændvang, M.; Gundersen, L.-L. Efficient and regioselective N-1 alkylation of 4-chloropyrazolo[3,4d]pyrimidine. *Tetrahedron Lett.* 2007, 48, 3057-3059.

 Garg, N.; Avasthi, K.; Bhakuni, D. S. Regioselective Alkylation of 4,6-Bis(methylthio)-1*H*-pyrazolo[3,4*d*]pyrimidine. *Synthesis* 1989, 876-878.

14. To the best of our knowledge, there is only one similar structure reported. It contains apical tetrazole nitrogens ligand-bonding to contiguous sodium atoms bridged by water molecules in octahedral coordination: Hammerl, A.; Holl, G.; Klapötke, T. M.; Mayer, P.; Nöth, H.; Piotrowski, H.; Warchhold, M. Salts of 5,5'-Azotetrazolate. *Eur. J. Inorg. Chem.* 2002, 834-845.

15. (a) Reglinski, J.; Spicer, M. D.; Garner, M; Kennedy, A. R. Structural Consequences of the Use of Hard and Soft Tripodal Ligands during Metathesis Reactions: Synthesis of the [Bis(hydrotris(methimazolyl)borato]bismuth(III) [Bis(hydrotris(pyrazolyl)borato]sodiate *J. Am. Chem. Soc.* 1999, *121*, 2317-2318; (b) Reger, D. L.; Collins, J. E.; Flomer, W. A.; Rheingold, A. L.; Incarvito, C.; Guzei, L. A. Reactions of sodium tetrahydridoborate with tris(pyrazolyl)methane ligands. Syntheses and solid state structures of {[HC(pz)₃](thf)Na(μ¹1,μ¹1-BH₄)}₂ and{[HC(3,5-Me₂pz)₃]₂Na}(BH₄). *Polyhedron* 2001, *20*, 2491-2494; (c) Reger, D. L.; Little, C. A.; Smith, M. D.; Rheingold, A. L.; Liable-Sands, L. M.; Yap, G. P. A.; Guzei, I. A. Syntheses and Solid State Structures of Tris(pyrazolyl)methane Complexes of Sodium, Potassium, Calcium, and Strontium: Comparison of Structures with Analogous Complexes of Lead(II). *Inorg. Chem.* 2002, *41*, 19-27; (d) Bell, Z. R.; Ward, M. D. 1,2-Bis{[3-(2-pyridyl)pyrazol-1-yl]methyl}-benzene)perchloratosodium. *Acta Cryst.* 2003, *E59*, m787-m789.

Page 56 of 61

16.	The Journal of Organic Chemistry Page 56 of 6 (a) Domínguez-Vera, J. M.; Moreno, J. M.; Colacio, E. Alkali cation influence on copper cyanide solid-
	state architecture: two self-assembled copper(I)-sodium and copper(I)-potassium complexes showing 2D
	and 3D structures. Inorg. Chim. Acta 2004, 357, 611-614; (b) Rodríguez-Diéguez, A.; Salinas-Castillo, A.;
	Galli, S.; Masciocchi, N.; Gutiérrez-Zorrilla, J. M.; Vitoria, P.; Colacio, E. Synthesis, X-ray structures and
	luminescence properties of three multidimensional metal-organic frameworks incorporating the versatile
	5-(pyrimidyl)tetrazolato bridging ligand. Dalton Trans. 2007, 1821-1828; (c) Lee, G. R.; Ohtsu, H.; Koo,
	J.; Yakiyama, Y.; Park, M. J.; Inoue, D.; Hashizume, D., Kawano, M. Crystallinity-dependence of ionic
	conductivity in the ion pairs of a multi-interactive anion. Chem. Commun. 2016, 52, 3962-3965.
17.	Nelyubina, Y. V.; Antipin, M. Y.; Lyssenko, K. A. Energy aspect of the chemical bonding peculiarities in
	the crystal of sodium iodide dihydrate. CrystEngComm 2007, 9, 632-635.
18.	All product structures were verified by ¹ H and ¹³ C NMR comparison with reported compounds or by 2D
	NMR experiments (NOESY, HSQC, HMBC) in combination with X-ray crystallographic structure
	determination when necessary, see Experimental Section and Supporting Information. Isomers of
	pyrazolo- and imidazo-products were separable by SiO2 chromatography (unless indicated otherwise) with
	the N1 isomers being the least polar, followed by N2-pyrazolo- or N3-imidazo-products eluting with more
	polar solvent systems (unless indicated otherwise). Triazolo-fused ring products required more careful
	SiO ₂ chromatography and structural assignment, see the Experimental Section.
19.	(a) Seela, F.; Steker, H. Synthesis of 2'-Deoxyribonucleosides of Allopurinol by Phase-Transfer
	Glycosylation. Tetrahedron Lett. 1984, 25, 5017-5018; (b) Seela, F.; Steker, H. Facile Synthesis of 2'-
	Deoxyribofuranosides of Allopurinol and 4-Amino-1H-pyrazolo[3,4-d]pyrimidine via Phase-Transfer
	Glycosylation. Helv. Chim. Acta 1985, 68, 563-570; (c) Seela, F.; Kaiser, K. 8-Aza-7-deazaadenine N ⁸ -
	and N^9 -(β -D-2'-Deoxyribofuranosides): Building Blocks for Automated DNA Synthesis and Properties of
	Oligodeoxyribonucleotides. Ibid 1988, 71, 1813-1823; (d) Seela, F.; Winter, H.; Möller, M. Pyrazolo[3,4-
	d]pyrimidine 2'-Deoxy- and 2',3'-Dideoxyribonucleosides: Studies on the Glycosylation of 4-
	Methoxy[3,4-d]pyrimidine. Ibid 1993, 76, 1450-1458; (e) Seela, F.; Zulauf, M.; Sauer, M.; Deimel, M. 7-

The Journal of Organic Chemistry Substituted 7-Deaza-2'-deoxyadenosines: Fluorescence of DNA-Base Analogues Induced by the 7-

Alkynyl Side Chain. *Ibid* **2000**, *83*, 910-927. (a) Lavey, B. J.; Kozlowski, J. A.; Zhou, G.; Tong, L.; Yu, W.; Wong, M. K. C.; Shankar, B. B.; Shih, N.-20. Y.; Siddiqui, M. A.; Rosner, K. E.; Dai, C.; Popovici-Muller, J.; Girijavallabhan, V. M.; Li, D.; Rizvi, R.; Chen, L.; Yang, D.-y.; Feltz, R.; Kim, S.-h. HYDANTOIN DERIVATIVES FOR THE TREATMENT OF INFLAMMATORY DISORDERS. WO 2007084451 A1, July 26, 2007. (b) Wang, B. N-(1-HYDROXY-3-(PYRROLIDINYL)PROPAN-2-YL)PYRROLIDINE-3-CARBOXAMIDE DERIVATIVES AS GLUCOSYLCERAMIDE SYNTHASE INHIBITORS. WO 2015065937 A1, May 7, 2015. 21. Heterocycle 1e' was insoluble in THF and so no product was observed in this solvent. However, pre-dissolving **1e'** in a small amount of DMSO allowed for the alkylation to proceed in 10:1 THF/DMSO. 22. No selectivity was observed in a NaH/CH₃CN glycosylation reaction: Franchetti, P.; Cappellacci, L.; Grifantini, M.; Lupidi, G.; Nocentini, G.; Barzi, A. 8-Aza Analogues of Deaza Purine Nucleosides. Synthesis and Biological Evaluation of 8-Aza-1-deazaadenosine and 2'-Deoxy-8-aza-1-deazaadenosine. Nucleosides Nucleotides 1992, 11, 1059-1076. 23. Early work to study ion-pair composition as related to group 1 cations, carbanions and solvent polarity: (a) Hogen-Esch, T. E.; Smid, J. Studies of Contact and Solvent-Separated Ion Pairs of Carbanions. I. Effect of Temperature, Counterion, and Solvent. J. Am. Chem. Soc. 1966, 88, 307-318; (b) Hogen-Esch, T. E.; Smid, J. Studies of Contact and Solvent-Separated Ion Pairs of Carbanions. II. Conductivities and Thermodynamics of Dissociation of Fluorenyllithium, -sodium, and -cesium. J. Am. Chem. Soc. 1966, 88, 318-324; review: (c) Smid, J. Structure of Ion Pair Solvation Complexes. Angew. Chem. Int. Ed. 1972, 11, 112-127. 24. Detailed application of ion pair theory to the mechanism of regioselectivity observed in 1,2- vs 1,4-additions of carbanions to enones: (a) Dolak, T. M.; Bryson, T. A. Lithio Alkyl Phenyl Thioethers as Useful Reagents for Carbon-Carbon Bond Formation. Tetrahedron Lett. 1977, 1961-1964; (b) Cohen, T.; Abraham, W. D.; Myers, M. Low Temperatures Favor Kinetic 1,4- over 1,2-Addition of Organolithiums to α-Enones. The Crucial Role of Ion Pairing. J. Am. Chem. Soc. 1987, 109, 7923-7924; (c) Reich, H. J.;

ACS Paragon Plus Environment

The Journal of Organic Chemistry Page 58 of 61 Sikorski, W. H. Regioselectivity of Addition of Organolithium Reagents to Enones: The Role of HMPA. *J. Org. Chem.* **1999**, *64*, 14-15; (d) Sikorski, W. H.; Reich, H. J. The Regioselectivity of Addition of Organolithium Reagents to Enones and Enals: The Role of HMPA. *J. Am. Chem. Soc.* **2001**, *123*, 6527-6535.

- 25. (a) Fraenkel, G.; Hallden-Abberton, M. P. First Determination of the Structure of an Ion-Paired Species in Nonpolar Media: ¹H, ¹³C, and ⁷Li NMR Spectra of Peralkylcyclohexadienyllithium Compounds. *J. Am. Chem. Soc.* 1981, *103*, 5657-5664; (b) Müllen, K. Reduction and Oxidation of Annulenes. *Chem. Rev.* 1984, *84*, 603-646; (c) Seebach, D.; Gabriel, J.; Hässig, R. Low-temperature ¹³C-NMR Spectra of ⁶Li- and ¹³C-Labelled Sulfur- and Selenium-Substituted Organolithium Derivatives. *Helv. Chim. Acta* 1984, *67*, 1083-1099. (d) Lucht, B. L.; Collum, D. B. Etheral Solvation of Lithium Hexamethyldisilazide: Unexpected Relationships of Solvation Number, Solvation Energy, and Aggregation State. *J. Am. Chem. Soc.* 1995, *117*, 9863-9874; (e) Reich, H. J.; H. J.; Sanders, A. W.; Fiedler, A. T.; Bevan, M. J. The Effect of HMPA on the Reactivity of Epoxides, Aziridines, and Alkyl Halides with Organolithium Reagents. *J. Am. Chem Soc.* 2002, *124*, 13386-13387.
- For a similar DFT analysis on a different pyrazole derivative alkylation see: Huang, A.; Wo, K.; Lee, S. Y. C.; Kneitschel, N.; Chang, J.; Zhu, K.; Mello, T.; Bancroft, L.; Norman, N. J.; Zheng, S.-L. Regioselective Synthesis, NMR, and Crystallographic Analysis of N1-Substituted Pyrazoles. *J. Org. Chem.* 2017, 82, 8864-8873.

27. (a) Tanner, J. E. Use of the Stimulated Echo in NMR Diffusion Studies. *J. Chem. Phys.* 1970, *52*, 2523-2526; (b) Gibbs, S. J.; Johnson, C. S. A PFG NMR Experiment for Accurate Diffusion and Flow Studies in the Presence of Eddy Currents. *J. Magn. Reson* 1991, *93*, 395-402; (c) Altieri, A. S.; Hinton, D. P.; Byrd, R. A. Associates of Biomolecular Systems *via* Pulsed Field Gradient NMR Self-Diffusion Measurements. *J. Am. Chem. Soc.* 1995, *117*, 7566-7567.

Reviews: (a) Pregosin, P. S.; Anil Kumar, P. G.; Fernández, I. Pulsed Gradient Spin-Echo (PGSE)
 Diffusion and ¹H, ¹⁹F Heteronuclear Overhauser Spectroscopy (HOESY) NMR Methods in Inorganic and
 Organometallic Chemistry: Something Old and Something New. *Chem. Rev.* 2005, *105*, 2977-2998; (b)

- Page 59 of 61 The Journal of Organic Chemistry Johnson, C. S. Jr. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203-256; (c) Price, W. S. Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part 1. Basic Theory. Concepts Magn. Reson. 1997, 9, 299-336. 29. When this method is incorporated into a 2-dimensional technique, it is known as diffusion-ordered NMR spectroscopy (DOSY), see Li, D.; Kerestztes, I.; Hopson, R.; Williard, P. G. Characterization of Reactive Intermediates by Multinuclear Diffusion-Ordered NMR Spectroscopy (DOSY). Acc. Chem. Res. 2009, 42, 270-280. 30. Additional experiments were conducted in order to rule out the mechanism possibility of a post alkylation, second alkylation followed by a dealkylation to a thermodynamically derived mixture of products. Discrete purified samples of methyl-products **2b** and **3b** were stirred at room temperature over 48 h in THF and DMSO in separate experiments with NaI, iodomethane, and the combination of NaI and iodomethane with the result that no trace of any isomer mixture was formed in any case as determined by HPLC and LC/MS. 31. (a) Crutchfield, C. A.; Harris, D. J. Molecular mass estimation by PFG NMR spectroscopy. J. Magn. Reson. 2007, 185, 179-182; (b) Li, D.; Kagan, G.; Hopson, R.; Williard, P. G. Formula Weight Prediction by Internal Reference Diffusion-Ordered NMR Spectroscopy (DOSY). J. Am. Chem Soc. 2009, 131, 5627-5634; (c) Evans, R.; Deng, Z.; Rogerson, A. K.; McLachlan, A. S.; Richards, J. J.; Nilsson, M. Morris, G. A. Quantitative Interpretation of Diffusion-Ordered NMR Spectra: Can We Rationalize Small Molecule Diffusion Coefficients? Angew. Chem. Int. Ed. 2013, 52, 3199-3202; (d) Neufeld, R.; Stalke, D. Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients. Chem. Sci. 2015, 6, 3354-3364. 32. Deuterio-solvents provide nearly the same MW values as their corresponding protio-forms based on Dt measurements because of the nearly same atomic radius of D compared to H, see ref. 31d. Hence, protio-forms of the solvents THF and DMSO are used for MW calculations and in discussion points of solvated
 - forms proposed here.

The Journal of Organic Chemistry Page 60 o 33. As expected, the anionic compounds $\mathbf{1b}^*$ and $\mathbf{1r}^*$ have ¹H NMR shift assignments in THF-*d*₈ and DMSO-Page 60 of 61 d_6 distinct from the neutral compounds **1b** and **1r**. See the PFG-STE NMR analysis within the Experimental Section and Supporting Information for detailed comparative information. Tris-THF-solvated forms of N-lithio- and N-sodio-anions have been observed, see (a) Su, C.; Guang, J.; 34. Williard, P. G. Structures of Lithium N-Monosubstituted Anilides: Trisolvated Monomer to Tetrasolvated Dimer. J. Org. Chem. 2014, 79, 1032-1039; (b) Algera, R. F.; Ma, Y.; Collum, D. B. Sodium Diisopropylamide: Aggregation, Solvation, and Stability. J. Am. Chem. Soc. 2017, 139, 7921-7930; as well as calculated (c) Deora, N.; Carlier, P. R. Computational Studies of Ion-Pair Separation of Benzylic Organolithium Compounds in THF: Importance of Explicit and Implicit Solvation. J. Org. Chem. 2010, 75, 1061-1069. Although TIP and CIP have been used interchangeably in the literature, CIP is more common recently. So, 35. we propose the use of TIP for species such as **1b**^{*}Na to distinguish it from the CIP **1b**^{*}Na(THF) as having a tighter N-Na bond. 36. Babu, S.; Morrill, C.; Almstead, N. G.; and Young-Choon Moon, Y.-C. Selective Synthesis of 1-Substituted 4-Chloropyrazolo[3,4-d]pyrimidines. Org. Lett. 2013, 15, 1882-1885. 37. Bacon, E. R.; Bailey, T.; Becknell, N. C.; Gingrich, D. E.; Hostetler, G.; Hudkins, R. L.; Learn, K. S.; Wagner, J. C. SUBSTITUTED PYRAZOLOPYRIMIDINES. US 20070281949 A1, December 6, 2007. Liu, H.-J.; Hung, S.-F.; Chen, C.-L.; Lin, M.-H. A method for the regioselective synthesis of 1-alkyl-1H-38. indazoles. Tetrahedron 2013, 69, 3907-3912. 39. Fang, Y.; Wu, C.; Larock, R. C.; Shi, F. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes. J. Org. Chem. 2011, 76, 8840-8851. 40. Chang, C.-H.; Tsai, H. J.; Huang, Y.-Y.; Lin, H.-Y.; Wang, L.-Y.; Wu, T.-S.; Wong, F. F. Selective synthesis of pyrazolo[3,4-d]pyrimidine, N-(1H-pyrazol-5-yl)formamide, or N-(1H-pyrazol-5yl)formamidine derivatives from N-1-substituted-5-aminopyrazoles with new Vilsmeier-type reagents. Tetrahedron 2013, 69, 1378-1386.

Grivas, S.; Lindstrom, S. Palladium(0)-Catalyzed Phenylation of Imidazo[4,5-b]pyridines. J. Heterocyclic 41. Chem. 1995, 32, 467-471. Minetti, P.; Tinti, M. O.; Carminati, P.; Castorina, M.; Di Cesare, M. A.; Serio, S. D.; Gallo, G.; Ghirardi, 42. O.; Giorgi, F.; Giorgi, L.; Piersanti, G.; Bartoccini, F.; Tarzia, G. 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and Analogues as A_{2A} Adenosine Receptor Antagonists. Design, Synthesis, and Pharmacological Characterization. J. Med. Chem. 2005, 48, 6887-6896. 43. Itoh, T.; Ishikura, T.; Mizuno, Y. Studies on the Chemical Synthesis of Potential Antimetabolites. XXXIV. Apparent Discrepancy among Reported Proton Nuclear Magnetic Resonance Spectra of 3-Deazadenosine Is Actually a Reflection of a Difference in Molecular Species. Chem. Pharm. Bull. 1983, 31, 4130-4134. Itoh, T.; Ono, K.; Sugawara, T.; Mizuno, Y. Grivas, S.; Lindstrom, S. Studies on the Chemical Synthesis 44. of Potential Antimetabolites. 30. Regioselective Introduction of a Chlorine Atom into the Imidazo[4,5-b]pyridine Nucleus (1). J. Heterocyclic Chem. 1982, 19, 513-517. 45. Okamura, T.; Kikuchi, T.; Fukushi, K.; Arano, Y.; Irie, T. A novel noninvasive method for assessing glutathione-conjugate efflux systems in the brain. Bioorg. Med. Chem. 2007, 15, 3127-3133. 46. Svertilova, I. A.; Smolyar, N. N.; Yutilov, Y. M. Synthesis of 4-(arylamino)- and 4-(alkylamino)-1H-imidazo[4,5-c]pyridines and -1,2,3-triazolo[4,5-c]pyridines. Ukr. Khim. Zh. (Russ. Ed.) 1996, 62, 64-69; Chem. Abstr. 1997, 126, 171527. Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; 47. Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113, 2110-2142. 48. Horst, R.; Stanczak, P.; Serrano, P.; Wüthrich, K. Translational Diffusion Measurements by Microcoil NMR in Aqueous Solutions of the Fos-10 Detergent-Solubilized Membrane Protein OmpX. J. Phys. Chem. B 2012, 116, 6775-6780.

The Journal of Organic Chemistry

Page 61 of 61