
Improved Synthesis of N-Sulfonylformamidine Derivatives Promoted by Thionyl Chloride

Ruzeahong Hudabaierdi, Abudureheman Wusiman*, Ayinigeer Mulati

School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, People's Republic of China.

¹ ACCEPTED MANUSCRIPT

Abstract: An improved synthesis of *N*-sulfonylformamidine derivatives has been developed involving direct condensation of various sulfonamides and formamides in the presence of thionyl chloride using chloroform as solvent. Detailed synthetic studies indicate that this procedure gives the desired products in high yields under mild conditions.

² ACCEPTED MANUSCRIPT

Keywords: Sulfonamide, formamidine, thionyl chloride, Vilsmeier reaction

³ ACCEPTED MANUSCRIPT

⁴ ACCEPTED MANUSCRIPT

Introduction

N-Sulfonylformamidines are a unique structural motif with fascinating chemical properties and are widely used as efficient coordinating ligands ¹ and synthetic intermediates² to generate compounds of immense biological and pharmacological importance.³

Traditional methods for preparing *N*-sulfonylformamidines have been supplemented in recent years⁴ with several new protocols based, for example, on Cu-catalyzed imidation of tertiary amines with sulfonyl azides,⁵ oxidative dehydration of tertiary amines and tandem reaction with sulfonylazides,⁶ selective haloform reaction of

tertiary amines with *N*,*N*-dibromosulfonamides or NBS/sulfonamides,⁷ direct condensation of sulfonamides with DMF in the presence of NaI/TBHP.⁸ NaI-catalyzed oxidative tetrahydrogenative cross-coupling between N,N-dimethylaniline and sulfonamides,⁹ as well as other approaches.¹⁰ All these reactions have drawbacks, which can include limited substrate scope; a requirement for special reactants or catalysts such as sulfonyl azides, diethyl azodicarboxylate (DEAD) and transition-metal catalysts or oxidants (TBHP); and/or elevated temperature and longer reaction time.

In theory, direct condensation of sulfonamide and formamide should provide the most straightforward and atom-economic method for the synthesis of

⁵ ACCEPTED MANUSCRIPT

^{*} Address correspondence to this author at the School of Chemistry and Chemical Engineering, Xinjiang Normal University, P.O. Box: 830054, Urumqi, People's Republic of China; Tel/Fax: +86-158-991-27270, E-mails: arahman@xjnu.edu.cn.

N-sulfonylformamidines. But reported syntheses following this approach, based on $POCl_{3}^{4b}$ (COCl)₂⁴ⁱ or $SOCl_{2}^{4c}$ show the same drawbacks as the above mentioned protocols. N-Sulfonylformamidine, for instance, can be obtained by condensation of sulfonamide and formamide in the presence of corrosive POCl₃, but only in 26% yield. The (COCl)₂-mediated reaction is convenient and provides good yields, but it requires 2.5 equiv. of (COCl)₂ formamidine. The SOCl₂-triggered and reaction requires heating the reaction partners in toluene or xylene at higher temperature, and it provides products in only low to moderate yields. Recently, our group reported a facile one-pot procedure for synthesizing cvclic N-sulfonyl amidines.¹¹ We found that most sulfonamides showed poor solubility in toluene or xylene even at higher temperatures,

suggesting that more polar solvents are needed to improve the sulfonamide reactivity and to increase the product yield in this approach. Herein we describe our efforts to achieve a gentle, simple, cheap and very efficient procedure for the preparation of *N*-sulfonylformamidines in chloroform by use the of common and cheap reagent thionyl chloride. Our newly improved procedure does transition not involve metal any catalyst/oxidants or potentially explosive materials, and can be carried out under mild conditions.

Results and discussion

Reaction conditions were explored by use of the model reaction of tosylamide (**1a**) with DMF (**2a**) (Table 1). In the presence of 1.0 equiv. of phosphoryl chloride in chlorobenzene, the desired product **3a** was

⁶ ACCEPTED MANUSCRIPT

obtained in 90% yield at 80 °C after 2 h (entry 1). To our delight, using $SOCl_2$ under the same conditions gave **3a** in 88% yield (entry 2). Oxalyl chloride gave lower yield (entry 3). Lowering the reaction temperature to 60 °C and changing the solvent to chloroform gave the highest yield of 95% after 2 h (entry 6). Changing the solvent to DMF without changing the other reaction conditions led to only a trace amount of desired product (entry 6). We attribute this result to a reaction between the electrophilic Vilsmeier complex and DMF itself, which formed an inactive complex.¹² Decreasing the temperature reduced the yield of 3a and necessitated longer reaction times (entries 8 and 9). Exposure to air did not affect the reaction (entry 10), while the desired product were be obtained in comparable yields (entries 11 and

12) by use of 2 mL or 5mL of solvent. After removal of the chlorinating agent, no reaction at all occurred (entry 13).

Using the optimized conditions (Table 1, entry 12), we conducted SOCl₂-mediated direct condensation of various substituted sulfonamides and formamides (Table 2). Sulfonamides with electron-neutral or electron-donating groups on aryl rings such as methyl, tert-butyl and methoxy groups reacted with DMF to form the corresponding sulfonylamidines 3a-3d in excellent yield (Table 2, entries 1-4). While electronwithdrawing groups such as chloro and nitro substituents on the aromatic ring had varying influence, and yields ranging from 50% to 75% (entries 5-7) of the corresponding products 3were obtained. These results indicate that the sulfonamide electronic nature of the

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

obviously effects the reaction. In addition, heterocyclic derivatives such as thiophene-2-sulfonamide and 5-methylpyridine-2-sulfonamide also participated in the reaction under the optimized conditions and provided the corresponding amidines **3h** and **3i** in 70% and 50% respectively (entries 8 and 9). Various formamides including N,N-diethylformamide, N,N-diisopropylformamide,

N-methyl-N-phenylformamide,

N-formyl-piperidine, and 4-formylmorpholine were examined and gave products in excellent yield (entries 10-14). Methane sulfonamide reacted smoothly to afford the desired **30** in 80% yield (entry 15). Using chiral substrates such as (1*S*)-10-camphorsulfonamide (**1k**) led to the corresponding amidine enantiomer **3p** in 84% yield (entry 16), together with (1*S*)-camphorsulfonylimine as byproduct in 13% yield.¹³ In contrast, the reaction of tosylamide with formanilide (**11**) gave a complex product mixture (entry 17).

⁸ ACCEPTED MANUSCRIPT

The structure of **3p** was confirmed by a single-crystal X-ray diffraction analysis (Figure 1). The structural features of **3p** are the same as observed in the previously cited *N*-sulfonylformamidine derivative.^{10c} The lengths of the two C-N bonds [N1-C11, 1.316(3) Å; N2-C11, 1.320(2) Å] are similar, which is indicative of the delocalized nature of the C=N double bond. The N1-C11-N2 angle is 122.11° which discloses an *E*-isomer of the generated C=N double bond.¹⁴

To confirm the reaction pathway of the described transformations, we treated **1a** with the commercially accessible Vilsmeier reagent chloromethylenedimethyliminium chloride (Scheme 1) under the standard reaction conditions. As we had anticipated, the reactions led to the same product **3a** with 96%

isolated yield. This result indicates that the formation of **3a** presumably underwent a Vilsmeier reaction pathway.¹⁵

Conclusion

In summary, we have improved an efficient procedure for synthesizing *N*-sulfonylformamidines under mild conditions. Aliphatic and (hetero)aromatic sulfonamides are well tolerated in this transformation and the desired products were obtained in good to excellent yields.

Experimental

Reagents were purchased from commercial sources and used without further purification otherwise specified. unless Dichloromethane chlorobenzene (DCM), (PhCl), 1,2-dichloroethane (DCE) and chloroform (CHCl₃) were distilled from CaH₂.

ACCEPTED MANUSCRIPT

Other solvents were used without additional purification. Purification of the reaction products was carried out by flash column chromatography using 200-300 mesh silica gel. Visualization on TLC (analytical thin layer chromatography) was achieved by the use of UV light (254 nm) and treatment with phosphomolybdic acid or anisaldehyde stain followed by heating. High-resolution mass spectra were recorded on a Bruker BIO TOF Q mass spectrometer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Varian Inova spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz) with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.27 ppm; 13 C NMR: CDCl₃ at 77.23 ppm). 1 H NMR data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m =

multiplet), coupling constant(s) in Hz, integration. Single-crystal X-ray diffraction was carried out on a diffractometer using a Rigaku AFC12/Saturn 724 CCD fitted with Mo K α radiation ($\lambda = 0.71073$ Å) at 298 K. The Supplemental Materials contains sample ¹H and ¹³C NMR spectra for the products 3 (Figures S 1 – S 34).

General procedure for the preparation of N-sulfonylformamidines 3a–3p.

A mixture of sulfonamide **1** (2.0 mmol, 1.0 equiv.), formamide 2 (2.0 mmol, 1.0 equiv.) and thionyl chloride (0.236g, 145 μ L, 2.0 mmol) in CHCl₃ (10 mL) was stirred at 60°C for the indicated reaction time (see Table 2). Then, the solvent was evaporated under vacuum to give the products in excellent yields or the residue was purified by silica gel column chromatography (petroleum

¹⁰ ACCEPTED MANUSCRIPT

ether and ethyl acetate) to give the desired products.

(E)-N,N-dimethyl-N'-tosylformimidamide

(3a):⁸ White powder; mp: 131-132°C; ¹H
NMR: δ 8.13 (s, 1H), 7.78 (d, J = 8.2 Hz, 2H),
7.26 (d, J = 8.0 Hz, 2H), 3.12 (s, 3H), 3.01 (s,
3H), 2.40 (s, 3H); ¹³C NMR: δ 158.2, 141.6,
138.7, 128.5, 125.7, 40.6, 34.7, 20.6.

(E)-N,N-dimethyl-N'-(phenylsulfonyl)-

formimidamide (**3b**): White powder; mp: 134-136°C; ¹H NMR: δ 8.14 (s, 1H), 7.89 (d, J = 6.8 Hz, 2H), 7.52-42 (m, 3H), 3.13 (s, 3H), 3.02 (s, 3H); ¹³C NMR: δ 159.3, 142.5, 131.9, 128.8, 126.6, 41.6, 35.7.

(E)-N'-(4-methoxyphenylsulfonyl)-N,Ndimethylformimidamide (3c):⁸ White powder;
mp: 155-156°C; ¹H NMR: δ 8.11 (s, 1H), 7.81
(d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H),
3.83 (s, 3H) 3.12 (s, 3H), 3.00 (s, 3H); ¹³C

NMR: δ 162.3, 159.0, 134.4, 128.6, 113.9, 55.6, 41.5, 35.5.

(E)-N'-(4-tert-butylphenylsulfonyl)-N,N-

dimethylformimidamide (**3d**): White powder; mp: 166-167°C; ¹H NMR: δ 8.14 (s, 1H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 3.12 (s, 3H), 3.02 (s, 3H), 1.32 (s, 9H); ¹³C NMR: δ 159.2, 155.5, 139.5, 126.4, 125.8, 41.5, 35.6, 35.1, 31.2; HRMS calcd. for C₁₃H₂₀N₂NaO₂S [M+Na]⁺; 291.1143; found 291.1138.

(E)-N,N-dimethyl-N'-(4-nitrophenylsulfonyl)
formimidamide (3e): ⁸ White powder; mp: 193-194°C; ¹H NMR: δ 8.30 (d, J = 8.6 Hz, 2H), 8.15 (s, 1H), 8.06 (d, J = 8.6 Hz, 2H), 3.17 (s, 3H), 3.04 (s, 3H); ¹³C NMR: δ 159.5, 149.7, 148.3, 127.9, 124.1, 41.6, 35.9.

(E)-N,N-dimethyl-N'-(2-nitrophenylsulfonyl) formimidamide (3f): White powder; mp:

¹¹ ACCEPTED MANUSCRIPT

135-136°C; ¹H NMR: δ 8.27 (d, J = 7.6 Hz, 1H), 8.10 (s, 1H), 7.65 (m, 3H), 3.21 (s, 3H), 3.05 (s, 3H); ¹³C NMR: δ 160.8, 132.7, 132.0, 130.7, 123.9, 41.8, 35.7; HRMS calcd. for C₉H₁₁N₃NaO₄S [M+Na]⁺; 280.0368; found 280.0361.

(E)-N'-(4-chlorophenylsulfonyl)-N,N-

dimethylformimidamide (**3g**):⁸ White powder; mp: 122-123°C; ¹H NMR: δ 8.13 (s, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 3.14 (s, 3H), 3.03 (s, 3H); ¹³C NMR: δ 159.3, 141.1, 138.2, 129.0, 128.1, 41.6, 35.7.

(E)-N,N-dimethyl-N'-(thiophen-2-

ylsulfonyl)formimidamide (3h): White powder; mp: 95-96°C; ¹H NMR: δ 8.13 (s, 1H), 7.59 (d, J = 3.6 Hz, 1H), 7.49 (d, J = 5.2Hz, 1H), 7.02 (t, J = 4.4 Hz, 1H), 3.15 (s, 3H), 3.05 (s, 3H); ¹³C NMR: δ 159.2, 143.9, 130.67, 130.63, 126.9, 41.5, 35.6; HRMS calcd. for $C_7H_{10}N_2NaO_2S_2$ [M+Na]⁺; 241.0081; found 241.0088.

(E)-N,N-dimethyl-N'-[(5-methylpyridin-2-

yl)sulfonyl]formimidamide (3i): White powder; mp: 183-184°C; ¹H NMR: δ 8.50 (s, 1H), 8.36 (s, 1H), 8.05 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 3.20 (s, 3H), 3.03 (s, 3H), 2.42 (s, 3H); ¹³C NMR: δ 161.9, 154.2, 147.7, 140.7, 137.5, 122.6, 42.0, 35.8, 18.5; HRMS calcd. for C₉H₁₃N₃NaO₂S [M+Na]⁺; 250.0626; found 250.0620.

(E)-N,N-diethyl-N'-tosylformimidamide

(3j):⁸ White powder; mp: 71-72°C; ¹H NMR: δ 8.14 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.25 (d, J= 8.0, 2H), 3.47 (q, J = 7.2 Hz, 2H), 3.37 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.25 (t, J =7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 158.1, 142.3, 139.9, 129.3, 126.4, 47.1, 41.0, 29.8, 21.5, 14.6 12.2.

¹² ACCEPTED MANUSCRIPT

(E)-N,N-diisopropyl-N'-tosylformimidamide

(3k):^{10b} White powder; mp: 112-113°C; ¹H
NMR: δ 8.24 (s, 1H), 7.74 (d, J = 8.2 Hz, 2H),
7.24 (d, J = 8.3 Hz, 2H), 4.52 (dt, J = 13.6,
6.8 Hz, 1H), 3.67 (dt, J = 13.6, 6.8 Hz, 1H),
2.38 (s, 3H), 1.30 (d, J = 6.8 Hz, 6H), 1.20 (d,
J = 6.8 Hz, 6H); ¹³C NMR: δ 156.2, 142.0.4,
139.9, 129.2, 126.2, 48.4, 47.8, 23.6, 21.4,
19.6.

(E/Z)-N-methyl-N-phenyl-N'-

tosylformimidamide (**31**):⁹ White powder; mp: 64-65°C; ¹H NMR: δ 8.57 (s, 0.5H), 8.48 (s, 0.5H), 7.82 (dd, J = 8.1, 4.6 Hz, 1H), 7.43 (dd, J = 14.6, 7.2 Hz, 2H), 7.3-7.28 (m, 2H), 7.19 (t, J = 8.4 Hz, 2H), 3.44 (s, 1.5H), 3.33 (s, 1.5H), 2.43 (d, J = 5.8 Hz, 3H); ¹³C NMR: δ 162.5, 158.52, 143.7, 143.4, 143.0, 139.0, 133.1, 131.4, 130.0, 129.8, 129.7, 129.5, 127.4, 126.9, 126.6, 126.5, 122.5, 122.2, 36.2, 33.2, 21.6.

(E)-4-methyl-N-(piperidin-1-ylmethylene)be
nzenesulfonamide (3m):⁸ White powder; mp:
152-153°C; ¹H NMR: δ 8.11 (s, 1H), 7.77 (d,
J = 8.2 Hz, 2H), 7.25 (d, J = 7.6 Hz, 3H), 3.59
(t, J = 5.6 Hz, 2H), 3.40 (t, J = 5.2 Hz, 2H),
2.40 (s, 3H), 1.73-1.58 (m, 6H); ¹³C NMR: δ
157.3, 142.4, 139.8, 129.4, 126.6, 52.0, 44.8,
26.5, 25.0, 24.1, 21.6.

(E)-4-methyl-N-(morpholinomethylene)benz
enesulfonamide (3n):⁸ White powder; mp: 178-179°C; ¹H NMR: δ 8.17 (s, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 7.7 Hz, 2H), 3.74 (t, J = 4.8 Hz, 2H), 3.67 (s, 4H), 3.47 (t, J = 4.8 Hz, 2H), 2.39 (s, 3H); ¹³C NMR: δ 157.4, 142.6, 139.0, 129.3, 125.6, 66.7, 65.9, 50.2, 44.2, 21.4.

(E)-N-methyl-N'-(methylsulfonyl)-Nphenylformimidamide (30):⁴ⁱ White powder;

¹³ ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

mp: 69-70°C; ¹H NMR: δ 8.43 (s, 1H), 7.39 (t, J = 8.0, Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.6 Hz, 2H), 3.43 (s, 3H), 2.99 (s, 3H); ¹³C NMR: δ 158.4, 142.9, 129.6, 127.1, 121.9, 41.7, 35.8.

 $(E)-N'-\{[(1R,4R)-7,7-dimethyl-2-oxobicyclo]$ 2.2.1]hept-an-1-yl]methylsulfonyl}-N,N*dimethylformimidamide* (3p): White powder; mp: 172-173°C; ¹H NMR (500 MHz): δ 8.02 (s, 1H), 3.49-3.40 (m, 1H), 3.13 (d, J = 0.6 Hz, 3H), 3.00 (dd, *J* = 1.8, 1.1 Hz, 3H), 2.98-2.92 (m, 1H), 2.62 (t, J = 13.0 Hz, 1H), 2.33 (dd, J= 18.4, 2.9 Hz, 1H), 2.11-1.98 (m, 2H), 1.89 (d, J = 18.3 Hz, 1H), 1.77-1.72 (m, 1H),1.45-1.37 (m, 1H), 1.11 (s, 3H), 0.85 (s, 3H); ¹³C NMR (125 MHz): δ 215.39, 159.77, 58.51, 50.82, 48.03, 42.66 (d, J = 9.7 Hz), 41.35, 35.38, 26.99, 24.76, 19.94, 19.76; HRMS calcd. for $C_{13}H_{22}N_2NaO_3S$ $[M+Na]^+$;

309.1249; found 309.1243.

(1S)-Camphorsulfonylimine:¹⁶ White powder; mp: 224-226°C; ¹H NMR (500 MHz): δ 3.18 (d, J = 13.3 Hz, 1H), 2.97 (d, J = 13.3 Hz, 1H), 2.76 (ddd, J = 19.3, 4.4, 2.2 Hz, 1H), 2.38 (d, J = 19.3 Hz, 1H), 2.25 (t, J = 4.2 Hz, 1H), 2.06 (ddd, J = 5.7, 4.7, 2.1 Hz, 2H), 1.76 (t, J = 9.1 Hz, 1H), 1.50-1.42 (m, 1H), 1.08 (s, 3H), 0.86 (s, 3H); ¹³C NMR (125 MHz): δ 195.56, 77.33, 77.08 (s), 76.82, 64.50, 49.39, 47.95, 44.58, 35.87, 28.36, 26.57, 19.40, 18.93.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21362038).

¹⁴ ACCEPTED MANUSCRIPT

References

- Barker, J.; Kilner, M. Coord. Chem. Rev.
 1994, 133, 219-300.
- Kumamoto, T. In "Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organoctalysts", Ishikawa, I., Ed.; John Wiley & Sons Press: West Sussex, UK, 2009; p 295.
- (a) Anglada, L.; Marquez, M.; Sacristan,
 A.; Ortiz, J. A. *Eur. J. Med. Chem.* 1988,
 23, 97-100; (b) Scholz, T. H.; Sondey, J.
 M.; Randall, W. C. Schwam, H.;
 Thompson, W. J.; Mallorga, P. J.; Sugrue,
 M. F.; Graham, S. L. *J. Med. Chem.* 1993,
 36, 2134-2143; (c) Heitsch, H.; Becker, R.
 H. A.; Kleemann H.-W.; Wagner, A.
 Bioorg. Med. Chem. 1997, 5, 673-678; (d)
 - Bekhit, A. A.; Ashour, H. M. A.; Ghany,

- Y. S. A.; Bekhit, A. E.-D. A.; Baraka, A.
- *Eur. J. Med. Chem.* **2008**, 43, 456-463; (e)
- Vernier, W.; Chong, W.; Ferre, D.;
- Rewolinski, S.; Greasley, T.; Pauly, M.;
- Shaw, D.; Dinh, R. A.; Nukui, S.; Ornelas,
- M.; Reyner, E. Bioorg. Med. Chem. 2010,
- 18, 3307-3319. (f) Andersen, N. K.;
 Chandak, N.; Brulíková, L.; Kumar, P.;
 Jensen, M. D.; Jensen, F.; Sharma, P. K.;
 Nielsen, P. *Bioorg. Med. Chem.* 2010, 18, 4702-4710.
- 4. (a) King, C. J. Org. Chem. 1960, 25, 352-356; (b) Tosolini, G. Chem. Ber. 1961, 94, 2731-2737; (c) Pettit, G. R.; Kadunce, R. E. J. Org. Chem. 1962, 27, 4566-4570; (d) Jakobsen, P.; Treppendahl, S. Tetrahedron 1977, 33, 3137-3140; (e) Krasnov, V. L.; Vasyanina, G. I.; Bodrikov, I. V. Zh. Org. Khim. 1990, 27,

¹⁵ ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

- 1552-1556; (f) Arnswald, M.; Neumann,
- W. P. J. Org. Chem. 1993, 58, 7022-7028;
- (g) Silva, A. L.; Covarrubias-Zúñiga, A.;
- Maldonado, L. A. Org. Prep. Proced. Int.
- **2002**, 34, 545-549; (h) Vandenheuvel, W.
- J. A.; Gruber, V. F. J. Chromatogr. A,
- 1975, 112, 513-521; (i) Gazvoda, M.;
- Kocevar, M.; Polanc, S. Eur. J. Org.
- Chem. 2013, 5381-5386; (j) Chandna, N.,
- Chandak,N., Kumar, P., Kapoorb, J. K.; Sharma, P. K. *Green Chem.* **2013**, 15, 2294-2301.
- (a) Liu, N.; Tang, B. Y.; Chen, Y.; He, L.
 Eur. J. Org. Chem. 2009, 2059-2062; (b)
 Xu, X. L.; Ge, Z. C.; Cheng, D. P.; Ma, L.;
 Lu, C. S.; Zhang, Q. F.; Yao, N.; Li, X. N.
 Org. Lett. 2010, 12, 897-899.
- Xu, X. L.; Li, X. N.; Ma, L.; Ye, N.;
 Weng, B. J. J. Am. Chem. Soc. 2008, 130,

14048-14049.

- Chen, J.; Guo, Y. P.; Sun, M. H.; Fan G.
 T.; Zhou, L. *Chem. Commun.* 2014, 50, 12367-123.
- Chen, S.; Xu, Y.; Wan, X. Org. Lett. 2011, 13, 6152-6155.
- Zheng, Y.; Mao, J. C.; Chen, J.; Rong, G.
 W.; Liu, D. F.; Yan, H.; Chia, Y. J.; Xu, X.
 F. *RSC Adv.* 2015, 5, 50113-50117.
- 10. (a) Niu, Z. H.; Lin, S. X.; Dong, Z. Y.;
 Sun, H.; Liang, F. S.; Zhang, J. P. Org.
 Biomol. Chem. 2013, 11, 2460-2465; (b)
 Zhang, L.; Su, J. H.; Wang, S. J.; Wan, C.
 F.; Zha, Z. G.; Du, J. F.; Wang, Z. Y.
 - Chem. Commun. 2011, 47, 5488-5490; (c)
 - Zhang, J. P.; Wang, S. J.; Wang, Z. Y.; Zheng, X. Q. *Chem. Commun.* **2009**, 7372-7374.
- 11. Mulati, A.; Wusiman, A. Heterocycles

¹⁶ ACCEPTED MANUSCRIPT

2015, 91, 2163-2171.

- 12. (a) Linda, P.; Lucarelli, A.; Marino, G.; Savelli, G. J. Chem. Soc., Perkin Trans. 2, 1974, 1610-1612; (b) Martin, J.; Poignant, S.; Filleux, M. L.; Querneneur, M. T. Tetrahedron Lett. 1970, 11, 5061-5064.
- 13. Piąteka, A.; Chapuis, C. *Tetrahedron Lett.*2013, 54, 4247-4249.
- 14. X-Ray data deposited at the Cambridge
 Crystallographic Data Centre under
 CCDC 1502936. Unit cell parameters: a
 7.9045(9) b 10.3888(12) c 8.8755(10) P21.
 Experimental and refinement details can
 be found in the Supplemental Materials.
- 15. Kikugawa, K.; Kawashima, T. *Chem. Pharm. Bull.* **1971,** 19, 2629-2630.
- 16. Towson, J. C.; Weismiller, M. C.; SankarLal, G.; Sheppard, A. C.; Kumar, A.;Davis, F. A. *Org. Synth.* **1990**, 69, 158.

¹⁷ ACCEPTED MANUSCRIPT

Scheme 1. The reaction between 1a and

Vilsmeier reagent

¹⁸ ACCEPTED MANUSCRIPT

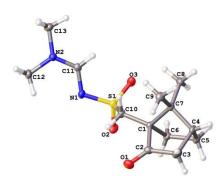


Figure 1. X-Ray crystal structure of 3p

¹⁹ ACCEPTED MANUSCRIPT

Table 1. Optimization of the reaction conditions^a

2a

1a

chloride in 10 mL of solvent, unless otherwise noted. ^b Isolated yield after column chromatography. ^c Reaction was performed with a drying tube on top of the condenser.^d

5.0 mL of solvent was used. ^e 2.0 mL of TsNH₂ + $\overset{O}{\xrightarrow{}}$ N acid chloride Ts N solvent was used. ^f No reaction.

Entr	Acid	Solven	Temp	Tim	Yiel
у	chlorid	t	. (°C)	e (h)	d
	e				$(\%)^{\mathrm{b}}$
1	POCl ₃	PhCl	80	2	90
2	SOCl ₂	PhCl	80	2	88
3	(COCl)	PhCl	80	8	50
	2				
4	SOCl ₂	DCM	40	5	70
5	SOCl ₂	DCE	60	5	60
6	SOCl ₂	CHCl ₃	60	2	95
7	SOCl ₂	DMF	60	5	trace
8	$SOCl_2$	CHCl ₃	40	5	70
9	SOCl ₂	CHCl ₃	rt	8	50
$10^{\rm c}$	SOCl ₂	CHCl ₃	60	2	95
11 ^d	SOCl ₂	CHCl ₃	60	2	96
12^{e}	SOCl ₂	CHCl ₃	60	2	93
13		CHCl ₃	60	8	\mathbf{NR}^{f}

^a Reactions were performed with 2.0 mmol of TsNH₂ (1.0 equiv.), 2.0 mmol DMF (1.0 equiv.) and 2.0 mmol, (1.0 equiv.) of acid

ACCEPTED MANUSCRIPT

	ulfor	ylformamidines		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
R ¹) 0 S N 1	$H_2 \stackrel{+}{\longrightarrow} N_1 \stackrel{O}{\longrightarrow} N_2 \stackrel{R^2}{\longrightarrow} N_1 \stackrel{R^3}{\longrightarrow} N_2 $	$\frac{\text{SOCl}_2 (1.0 \text{equiv.})}{\text{CHCl}_3, 60^{\circ}\text{C}, 3\sim 5\text{h}} R^{1^{\circ}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
				17 11 4-MeC ₆ H ₄ $\frac{2}{g}$ H Ph 5 3q 0
Ent y	^r 1	R^1	$ \begin{array}{ccccccc} & & & & & \\ & & & & \\ 2 & & & & \\ & &$	^a Reactions were performed with 2.0 mmol of sulfonamide 1 (1.0 equiv.) and 2.0 mmol
1	1 a	4-MeC ₆ H ₄	² Me Me 2 3a 93	formamide 2 (1 equiv.) in 2.0 mL of
2	u 1 b	C ₆ H ₅	$\frac{2}{a}$ Me Me 3 3b 93	chloroform, unless otherwise noted. ^b Isolated
3	1 c	4-MeOC ₆ H ₄	2 Me Me 3 3c 90	yield after column chromatography. ^c 28 % 1e
4	1 d	$4-tBuC_6H_4$	2 Me Me 3 3d 91	was recovered. ^d 37% 1f was recovered. ^e 23%
5	1 e	$4-NO_2C_6H_4$	$\frac{2}{a}$ Me Me 6 3e 62 ^c	1h was recovered. ^f 33% 1i was recovered. ^g
6	1f	$2-NO_2C_6H_4$	$\frac{2}{a}$ Me Me 6 3f 50 ^d	The <i>E</i> and <i>Z</i> isomers ratio was 1:1. ^h 13%
7	1 g	$4-ClC_6H_4$	² Me Me 5 3g 75	(1 <i>S</i>)-camphorsulfonylimine was isolated.
8	1 h	2-thienyl	² Me Me 8 3h 70°	
9	1i ⁵	-methyl-2-pyrid inyl	$a^{1} \frac{2}{a}$ Me Me 8 3i 51 ^f	
10	1 a	4-MeC ₆ H ₄	2 b Et Et 3 3j 96	
11	1	$4-MeC_6H_4$	2 <i>i</i> -Pr <i>i</i> -Pr 3 3k 95	

²¹ ACCEPTED MANUSCRIPT