ORGANOMETALLICS

Benzonitrile Adducts of Terminal Diarylphosphido Complexes: Preparative Sources of "Ru=PR₂"

Marc-André M. Hoyle,[†] Dimitrios A. Pantazis,[‡] Hannah M. Burton,[†] Robert McDonald,[§] and Lisa Rosenberg^{*,†}

[†]Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6 [‡]Max Planck Institute for Bioinorganic Chemistry, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany

[§]X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Supporting Information

ABSTRACT: Dehydrohalogenation of secondary diarylphosphine ruthenium complexes in the presence of benzonitrile yields stable, isolable nitrile adducts of the formula $[Ru(\eta^{5}$ indenyl)(PAr₂)(NCPh)(PPh₃)], in which the terminal phosphido ligand is pyramidal at P and contains a stereochemically active lone pair. Unlike the analogous carbonyl adducts

catalysts for hydrophosphination.² So far, we have been able to

isolate these very reactive complexes only for bulky alkyl

substituents at phosphorus (R = Cy (2a), $Pr^{i} (2b)$). We have

identified the analogous diaryl species ($R = Ph(2c), Tol^{p}(2d)$)

at low temperature in solution by ³¹P{¹H} NMR, but these

complexes decompose to a mixture of unidentified products as they are warmed to room temperature. We have also trapped

the diarylphosphido complexes as their CO adducts (3c,d) in Scheme 1);^{1a} however, preliminary reactivity and photolysis studies³ indicated that none of the carbonyl ligands in 3a-d is

sufficiently labile to yield a reactive five-coordinate species able

to participate in 1,2-addition or [2 + 2]-cycloaddition

chemistry. We report here the synthesis and isolation of the

corresponding benzonitrile adducts (4c,d, eq 1), from which

 $[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{PAr}_{2})(\operatorname{CO})(\operatorname{PPh}_{3})]$, these benzonitrile complexes behave as masked sources of the highly reactive planar phosphido complexes $[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{PAr}_{2})(\operatorname{PPh}_{3})]$, which contain a Ru=PAr₂ π bond. This is illustrated by the addition (or cycloaddition) reactions of the benzonitrile adducts with dihydrogen, methyl iodide, and 1-hexene, as well as their thermal decomposition via orthometalation of the PPh₃ ligand. Enthalpies of CO vs NCPh dissociation from the $[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{PR}_{2})(\operatorname{PPh}_{3})]$ fragments (R = alkyl, aryl) have been calculated, as has the trajectory of addition of H₂ to the model planar phosphido complex $[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{PMe}_{2})(\operatorname{PMe}_{3})]$. The latter study shows the intermediacy of an η^{2} -H₂ adduct, $[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{PAr}_{2})(\eta^{2}-H_{2})(\operatorname{PPh}_{3})]$, in the formation of $[\operatorname{RuH}(\eta^{5}\operatorname{-indenyl})(\operatorname{HPMe}_{2})(\operatorname{PMe}_{3})]$, a further indication of the importance of the variable binding modes of the terminal phosphido ligand in this system.

INTRODUCTION

In our exploration of the coordination chemistry of secondary phosphines, we have prepared unusual five-coordinate phosphido complexes via the dehydrohalogenation reaction illustrated in Scheme 1.^{1a} These dark blue complexes exhibit

Ru=PR₂ π bonding and undergo a range of facile 1,2-addition chemistry, for both polar and nonpolar addenda,^{1a,b} and [2 + 2]-cycloaddition reactions of both alkenes^{1c} and alkynes,^{1d} which are of particular interest in the development of new the benzonitrile ligands dissociate with relative ease. We also present a survey of the reactivity of both the carbonyl and

[1]

Received: September 1, 2011 Published: November 7, 2011

benzonitrile adducts of these terminal diarylphosphido complexes, to show how the benzonitrile adducts behave as a source of the coordinatively unsaturated complexes [Ru(η^{5} -indenyl)(PAr₂)(PPh₃)] (2c,d) while the more inert carbonyl adducts do not.

RESULTS AND DISCUSSION

The addition of toluene to a mixture of solid KOBu^t, [RuCl(η^{5} indenyl)(PR₂H)(PPh₃)] (R = Ph (1c), Tol^p (1d)), and neat benzonitrile gives purple-red solutions from which the benzonitrile complexes [Ru(η^{5} -indenyl)(PR₂)(NCPh)(PPh₃)] (4c,d) can be isolated (eq 1).⁴ ³¹P{¹H} NMR signals for these complexes (Table 1) do not show ²J_{PP} coupling: only slightly

Table 1. ³¹ P{ ¹ H} NMR Data for New Compounds: δ	(ppm)
(Multiplicity, ${}^{2}J_{PP}$ or $\omega_{1/2}$ (Hz))	

complex	PR ₂ , HPR ₂ , or MePR ₂	PPh ₃
$[\operatorname{Ru}(\eta^{5}-\operatorname{indenyl})(\operatorname{NCPh})(\operatorname{PPh}_{2})(\operatorname{PPh}_{3})]$ (4c) ^a	26.1 (s, 4)	52.3
$ \begin{bmatrix} \operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{NCPh})(\operatorname{PTol}^{p}_{2})(\operatorname{PPh}_{3}) \end{bmatrix} \\ (4\mathbf{d})^{b} $	25.6 (s, 4)	51.8
$ [\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})\{\kappa^{2} \cdot (o \cdot C_{6}H_{4})\operatorname{PPh}_{2}\}(\operatorname{HPPh}_{2})] $ $ (\mathbf{5c})^{c} $	46.5 (d, 30)	-18.7
$ \begin{bmatrix} \operatorname{Ru}(\eta^{5}\operatorname{-indenyl})\{\kappa^{2} - (o - C_{6}H_{4})\operatorname{PPh}_{2}\} \\ (\operatorname{HPTol}^{p}_{2}) \end{bmatrix} (\mathbf{5d})^{c} $	44.6 (d, 29)	-18.5
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})\operatorname{H}(\operatorname{HPTol}^{p}_{2})(\operatorname{PPh}_{3})] \ (\mathbf{6d})^{c}$	47.0 (d, 33)	70.6
$ [\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{NCPh})(\operatorname{PPh}_{2}\operatorname{Me})(\operatorname{PPh}_{3})] \mathrm{I} $ $ (7c)^{d} $	33.7 (d, 36)	54.0
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})\operatorname{I}(\operatorname{PPh}_{2}\operatorname{Me})(\operatorname{PPh}_{3})](\mathbf{8c})^{d}$	41.1 (d, 42)	45.1
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{NCPh})(\operatorname{PTol}^{p}_{2}\operatorname{Me})(\operatorname{PPh}_{3})]I$ $(7\mathbf{d})^{d}$	30.8 (d, 38)	53.9
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})\operatorname{I}(\operatorname{PTol}^{p}_{2}\operatorname{Me})(\operatorname{PPh}_{3})] (\mathbf{8d})^{d}$	38.9 (d, 42)	44.2
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{CO})(\operatorname{PPh}_{2}\operatorname{Me})(\operatorname{PPh}_{3})]\mathrm{I}(\mathbf{9c})^{d}$	29.0 (d, 25)	46.8
$[\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\operatorname{CO})(\operatorname{PTol}_{2}\operatorname{Me})(\operatorname{PPh}_{3})]I$ $(9d)^{d}$	26.8 (d, 26)	48.8
$ [\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\kappa^{2}\operatorname{-Bu}^{n}CH_{2}CH_{2}PPh_{2}) (PPh_{3})] (syn-10c)^{c} $	-19.3 (d, 24)	63.3
$ [\operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\kappa^{2}\operatorname{-Bu}^{n}CH_{2}CH_{2}PPh_{2}) (PPh_{3})] (anti-10c)^{c} $	-21.1 (d, 25)	62.5
$\begin{bmatrix} \operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\kappa^{2}\operatorname{-Bu}^{n}CH_{2}CH_{2}PTol^{p}_{2})\\ (PPh_{3})\end{bmatrix}(syn\operatorname{-10d})^{c}$	-21.4 (d, 24)	63.4
$\begin{bmatrix} \operatorname{Ru}(\eta^{5}\operatorname{-indenyl})(\kappa^{2}\operatorname{-Bu}^{n}CH_{2}CH_{2}PTol^{p}_{2})\\ (PPh_{3}) \end{bmatrix} (anti-10d)^{c}$	-23.2 (d, 25)	62.7

^{*a*}Conditions: at 202.46 MHz, samples in d_{s} -toluene, recorded at 240 K. ^{*b*}Conditions: at 202.46 MHz, samples in d_{6} -benzene. ^{*c*}Conditions: at 121.49 MHz, samples in d_{6} -benzene. ^{*d*}Conditions: at 121.49 MHz, samples in *d*-chloroform.

broadened singlets ($\omega_{\rm 1/2} \approx$ 4 Hz) are observed for the $\rm PPh_3$ and PAr₂ ligands. Such reduced or negligible ${}^{2}J_{PP}$ values are diagnostic of pyramidal geometry at the terminal phosphido ligands,⁵ and we previously reported similar, very low values for the analogous diarylphosphido carbonyl adducts (Scheme 1; ${}^{2}J_{\text{PP}} = 8 \text{ Hz} (3c), 7 \text{ Hz} (3d)).^{1a}$ The aromatic regions of the ${}^{1}\text{H}$ and ¹³C NMR spectra of 4c,d are quite complex, with considerable broadening of signals due to PPh₃, a feature of this crowded ruthenium indenyl system that we frequently observe.⁶ However, spectra of 4c at low temperature (240 K) and of 4d at room temperature are sufficiently well resolved to allow assignment of the ¹H NMR signals corresponding to coordinated benzonitrile,⁷ which are supported by correlations in the ${}^{1}\text{H}/{}^{13}\text{C}\text{-HMBC}$ spectra between signals due to H_{ortho} and the quaternary nitrile carbon (PhCN, δ 123.2 ppm). The presence of the coordinated nitrile ligand in 4c,d is also

indicated by infrared spectroscopy, with $\nu_{\rm CN}$ 2198 cm⁻¹ for both complexes. This is lower than for free benzonitrile ($\nu_{\rm CN}$ 2232 cm⁻¹),⁸ which is consistent with a decrease in the nitrile bond order due to π back-bonding from the relatively electronrich Ru to the nitrile π^* orbitals.⁹ The structure of **4c** in the solid state was confirmed by X-ray crystallography (Figure 1,

Figure 1. Molecular structure of **4c**. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 20% probability level, only the ipso carbons are shown for phenyl rings bound to phosphorus; hydrogen atoms are not shown. Selected interatomic distances (Å) and bond angles (deg) (C* denotes the centroid of the plane defined by C(7A)-C(1)-C(2)-C(3)-C(3A)): Ru-P(1) = 2.3824(6), Ru-P(2) = 2.3122(6), Ru-N = 2.0059(19), Ru-C* = 1.916, N-C(10) = 1.150(3), C(10)-C(11) = 1.438(3); P(1)-Ru-P(2) = 92.59(2), P(1)-Ru-N = 88.87(5), P(2)-Ru-N = 88.88(6), P(1)-Ru-C* = 123.4, P(2)-Ru-C* = 126.0, N-Ru-C* = 126.1, Ru-N-C(10) = 172.40(18), N-C(10)-C(11) = 174.3(2). Indenyl crystallographic slip distortion:¹¹ Δ = d(Ru-C(7A),C(3A)) - d(Ru-C(1),C(3)) = 0.161 Å.

Table 2). Features associated with the pyramidal geometry at the PPh₂ ligand are as expected: the sum of angles at P1 is 315.42° , and the Ru–PPh₂ distance is 0.07 Å longer than the Ru–PPh₃ distance, due to the transition-metal "gauche" effect associated with the pyramidal phosphorus lone pair.¹⁰ The benzonitrile ligand is bent slightly away from the phosphido and triphenylphosphine ligands (Ru–N–C10 = 169.4° , N–C10–C11 = 174.3°), illustrating both the overall steric crowding in this structure and the stereochemical requirements of the phosphido lone pair.

The diarylphosphido benzonitrile adducts 4c,d are more stable than the analogous dialkylphosphido complexes 4a,b, which we previously generated in situ from the addition of benzonitrile to solutions of the planar phosphido complexes **2a,b** and characterized by ${}^{31}P\{{}^{1}H\}$ NMR.^{1b} Small amounts $(\leq 20\%)$ of 2a,b remain in equilibrium with 4a,b in these solution samples, even in the presence of a large excess of benzonitrile. Attempts to isolate the diisopropylphosphido nitrile adduct (4b) by removal of solvent under vacuum revealed that this equilibrium shifts further toward 4b as the sample becomes more concentrated (and presumably more benzonitrile-rich (bp 190 °C)): we were able to obtain a red paste, which, when redissolved in pentane, rapidly turned blue, indicating the loss of benzonitrile to give 2b. Subsequent removal of the pentane under vacuum regenerated the red paste. Several repetitions of this trituration gave an oily dark reddish solid, an infrared spectrum of which confirmed the

Table 2. Crystallographic Data for $[(\eta^5-indenyl)Ru(NCPh)-(PPh_2)(PPh_3)]$ (4c)

formula	$C_{46}H_{37}NP_2Ru$
formula wt	766.78
cryst color, habit	orange rod
cryst dimens (mm)	$0.10 \times 0.12 \times 0.46$
cryst syst, space group	orthorhombic, Pbcn (No. 60)
a (Å)	19.9629(6)
b (Å)	19.0706(6)
c (Å)	19.6393(6)
V (Å ³)	7476.8(4)
Ζ	8
$\rho_{\rm calcd} ~({\rm g}~{\rm cm}^{-3})$	1.362
$\mu \text{ (mm}^{-1})$	0.538
temp (°C)	-100
data collection $2\theta_{max}$ (deg)	52.80
total no. of data collected	57 326 $(-24 \le h \le 24, -23 \le k \le 23, -24 \le l \le 24)$
no. of indep rflns (R_{int})	7675 (0.0595)
no. of obsd rflns $(F_o^2 \ge 2\sigma(F_o^2))$	5918
range of transmissn factors	0.9496-0.7883
no. of data/restraints/ params	7675/0/451
goodness of fit (S) (all data) ^{<i>a</i>}	1.024
R1 $(F_{o}^{2} \ge 2\sigma(F_{o}^{2}))^{b}$	0.0293
wR2 (all data) ^c	0.0705
largest diff peak, hole (e $Å^{-3}$)	0.312, -0.499
$a_{\mathbf{C}} = \left[\sum_{i=1}^{n} \left(E_{i}^{2} - E_{i}^{2} \right)^{2} \right] \left(\ldots \right]$	$(1)^{1/2}$ (\dots

 ${}^{a}S = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2}/(n-p)\right]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = \left[\sigma^{2}(F_{o}^{2}) + (0.0247P)^{2} + 6.0877P\right]^{-1}, \text{ where } P = \left[\operatorname{Max}(F_{o}^{2}, 0) + 2F_{c}^{2}\right]/3). {}^{b}\text{R1} = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. {}^{c}\text{wR2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2}/\sum w(F_{o}^{4})\right]^{1/2}.$

presence of coordinated benzonitrile, with $\nu_{\rm CN}$ at 2199 cm⁻¹. However, attempts to characterize this sample by solution NMR inevitably resulted in decomposition, including dissociation of the benzonitrile ligand and regeneration of **2b**, accompanied by thermal degradation to the orthometalated product **5b**^{1a} (vide infra). It is not yet clear whether the greater stability of the diarylphosphido benzonitrile adducts **4c**,**d** in solution, relative to the dialkylphosphido analogues **4a**,**b**, is due to the lesser bulk of the diaryl-substituted phosphido ligands in **4c**,**d** or to their diminished donor ability.

Complexes 4c,d are sufficiently stable to allow their isolation and characterization, but they are highly air-sensitive even in the solid state¹² and, in the absence of air or moisture, they undergo thermal decomposition in solution. Heating sealed samples of $4c_{,d}$ in d_{6} -benzene to 60 °C gives a slow color change from deep purple-red to a clear orange-red, corresponding to the formation of the orthometalated products $[\operatorname{Ru}(\eta^{5}-\operatorname{indenyl})\{\kappa^{2}-(o-C_{6}H_{4})\operatorname{PPh}_{2}\}(\operatorname{PR}_{2}H)]$ (5c,d in Scheme 2), as determined by ${}^{31}P{}^{1}H$ NMR spectroscopy. Similarly to the previously characterized complexes 5a,b,^{1a} the ${}^{31}P{}^{1}H{}$ signals for the orthometalated PPh₃ ligand in 5c,d show a diagnostic upfield shift, from \sim 52 ppm in 4c,d to -18.7 ppm (5c) and -18.5 ppm (5d). ³¹P NMR confirms the presence of the secondary phosphine ligands in 5c,d: signals at 46.5 and 44.6 ppm, respectively, show a large ${}^{1}J_{PH}$ value of 342 Hz, and similar coupling constants are observed for the P-Hsignals in the corresponding ¹H NMR spectra. In contrast, samples of the carbonyl adducts $3c_{,d}$ in d_{8} -toluene are quite

stable to thermal decomposition, showing no change by $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ NMR even with prolonged heating (5 days) at 60 °C. This is consistent with the higher π acidity of CO relative to that of benzonitrile, which leads to stronger M-L bonds in these electron-rich ruthenium complexes. Computed ligand dissociation enthalpies (Table 3) for the conversion of 3a-d to 2a-d plus CO and for 4a-d to 2a-d plus NCPh, respectively, indicate that CO binds approximately twice as strongly as benzonitrile to Ru throughout this series. The calculated Ru-CO dissociation enthalpies for the dialkylphosphido complexes 3a,b are similar to experimental CO dissociation energies of 41-44 kcal/mol reported for Ru(CO)₅, Ru₃(CO)₁₂, and Ru(dmpe)₂CO.¹³ We have found no absolute bond dissociation data for ruthenium (or other) nitrile complexes, but our calculated Ru-NCPh values are close to those determined by solution calorimetry for Ru-PR3 bonds in half-sandwich complexes, which fall in the range of 9-24 kcal/mol.¹⁴ Most striking is the approximately 7 kcal/mol increase in calculated ligand dissociation enthalpies for the diarylphosphido complexes 3c,d and 4c,d relative to the corresponding dialkylphosphido complexes 3a,b and 4a,b, consistent with our observation of the instability of 4b relative to 4c,d (vide supra).

Ph ₃ P' 3a	$ \xrightarrow{R_{u}}_{L} \xrightarrow{R_{u}}_{P:R} \xrightarrow{R_{u}}_{Ph_{3}P} \xrightarrow{Ph_{3}P} $	2a-d R + L
R	L = CO(3)	L = PhCN (4)
Cy (a)	45.4	18.1
$Pr^{i}(\mathbf{b})$	45.1	17.9
Ph (c)	52.0	24.6
$Tol^p(\mathbf{d})$	52.3	25.3
^a PBE/DKH2-T	ZVP calculations.	

Table 3. Computed Ligand Dissociation Enthalpies ΔH

The fact that complexes 4c,d give the same thermal decomposition product as the five-coordinate dialkylphosphido complexes 2a,b suggests that these adducts cleanly dissociate benzonitrile to generate the diarylphosphido complexes 2c,d in solution. This is further supported by addition of dihydrogen to the adducts in d_6 -benzene, which generates the secondary

 $(\text{kcal mol}^{-1})^a$

Figure 2. PBE/DKH2-TZVP free energy reaction profile for a simplified model (PPh₃ replaced by PMe₃; Cy or Pr^{*i*} replaced by Me) of the addition of H₂ to **2a**,**b**.

phosphine hydrido complexes $[RuH(\eta^{5}-indenyl)(PR_{2}H)-(PPh_{3})]$ (6c,d) within seconds (eq 2), on the basis of the

color change from deep purple-red to clear yellow-orange, and as confirmed by ¹H and ³¹P{¹H} NMR.¹⁵ The same overall 1,2addition product 6a results from the addition of $H_2(g)$ to complex 2a (eq 3),^{1a} and similar hydrido amine or phosphine complexes have resulted from the addition of dihydrogen to other metal amido or phosphido complexes, respectively.¹⁶ This apparent outer-sphere activation of dihydrogen is analogous to that proposed to occur for the Noyori-type ruthenium amide hydrogenation catalysts.¹⁷ We have put some effort into identifying the trajectory of hydrogen addition, computationally, to better understand this process. DFT results for a simplified dialkylphosphido ruthenium indenyl complex are shown in Figure 2. The intermediate η^2 -H₂ adduct highlights the importance to this reaction of the ready access to coordinative unsaturation at Ru resulting from disruption of the Ru-P double bond.¹⁸ Although the overall reaction is formally a heterolytic cleavage of dihydrogen, the hydrogens in the η^2 adduct carry zero charge, and in the cyclic transition

state, the H on Ru has a calculated charge of -0.1, while the H on P has a charge of +0.1, a very small charge separation. It is easy to visualize the ready dissociative substitution of benzonitrile by dihydrogen as an entry to this essentially homolytic pathway of addition across the Ru=PAr₂ bond in **4c**,**d**.

We showed previously that the dialkylphosphido complexes **2a,b** undergo 1,2-addition of the polar bonds in reagents such as HCl and methyl iodide,^{1a} as well as a range of protic reagents.^{1b} As shown for methyl iodide in Scheme 3, these reactions invariably place the electrophilic portion of the addendum at P and the nucleophilic portion at the co-ordinatively unsaturated Ru. Addition of MeI to the benzonitrile adducts **4c,d** ultimately gives the analogous diarylmethylphosphine iodide complexes **8c,d** (Scheme 3),

but our studies of this reaction indicate a stepwise mechanism in which nucleophilic attack of the terminal phosphido ligand at $Me^{\delta+}$ generates the cationic intermediate 7, which then undergoes nucleophilic substitution of the benzonitrile at Ru by I⁻. The addition of MeI to 4c,d in toluene results in the immediate formation of a bright yellow precipitate (1-2 s), which, when dissolved in *d*-chloroform, slowly converts from clear yellow to clear orange-red. The identity of the yellow precipitate as $[Ru(\eta^{5}-indenyl)(NCPh)(PPh_{3})(PR_{2}Me)]I$ (7c,d) was confirmed by observation of $\nu_{\rm CN}$ (2239 cm⁻¹, 7c; 2227 cm⁻¹, 7d) in the IR spectra and observation of the cation mass peaks by ESI-MS, with predicted isotopic distributions (see the Supporting Information). ¹H NMR spectra show a diagnostic doublet with ${}^{2}J_{PH} = 9$ Hz at 1.2–1.3 ppm due to the new P–CH₃ group. ${}^{31}P{}^{1}H{}$ NMR spectra of these *d*-chloroform solutions initially show major signals due to the benzonitrile adducts 7c,d, but we also see small signals due to [RuI(η^{5} indenyl)(PPh₃)(PR₂Me)] (8c,d).¹⁹ These gradually increase in intensity (over 5 days) to become the major product signals. In the ¹H NMR spectra the P-Me signals remain but shift slightly (~0.5 ppm).²⁰ Cationic complexes analogous to the benzonitrile-containing 7c,d, $[Ru(\eta^{5}-indenyl)(CO)(PPh_{3})(PR_{2}Me)]I$ (9c,d), result from the addition of excess MeI to the carbonyl complexes $3c_{,d}$ (eq 4), again as diagnosed by ¹H NMR, IR, and

ESI-MS. These carbonyl cations are stable in *d*-chloroform indefinitely at room temperature, showing no sign of substitution of the CO ligand by the I^- counterion.

As described in the Introduction, the dialkylphosphido complexes 2a,b participate in [2 + 2]-cycloaddition reactions with alkenes and alkynes.^{1c,d} Of particular note is the fact that even the simple olefins ethylene and 1-hexene participate in this apparently concerted cycloaddition. Our final test of the ability of 4c,d to act as masked sources of the coordinatively unsaturated 2c,d involved the addition of 1-hexene to these benzonitrile adducts. We screened the behavior of both 3c.d and 4c,d in the presence of an excess of 1-hexene, in sealed NMR tube experiments. The carbonyl adducts 3c,d showed no reaction with the alkene, while the benzonitrile adducts 4c,d gradually changed color from dark purple-red to red-orange, and ³¹P{¹H} NMR showed that first one and then a second, minor product formed, with signals corresponding closely in shift and ${}^{2}J_{PP}$ values to those previously observed for the syn and anti diastereomers of the [2 + 2]-cycloadducts $[Ru(\eta^{5}$ indenyl)(κ^2 -BuⁿCH₂CH₂PR₂)(PPh₃)] (**10a**,**b**).^{1c} The high-field signals (-19.3 to -23.2 ppm) are particularly diagnostic of the incorporation of "PR2" into the four-membered metallacycle. We presume that the cycloaddition of 1-hexene at 4c,d is proceeding with similar regiochemistry to give the analogous syn and anti diastereomers of 10c,d, where syn and anti refer to the orientation of the Buⁿ substituent on the α -carbon with respect to the Ru-indenyl bond (Scheme 4). Upon complete consumption of 4c,d in these reactions the diastereomer ratio (by analogy to assignments for 10a,b) is about 80:20 syn/anti, which is slightly lower than the >95:5 ratio observed for 10a,b. Interestingly, a second set of sealed NMR tube experiments, in which slightly less than 1 equiv of 1-hexene was added to 4c,d, gave only the putative syn diastereomers as products, with trace

amounts of the anti products appearing only after 1 day or more. This surprising difference in the 1-hexene concentration dependences of the formation of the two diastereomers is not out of line with our ongoing studies of the cycloaddition reactions of 1-hexene at 2a,b, for which we observe a kinetic preference for the formation of the syn isomer, facile cycloreversion, and slow epimerization.²¹

CONCLUSIONS

With the synthesis of these benzonitrile-stabilized terminal diarylphosphido complexes, we have expanded the scope of a series of highly reactive five-coordinate ruthenium halfsandwich fragments. The reactivity and computational studies described above illustrate the importance of ready access to a vacant coordination site at ruthenium, via facile ligand dissociation or variable phosphido binding mode, to allow the addition of nonpolar H-H or C-H bonds, or [2 + 2]cycloaddition of alkenes, at the Ru-PR2 bond. Meanwhile, the stepwise reactions with MeI confirm that the nucleophilicity at the terminal phosphido ligands in these complexes is not compromised by the presence of less donating aryl substituents at P or by the ready dissociation of the benzonitrile ligands. We are currently studying the mechanism(s) of cycloaddition in these complexes more closely and examining their activity in catalytic phosphination and hydrophosphination reactions.

EXPERIMENTAL SECTION

General Considerations. Unless otherwise noted, all reactions and manipulations were performed under nitrogen in an MBraun Unilab 1200/780 glovebox or using conventional Schlenk techniques. All solvents were sparged with nitrogen for 25 min and dried using an MBraun Solvent Purification System (SPS). Deuterated solvents were purchased from Canadian Isotopes Laboratory (CIL), freeze-pumpthaw-degassed, and vacuum-transferred from sodium/benzophenone $(d_6$ -benzene, d_8 -toluene) calcium hydride (*d*-chloroform) before use. Benzonitrile was predried with K₂CO₃ and fractionally distilled from P₂O₅ under dynamic vacuum. Potassium tert-butoxide was purchased from Aldrich Chemical Co. and used as received without further purification. Carbon monoxide and hydrogen gas were purchased from Praxair Canada Inc. $[Ru(\eta^{5}-indenyl)Cl(PR_{2}H)(PPh_{3})]$ (R = Ph (1c⁶), Tol^p (1d^{1a})), $[Ru(\eta^{5}-indenyl)(PPr_{2})(PPh_{3})]$ (2b^{1a}), and $[Ru(\eta^{5}-indenyl)(PPh_{3})]$ indenyl)(CO)(PR₂)(PPh₃)] (R = Ph (3c), Tol^p (3d))^{1a} were prepared as previously reported in the literature. (All secondary phosphines were purchased from Strem Chemicals as 10 wt % solutions in hexanes; concentrations were checked against a known quantity of triphenylphosphine oxide by ³¹P{¹H} NMR before use.)

³¹P NMR data are given in Table 1. ¹H and ¹³C NMR data for 4c,d and ¹H NMR data for products of the NMR scale reactions are in the Supporting Information. NMR spectra were recorded on a Bruker AVANCE 500 operating at 500.13 MHz for ¹H, 125.77 MHz for ¹³C, and 202.46 MHz for ³¹P or on a Bruker AVANCE 300 operating at 300.13 MHz for ¹H, 74.47 MHz for ¹³C, and 121.49 MHz for ³¹P. Chemical shifts are reported in ppm at ambient temperature unless otherwise noted. ¹H chemical shifts are referenced against residual protonated solvent peaks at 7.16 (C₆D₅H), 2.09 (PhCD₂H), and 7.26 ppm (CHCl₃). ¹³C chemical shifts are referenced against *d*₆-benzene at 128.4 ppm and *d*₈-toluene at 20.4 ppm. All ¹H and ¹³C chemical shifts are reported relative to tetramethylsilane, and ³¹P chemical shifts are reported relative to 85% H₃PO₄(aq).

IR spectra were recorded for KBr pellets under a nitrogen atmosphere on a Perkin-Elmer FTIR Spectrum One spectrometer. UV-vis data were obtained using a Varian Cary 5 UV-vis spectrophotometer. Microanalysis was performed by Canadian Microanalytical Service Ltd., Delta, BC, Canada. Low-resolution mass spectra were collected at the University of Victoria on a Micromass Q-ToF micro hybrid quadrupole/time-of-flight mass spectrometer in positive-ion mode using electrospray ionization. High-resolution mass spectra were acquired by Dr. Yun Ling at the University of British Columbia, Vancouver, BC, Canada, on a Water/Micromass LCT-ToF mass spectrometer in positive-ion mode using electrospray ionization.

Synthesis of Benzonitrile Adducts $4c_{,d}$. [Ru(η^{5} -indenyl)- $(PP\dot{h}_2)(PhCN)(PPh_3)$] (4c). To a Schlenk flask containing [Ru(η^{5} indenyl)Cl(HPPh₂)(PPh₃)] (1c; 423 mg, 0.604 mmol) and KOBut (132 mg, 1.18 mmol) was added benzonitrile (0.31 mL, 0.31 g, 3.0 mmol) to form a dark red sludge. Toluene (25 mL) was added, and the resulting purple-red mixture was stirred for 3 h, after which it was filtered through Celite to remove solid and gelatinous byproducts KCl and HOBut. The toluene was removed under vacuum, and the resulting red paste was precipitated from a minimum volume of toluene (3 mL) layered with pentane (25 mL). The dark red powder was then washed with pentane (4 \times 10 mL) to give [Ru(η^{5} indenyl)(PhCN)(PPh₂)(PPh₃)] (4c; 272 mg, 0.355 mmol, 59% yield). IR (KBr, cm⁻¹): 2198 (s, $\nu_{\rm CN}$). UV-vis (toluene): $\lambda_{\rm max}$ 523 nm, ε 3000 M^{-1} cm⁻¹. HR-ESI-MS ([M + H]⁺, m/z): calcd for C46H38NP299Ru 765.1539, found 765.1558 (error 2.5 ppm). Anal. Calcd for C46H37NP2Ru: C, 72.03; H, 4.87. Found: C, 71.99; H, 4.93. Dec pt: 148-150 °C.

 $[R^{1}(\eta^{5}-indenyl)(PTol^{p}_{2})(PhCN)(PPh_{3})]$ (4d). This complex was prepared by a method similar to that for 4c, using $[Ru(\eta^{5}-indenyl)Cl-(HPTol^{p}_{2})(PPh_{3})]$ (1d; 270 mg, 0.371 mmol), KOBu^t (84 mg, 0.75 mmol), and benzonitrile (0.21 mL, 0.21 g, 2.0 mmol). The product $[Ru(\eta^{5}-indenyl)(PhCN)(PTol^{p}_{2})(PPh_{3})]$ (4d) was isolated as a dark red powder (188 mg, 0.237 mmol, 64% yield). IR (KBr, cm⁻¹): 2198 (s, ν_{CN}). UV–vis (toluene): λ_{max} 523 nm, ε 3000 M⁻¹ cm⁻¹. HR-ESI-MS ($[M + H]^+$, m/z): calcd for $C_{48}H_{42}NP_2^{99}Ru$ 793.1852, found 793.1827 (error -3.1 ppm). High air sensitivity precluded the satisfactory elemental analysis of this complex (see the Supporting Information for ¹H and ³¹P{¹H} spectra of isolated product). Dec pt: 148–150 °C.

Attempted Isolation of $[\text{Ru}(\eta^{5}\text{-indenyl})(\text{PPr}_{2}^{i})(\text{PhCN})(\text{PPh}_{3})]$ (4b). To a Schlenk flask containing $[\text{Ru}(\text{PPr}_{2}^{i})(\eta^{5}\text{-indenyl})(\text{PPh}_{3})]$ (2b; 82 mg, 0.14 mmol) in toluene (5 mL) was added an excess of benzonitrile (720 mg, 7 mmol, ~50 equiv), which caused the dark blue solution to turn deep red. The mixture was stirred for approximately 10 min, and then the solvent was removed under vacuum. Trituration of the resulting bright red oily residue with pentane (4 × 5 mL) gave a tacky reddish solid (crude yield 79 mg, 0.11 mmol, 81%). IR (KBr pellet, cm⁻¹): 2199 (w, ν_{CN}).

NMR-Scale Reactions of the Adducts [Ru(η^{5} -indenyl)(PR₂)-(L)(PPh₃)] (L = CO (3c,d), PhCN (4c,d)). (a). Thermolysis. Solid [Ru(η^{5} -indenyl)(CO)(PR₂)(PPh₃)] (3c, 6 mg, 0.008 mmol; 3d, 5 mg, 0.006 mmol) or [Ru(η^{5} -indenyl)(PhCN)(PR₂)(PPh₃)] (4c, 5 mg, 0.007 mmol; 4d, 8 mg, 0.011 mmol) was dissolved in d_{8} -toluene (3c,d, 0.7 mL) or d_{6} -benzene (4c,d, 0.7 mL) and added to a J. Young NMR tube. The NMR sample was heated to 60 °C in an oil bath and was removed periodically for monitoring by ³¹P{¹H} NMR spectroscopy. For 3c,d, samples remained dark red, and initial ${}^{31}P{{}^{1}H}$ spectra showed no changes. After 5 days, ${}^{31}P{{}^{1}H}$ spectra still showed principally unreacted 3c,d, along with small amounts of PPh₃ (<5%) and an unidentified product (in 3c, singlet at -56.7 ppm (<5%); in 3d, singlet at -58.9 ppm (<5%).

For 4c,d, samples gradually (4c, 90 h; 4d, 70 h) lightened from deep purple-red to clear orange-red, at which point ${}^{31}P{}^{1}H$ NMR showed conversion to the orthometalated complexes [Ru(η^{5-} indenyl){ $\kappa^{2-}(o-C_{c}H_{4})PPh_{2}$ }(PR₂H)] (5c,d, by analogy to shifts and coupling constants previously observed for the orthometalated dialkylphosphine complex Sa^{1a}).

(b). Reaction with $H_2(g)$. Solid $[\operatorname{Ru}(\eta^{5}\text{-indenyl})(\operatorname{CO})(\operatorname{PR}_2)$ -(PPh₃)] (3c, 5 mg, 0.007 mmol; 3d, 5 mg, 0.006 mmol) or $[\operatorname{Ru}(\eta^{5}\text{-indenyl})(\operatorname{PhCN})(\operatorname{PR}_2)(\operatorname{PPh}_3)]$ (4c, 5 mg, 0.007 mmol; 4d, 5 mg, 0.007 mmol) was dissolved in d_6 -benzene (3c, 4d, 0.6 mL) or d_8 -toluene (3d, 4c, 0.6 mL) and added to a J. Young NMR tube. The sample was degassed by three freeze-pump-thaw cycles before approximately 1 atm of hydrogen was introduced. The sealed sample was inverted five times, and the contents were then analyzed by ${}^{31}\mathrm{P}\{{}^{1}\mathrm{H}\}$ NMR spectroscopy.

For 3c,d, samples retained their red color, and $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ spectra showed no changes.

For 4c,d, the dark purple-red solutions turned clear yellow-orange after the sample was inverted (~10 s), and ${}^{31}P{}^{1}H$ NMR showed complete conversion to the hydrido phosphine complexes [Ru(η^{5} -indenyl)(H)(PR₂H)(PPh₃)] (6c,d).¹³

(c). Reaction with Mel. Solid $[\text{Ru}(\eta^5\text{-indenyl})(\text{CO})(\text{PR}_2)(\text{PPh}_3)]$ (3c, 28 mg, 0.040 mmol; 3d, 25 mg, 0.035 mmol) or $[\text{Ru}(\eta^5\text{-indenyl})(\text{NCPh})(\text{PR}_2)(\text{PPh}_3)]$ (4c, 37 mg, 0.046 mmol; 4d, 30 mg, 0.038 mmol) was dissolved in toluene (1–5 mL). MeI (50 μ L, 0.8 mmol) was added to the dark red solutions.

For **3c,d**, mixtures immediately formed a yellow precipitate along with a solution color change to clear yellow (1-2 s). Toluene was removed under vacuum, and analysis of the resulting yellow precipitates by NMR, IR, and ESI-MS indicated they were the iodide salts $[\text{Ru}(\eta^{5}\text{-indenyl})(\text{CO})(\text{PR}_{2}\text{Me})(\text{PPh}_{3})]$ I (**9c,d**). ³¹P{¹H} NMR spectra of the samples in *d*-chloroform showed that **9c,d** was the major product, although there were minor P-containing impurities. Continued monitoring of these clear yellow samples by ³¹P{¹H} NMR showed no changes over 3–5 days.

Data for 9c: LR-ESI-MS (20 V, CH₂Cl₂, m/z) 707.2 (M⁺, 100%); IR (KBr, cm⁻¹) 1959 (s, ν _{CO}).

Data for **9d**: LR-ESI-MS (20 V, CH₂Cl₂, m/z) 735.2 (M⁺, 100%); IR (KBr, cm⁻¹) 1980 (s, ν _{CO}).

For 4c,d, mixtures formed a yellow precipitate within 1–2 s, with light orange supernatant solutions. Toluene was removed under vacuum, and analysis of the resulting yellow precipitates by NMR, IR, and ESI-MS indicated they were the iodide salts [Ru(η^{5} -indenyl)(NCPh)(PR₂Me)-(PPh₃)]I (7c,d). The NMR samples in *d*-chloroform slowly darkened from yellow-orange to red-orange. Continued monitoring by ³¹P{¹H} NMR showed complete consumption of 7c,d after 11 days, at which point 8c,d were the major products in solution.

Data for 7c: LR-ESI-MS (20 V, CH_2Cl_2 , m/z) 782.1 (M⁺, 50%), 679.0 ([M – PhCN]⁺, 100%); IR (KBr, cm⁻¹) 2239 (s, ν_{CN}).

Data for 7d: ESI-MS (20 V, CH₂Cl₂, m/z) 810.2 (M⁺, 40%), 707.1 ([M – PhCN]⁺, 100%); IR (KBr, cm⁻¹) 2227 (s, ν_{CN}).

(d). Reaction with Excess 1-Hexene. Solid $[Ru(\eta^{5}-indenyl)(CO)-(PR_2)(PPh_3)]$ (3c, 7 mg, 0.01 mmol; 3d, 7 mg, 0.01 mmol) or $[Ru(\eta^{5}-indenyl)(PhCN)(PR_2)(PPh_3)]$ (4c, 8 mg, 0.01 mmol; 4d, 8 mg, 0.01 mmol) was dissolved in d_6 -benzene (1.0 mL) and added to a sealable NMR tube. The sample was freeze-pump-thaw-degassed three times. 1-Hexene (0.10 mL, 0.81 mmol) was added by syringe, and the tube was flame-sealed. The thawed sample was inverted five times to mix the reagents and then monitored by ${}^{31}P{}^{1}H$ NMR spectroscopy.

For 3c,d, samples remained dark red, and ${}^{31}P{}^{1}H$ NMR spectra showed no changes, even after 24 h.

For 4c,d, both dark red samples gradually changed to clear redorange (18-21 h). (e). Reaction with 1 equiv of 1-Hexene. Solid $[Ru(\eta^{5}-indeny])-(PhCN)(PR_2)(PPh_3)]$ (4c, 10 mg, 0.013 mmol; 4d, 10 mg, 0.013 mmol) was dissolved in d_{c} -benzene (0.7 mL) and added to a sealable NMR tube. 1-Hexene (0.161 M in toluene, 0.08 mL, 0.01 mmol) was added by syringe, and the tube was flame-sealed. The sample was inverted five times to mix the reagents and then monitored by ${}^{31}P{}^{1}H{}$ NMR spectroscopy.

For 4c,d, for both samples, the dark red color persisted over several days, despite changes in the ${}^{31}\mathrm{P}\{^1\mathrm{H}\}$ NMR spectra, due to the presence of residual, darkly colored starting material. (¹H NMR confirmed the complete consumption of 1-hexene.)

X-ray Structure Determination. Crystals of 4c were grown via slow diffusion of hexanes into a toluene solution of the compound. Data were collected using Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker APEX II CCD detector/PLATFORM diffractometer²² with the crystals cooled to -100 °C. The data were corrected for absorption through Gaussian integration from indexing of the crystal faces. The structure was solved using a Patterson search for heavy atoms followed by structure expansion (DIRDIF-2008²³). Refinements were completed using full-matrix least squares on F^2 (SHELXL-97²⁴). All nonhydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were assigned positions based on the idealized sp² or sp³ geometries of their attached atoms and were given thermal parameters 20% greater than those of the parent carbons. Further crystallographic experimental data and refinement details can be found in Table 2.

Computational Details. For all calculations the Perdew–Burke– Ernzerhof density functional (PBE)²⁵ was employed. Scalar relativistic effects were explicitly treated using the second-order Douglas–Kroll– Hess Hamiltonian,²⁶ in combination with all-electron TZVP basis sets of the Karlsruhe group,²⁷ appropriately recontracted to satisfy the requirements of the scalar relativistic Hamiltonian.²⁸ The resolution of the identity approximation was used with decontracted auxiliary TZV/ J basis sets. Harmonic vibrational frequencies and thermodynamic corrections were obtained at the same level of theory. All calculations were performed with the ORCA program²⁹ using tight convergence criteria and enhanced integration grids.

ASSOCIATED CONTENT

Supporting Information

Tables and figures giving ¹H and ¹³C{¹H} NMR data for 4c,d, ¹H NMR data for products of NMR scale reactions of 3c,d and 4c,d, ³¹P{¹H} NMR spectra of the progress of NMR scale reactions of 4c,d, ESI-MS data for 7c,d and 9c,d, and Cartesian coordinates of all optimized structures and a CIF file giving crystallographic data for 4c. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lisarose@uvic.ca.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding.

REFERENCES

(1) (a) Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. Organometallics 2007, 26, 1473. (b) Derrah, E. J.; Giesbrecht, K. E.; McDonald, R.; Rosenberg, L. Organometallics 2008, 27, 5025. (c) Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. Angew. Chem., Int. Ed. 2010, 49, 3367. (d) Derrah, E. J.; McDonald, R.; Rosenberg, L. Chem. Commun. 2010, 46, 4592.

(2) (a) Glueck, D. S. Top. Organomet. Chem. 2010, 31, 65. (b) Waterman, R. Dalton Trans. 2009, 18.

(3) Derrah, E. J. Ph.D. Thesis, University of Victoria, Victoria, 2009.

(4) ${}^{31}P{}^{1}H{}$ NMR of the crude reaction mixtures indicate complete consumption of 1c,d. In some trials we see traces (<5%) of an unidentified impurity containing a single phosphorus environment (singlet at 36.2 ppm (R = Ph) or 36.5 ppm (R = Tol^p)).

(5) Similarly low ${}^{2}J_{PP}$ values have been reported for other mixed PR₃/pyramidal PR'₂ complexes: (a) Planas, J. G.; Gladysz, J. A. *Inorg. Chem.* 2002, 41, 6947. (b) Planas, J. G.; Hampel, F.; Gladysz, J. A. *Chem. Eur. J.* 2005, 11, 1402.

(6) Derrah, E. J.; Marlinga, J. C.; Mitra, D.; Friesen, D. M.; Hall, S. A.; McDonald, R.; Rosenberg, L. Organometallics **2005**, *24*, 5817.

(7) The relative ¹H shifts and multiplicities for peaks due to the aromatic protons on coordinated benzonitrile are very similar to those we observe for free benzonitrile in d_6 -benzene: 7.11–6.97 (m, H_p), 6.97–6.81 (m, H_a), and 6.81–6.64 (m, H_m) ppm.

(8) Mrozek, M. F.; Wasileski, S. A.; Weaver, M. J. J. Am. Chem. Soc. 2001, 123, 12817.

(9) Values of $\nu_{\rm CN}$ for transition-metal nitrile complexes are often higher than for the free nitrile: (a) Storhoff, B. N.; Lewis, H. C. *Coord. Chem. Rev.* **1977**, *23*, 1. (b) Kuznetsov, M. L.; Dement'ev, A. I.; Nazarov, A. A. *Russ. J. Inorg. Chem.* **2005**, *50*, 731. This can be rationalized by σ donation of the lone pair at N (which renders the N more electropositive and strengthens the N–C σ -bond) and the low π acidity of the N-bound nitrile (consider the sizes of the π^* lobes at N (small) and C (large), relative to coordinated CO). However, there are other examples of Ru(II) nitrile complexes that show red-shifted $\nu_{\rm CN}$ values similar to those of **4c**,**d**: (c) Ford, P. C. *Coord. Chem. Rev.* **1970**, *5*, 75. (d) Alves, J. J. F.; Franco, D. W. *Polyhedron* **1996**, *15*, 3299.

(10) (a) Barre, C.; Boudot, P.; Kubicki, M. M.; Moise, C. *Inorg. Chem.* **1995**, *34*, 284. (b) Buhro, W. E.; Zwick, B. D.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. *J. Am. Chem. Soc.* **1988**, *110*, 2427.

(11) Faller, J. W.; Crabtree, R. H.; Habib, A. Organometallics **1985**, 4, 929. Typically a slip distortion of less than 0.25 Å indicates η^{5} -indenyl coordination.

(12) The deep red-purple solids turn light orange-brown within seconds upon exposure to air.

(13) Ru(CO)₅: (a) Behrens, R.G. J. Less-Common Met. 1977, 56, 55.
Ru₃(CO)₁₂: (b) Connor, J.; et al. Top. Current Chem. 1977, 71, 71.
(c) Housecroft, C. E.; Wade, K.; Smith, B. C. J. Chem. Soc., Chem. Commun. 1978, 765. Ru(dmpe)₂CO: (d) Belt, S. T.; Scaiano, J. C.; Whittlesey, M. K. J. Am. Chem. Soc. 1993, 115, 1921.

(14) Luo, L.; Zhu, N.; Zhu, N. J.; Stevens, E. D.; Nolan, S. P.; Fagan, P. J. Organometallics **1994**, *13*, 669.

(15) Complex **6c** was prepared previously by the addition of NaOMe to complex $1c_r^6$ and complex **6b** was identified by NMR as the product of addition of MeOH to $2b_r^{1b}$

(16) See, for example: (a) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. Organometallics **1985**, 4, 1145 (Ir amido). Fryzuk, M. D.; Montgomery, C. D.; Rettig, S. J. Organometallics **1991**, 10, 467 (Ru amido). Fryzuk, M. D.; Bhangu, K. J. Am. Chem. Soc. **1988**, 110, 961 (Ir phosphido). Roddick, D. M.; Santarsiero, B. D.; Bercaw, J. E. J. Am. Chem. Soc. **1985**, 107, 4670 (Hf phosphido). Dahlenburg, L.; Hock, N.; Berke, H. Chem. Ber. **1988**, 121, 2083 (Rh phosphido).

(17) Hartwig, J. F., Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Mill Valley, CA, 2010; p 602.

(18) We searched carefully for minima and saddle points containing η^3 -indenyl structures in this system and found none. The first transition state in Figure 2 shows considerable slip distortion ($\Delta = 0.26$ Å) relative to the intermediate ($\Delta = 0.16$ Å) and the second transition state ($\Delta = 0.13$ Å), but it is still well outside the range for formal η^3 coordination ($\Delta = 0.69-0.80$ Å): Cadierno, V.; Diez, J.; Gamasa, M. P.; Gimeno, J.; Lastra, E. *Coord. Chem. Rev.* **1999**, 193–5, 147.

(19) $^{31}P\{^1H\}$ shifts and $^2\!J_{PP}$ values for 8c,d are similar to those previously observed for $8a.^{1a}$

(20) Due to the complexity of the aromatic region of the ¹H NMR spectra, we were unable to identify signals due to coordinated (7c,d) or free (8c,d) benzonitrile in these samples.

(21) Morrow, K. M. E.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. Manuscript in preparation.

(22) Programs for diffractometer operation, unit cell indexing, data collection, data reduction and absorption correction were those supplied by Bruker.

(23) Beurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. *The DIRDIF-2008 Program System*; Crystallography Laboratory, Radboud University, Nijmegen, The Netherlands, 2008.

(24) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.

(25) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1996**, 77, 3865. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1997**, 78, 1396.

(26) (a) Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89.
(b) Jansen, G.; Hess, B. A. Phys. Rev. A 1989, 39, 6016.

(27) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.

(28) Pantazis, D. A.; Chen, X. Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput. 2008, 4, 908.

(29) Neese, F. ORCA-an ab initio, Density Functional and Semiempirical Program Package, 2.8.0; Universität Bonn, Bonn, Germany, 2010.