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ABSTRACT: We report a new set of reactions based on the Pd-catalyzed alkylation of methylene C(sp3)−H bonds of ali-

phatic quinolyl carboxamides with -haloacetate and methyl iodide, and applications in the stereoselective synthesis of 

various -alkylated -amino acids. These reactions represent the first generally applicable method for the catalytic al-
kylation of unconstrained and unactivated methylene C−H bonds with high synthetic relevance. When applied with sim-
ple isotope-enriched reagents, they also provide a convenient and powerful means to site-selectively incorporate isotopes 
into the carbon scaffolds of amino acid compounds. 

Amino acids are one of nature’s most powerful and ver-
satile building blocks for the synthesis of natural products 
and biomolecules. In addition to the common proteino-
genic amino acids, nature uses post-translational modifi-
cations (PTM) to synthesize a myriad of nonproteinogen-
ic amino acids with diverse structures and functions.1 

Among these modifications, alkylation at the  position of 

 amino acid residues, e.g. C-methyltransferase-mediated 
methylation, is particularly effective at modulating the 
conformational and biophysical properties of the parent 

peptide backbones (Scheme 1).2-4 These -alkylated amino 
acid units contain adjacent carbon stereogenic centers 
and pose significant synthetic challenge.5  

Complementary to conventional synthesis strategies, 
we envisioned these molecules could be expeditiously 
accessed via the selective alkylation of sp3-hybridized 
C−H bonds on the side chains of simple amino acid pre-
cursors.6 The Corey7 and Daugulis8 laboratories have ele-
gantly demonstrated this synthesis concept with Pd-
catalyzed auxiliary-directed acetoxylation and arylation of 

the  C(sp3)−H bonds of N-Phth protected amino acids, 
based on  pioneering work from the Daugulis laboratory9 
(eq 1, Scheme 2). However, in contrast with better devel-
oped C−H arylation and oxidation reactions, the alkyla-
tion of unactivated and nonacidic C(sp3)−H bonds re-
mains one of the most difficult transformations in organic 
synthesis.10 Additionally, despite a few recent successes on 
the alkylation of primary (1o) C(sp3)−H bonds of methyl 
groups, alkylation of more prevalent secondary (2o) 
C(sp3)−H bonds of unactivated methylene groups remains 
largely undeveloped. 11-15  

In a seminal 2010 paper, the Daugulis laboratory re-

ported that the -C(sp3)−H bond of 8-aminoquinoline 

(AQ)-coupled propionamide 1 could be alkylated with 
primary alkyl iodides such as 2 under palladium catalysis 
(eq 2, Scheme 2).12 Although this alkylation reaction was 
limited to primary C(sp3)−H bonds and proceeded in 
moderate yields, it provided the foundation for our syn-

thesis of -alkylated amino acids, which relies on Pd-

catalyzed AQ-directed C(sp3)−H alkylation to install -
substituents. The success of our strategy then hinged on 
the development of new reaction conditions to alkylate 

less reactive 2o  C(sp3)−H bonds in a regio- and stereose-
lective fashion. In this paper, we report the development 
of highly efficient palladium-catalyzed alkylations of 
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Scheme 1. Occurrence of -Alkylated  Amino Acids 

 

Scheme 2. DG-Mediated Pd-Catalyzed Alkylation of Un-
activated C(sp3)−H Bonds with Primary Alkyl Halides  

unactivated methylene C(sp3)−H bonds of aliphatic 8-

aminoquinolyl carboxamides with -haloacetate and me-
thyl iodide, and apply these reactions to the stereoselec-

tive synthesis of -alkylated -amino acids. When applied 
with simple isotope-enriched reagents, they provide con-
venient and powerful means to site-selectively incorpo-
rate isotope labels into the carbon scaffolds of amino acid 
compounds.  

We commenced our investigation with simple AQ-
butyramide substrate 4 (eq 3, Scheme 2). Our initial trials 
with iBuI 2 under the original Pd-catalyzed conditions 
failed to generate any of the desired product 5. Our at-
tempts at the intramolecular C(sp3)−H alkylation of 8-I-
octanamide 6, despite optimization,  provided the cy-
clized product 7 in poor yield (eq 4).16 Given the ease with 

which  C−H palladation of 4 occurs in the associated 
AQ-directed C−H arylation reaction system, we reasoned 
that the key to this C−H alkylation reaction might be 
choice of the alkyl halide electrophile, so as to efficiently 
intercept the resulting palladacycle intermediate. In addi-
tion to promoting the desired alkylation of the palladacy-
cle, side reactions which neutralize alkyl iodides, includ-
ing esterification with carboxylate ligands and decompo-
sition via an E2 pathway, must be effectively suppressed. 
Our recent success with Pd-catalyzed, picolinamide (PA)-

directed alkylation of 1o -C(sp3)−H bonds of aliphatic 
amine substrates prompted us to evaluate the effective-

ness of -iodoacetate 9 and MeI in the AQ-directed alkyl-
ation of 2o C(sp3)−H bonds (eq 5, Scheme 2).13 To our de-
light, alkylation of 4 with 2 equiv of 9 and 2 equiv of 
AgOAc or Ag2CO3 at 110 oC in t-AmylOH under Ar for 6 
hours proceeded to give the desired carboxymethylated 
product 11 in excellent yield  (eq 7, entries 4 and 6, Table 
1). Application of the combination of Ag2CO3 (2 equiv) 
and (BnO)2PO2H (20 mol%), originally developed for the 
PA-directed C−H alkylation reaction, provided slightly 
improved alkylation yield (entry 8). Addition of the radi-
cal scavenger TEMPO had little effect on the reaction 

(entry 10). Product 12, bis-alkylated at both the aliphatic  
C(sp3)−H and at the ortho-C(sp2)−H position of AQ moie-
ty, was obtained as a minor side product.  

Table 1. Optimization of AQ-Directed C(sp3)−H Alkyla-
tion of Simple Aliphatic Carboxamide 4 

 

entry reagents (equiv) solvents 
a
 Yields (%) 

b
 

     11             12  

1 K2CO3 (2) A 11 <2 

2 K2CO3 (2), PivOH (0.2) A 18 <2 

3 PivOH (0.2) A <2 <2 

4 AgOAc (2)  A 85 3 

5 AgOAc (2) T 46 <2 

6 Ag2CO3 (2)  A 86 5 
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7 Ag2CO3 (2), PivOH (0.2) A 75 <3 

8 Ag2CO3 (2), (BnO)2PO2H (0.2) A 91 (85)
c
 5 

9 Ag2CO3 (2), (BnO)2PO2H (0.2) T 67 <2 

10 Ag2CO3 (2), TEMPO (1) A 82 <2 

a) A: t-AmylOH, T: toluene. b) Yields are based on 1H-
NMR analysis of the reaction mixture after workup on a 0.2 
mmol scale. c) Isolated yield. 

Table 2. Optimization of AQ-Directed C(sp3)−H Alkyla-
tion of N-Phth Protected Leu 13  

 

entry reagents (equiv) solvents 
a
 Yields (%) 

b
 

15 

1 9 (2), AgOAc (2) A 36 

2 9 (2), Ag2CO3 (1) A 31 

3 9 (2), Ag2CO3 (1), (BnO)2PO2H (0.2) A 59 

4 9 (2), AgOAc (2), (BnO)2PO2H (0.2) A 45 

5 9 (2), Ag2CO3 (2), (BnO)2PO2H (0.2) A 74  

6 9 (2), Ag2CO3 (2), BINA-PO2H
c
 (0.2) A 46 

7 9 (2), Ag2CO3 (2), (PhO)2PO2H (0.2) A 59 

8 14 (2), Ag2CO3 (2), (BnO)2PO2H (0.2) A 78 (70)
d
 

9 14 (2), Ag2CO3 (2), (BnO)2PO2H (1) A 31 

a) A: t-AmylOH. b) Yields are based on 1H-NMR analysis of 
the reaction mixture after workup on a 0.2 mmol scale. c) 
(S)-(+)-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate; d) iso-
lated yield, > 98% ee (see Supporting Information). 

We next subjected N-Phth protected amino acid sub-
strate leucine (Leu) 13 to the same carboxymethylation 
reaction with 9 (eq 8, Table 2). Only a moderate yield of 
15a was obtained under the same Ag2CO3-promoted con-
ditions that worked well for simple aliphatic carboxamide 
4 (entries 1, 2). Gratifyingly, application of 2 equiv of 
Ag2CO3  and 20 mol% of (BnO)2PO2H improved the yield 

by 40% (entry 5). Additionally, we found -bromoacetate 
14 to be a better electrophile than 9; application of 2 equiv 
of 14, 2 equiv of Ag2CO3 and 20 mol% of (BnO)2PO2H at 
110 oC under Ar in t-AmylOH for 20 hours transformed 13 
into 15b in 70% isolated yield and excellent diastereose-
lectivity (>15/1) (entry 8). Interestingly, use of 1 equiv of 
(BnO)2PO2H provided significantly lower yield (entry 9). 

Chiral HPLC confirmed that the chiral integrity of the -C 
of Leu 13 was maintained during the C−H alkylation reac-
tion (>98% ee, see Supporting Information). The for-
mation of a five-membered palladacycle intermediate 

with trans Phth-N and R configuration (see eq 10, 
Scheme 5) is likely responsible for the stereoselectivity 

observed in the  C−H alkylation of -substituted sub-
strates.  

Scheme 3. Mechanistic Hypothesis 

 

The exact mechanism of this Pd-catalyzed AQ-directed 
Ag-promoted alkylation has not been clearly established.12 
As shown in Scheme 3A, we postulate that this C−H alkyl-
ation reaction proceeds through a C−H pallada-
tion/coupling sequence, and that a PdII/IV manifold is op-
erative.17 Oxidative addition (OA) of 9 onto electron-rich 
PdII palladacycle 16 may proceed through a SN2 pathway, 
promoted by Ag+.13 The Ag+ ion could also act as a halide 
scavenger, abstracting the halide ligand from PdIV inter-
mediate 17 and promoting reductive elimination (RE).18 
Ag+ could also serve to remove the halide ligand from the 
PdII intermediate 18 to promote the regeneration of the 
more active PdII catalyst. We can only speculate on the 
functional role of (BnO)2PO2H at the moment.19 
(BnO)2PO2H was clearly more effective than all other car-
boxylic acid additives (e.g. PivOH, entry 7, Table 1) and 
organic phosphates tested (e.g. BINA-PO2H, entry 6, Ta-
ble 2). (BnO)2PO2H could form a soluble complex with 
Ag2CO3 and influence the concentration of otherwise in-
soluble Ag+ in the reaction medium. (BnO)2PO2H could 
also act as a ligand (L) for palladium during the OA and 
RE steps. We also suspect that (BnO)2PO2H could help 
the protonolysis of the Pd-complexed alkylated interme-
diate 18, promoting the release of the product 11 and ac-
celerating the turnover of Pd catalyst. As shown in 
Scheme 3B, the ortho C−H bond of the AQ group of 11 can 
undergo another alkylation with 9 to form 12. We suspect 
that two palladium cations are involved in this second 
alkylation step. The first Pd cation complexes with alkyl-
ated substrate 11 through a strong bidentate interaction; 
the second Pd is ligated through the O-imidate group and 
effects the ortho-palladation and subsequent coupling 
with 9, possibly through a PdII/IV manifold. A similar am-
ide-directed Pd-catalyzed ortho-methylation of arenes 
with MeI was first reported by Tremont et al. in the 
1970s.14a 

Scheme 4. AQ-Directed C(sp3)−H Alkylation of Simple 
Aliphatic Carboxamide Substrates 
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All yields are based on isolated product on a 0.2 mmol 
scale: a) 3 equiv of 9 was used. b) 2 equiv of 14 was used. c) 15 
mol % of Pd(OAc)2 and 5 equiv of 9 was used. 

We next examined the substrate scope of this AQ-

directed C(sp3)−H alkylation with -haloacetate 9 and 
MeI under the general conditions using Ag2CO3 (2 
equiv)/(BnO)2PO2H (20 mol%). As shown in Scheme 4A, 
excellent alkylation yields were obtained for substrates 

bearing no -substituents; functionalizations of these 
substrates at their methylene C(sp3)−H bonds is particu-
larly difficult due to their high structural flexibility. Car-
boxymethylation of a sterically crowded cyclopentyl sub-
strate gave 21 in 81% yield. AQ-coupled 3-
phenylpropionamide was alkylated at the benzylic posi-

tion to give 25 in 86% yield. The  methylene C(sp3)−H 
bonds of 4-6 membered cyclic alkane carboxamides were 
bis-alkylated with 3 equiv of 9 in excellent yield and ex-
clusive cis-diastereoselectivity (see 27, 28, 30 in Scheme 
4B). In contrast, a cyclopropylcarboxamide substrate was 
preferentially mono-carboxymethylated with 2 equiv of 9 
to give 31, which could then be methylated with MeI to 

Scheme 5. Pd-Catalyzed AQ-Directed Alkylation of  C(sp3)−H Bonds of Amino Acids 
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All reactions were carried out on a 0.2 mmol scale; yields are based on isolation. a) Same reaction conditions with 2 equiv of PhI. b) 1.1 

equiv of MeI was used. c) 2.2 equiv of MeI was used. d) 3 equiv of EtI and 1 equiv of Ag2CO3 was used. See Supporting Information for 

experimental details. 

give product 32 in moderate yield. Substrates derived 
from propionic acid, 2-butanoic acid and ibuprofen were 

carboxymethylated at the -Me position to give 33-35 un-
der the standard reaction conditions (Scheme 4C). Inter-
estingly, we observed only carboxymethylation of 1o 

C(sp3)−H bond, possibly due to the newly installed ester 
group coordinating to the AQ-Pd complex and inhibiting 

further functionalization. Compared with MeI and -

haloacetates, other -H containing primary alkyl halides 
gave low to moderate yields under the standard condi-
tions (e.g. EtI for 50, Scheme 5). The alkylation reaction 

did not proceed with any secondary alkyl iodides we test-
ed. 

We then applied this Pd-catalyzed C(sp3)−H alkylation 
to N-Phth protected amino acid substrates. A range of 
amino acid substrates bearing either aliphatic or aromatic 
side chains were alkylated with 2 equiv of 14 or MeI at the 

-methylene position in good to excellent yield and dia-

stereoselectivity (Scheme 5).20 Stereoinduction by the ,  
trans-configured 5-member palladacycle intermediate 
provided us a simple and reliable model to predict the 

diastereoselectivity of the -alkylations.7, 8 For instance, 
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Lysine (Lys) 37 and phenylalanine (Phe) 40 were cleanly 
carboxymethylated to give 36 and 39 respectively. Alanine 
(Ala) 44 was preferentially mono-carboxymethylated at 

the -Me position to give a glutamic acid product (Glu) 
41, similar to the reaction of our propionamide substrate 

33. Glu 41 can be further methylated with MeI at the  

position to give Me-Glu 42. Glu 41 could be also arylated 

with PhI under Pd-catalysis to give Ph-Glu 38, a dia-
stereomer of 39. C−H alkylation of Ala 44 under the 
standard conditions with 2.2 equiv of MeI gave valine 
(Val) 45 in 90% yield, which was formed through mono-

methylated intermediate L--amino butyramide (Abu) 47. 

Ala 44 can also be ethylated at the  methyl position with 
EtI to give norvaline (Nva) 50 in 50% yield, which could 

be subsequently methylated at the  position to give iso-
leucine (Ile) 51 in good yield and moderate diastereoselec-
tivity.  

Abu 47 also serves as a versatile precursor for various -
methylated amino acid products bearing inverse stereo-

chemistry at the  position compared to those obtained 
via AQ-directed C−H methylation. For example, carbox-

ymethylation of Abu 47 gave CMe-Glu 43. Analogous to 
the synthesis of Ile 50, Abu 47 can also be ethylated with 
EtI to give allo-isoleucine (allo-Ile) 52 in moderate yield 
and diastereoselectivity. Arylation of 47 with PhI gave 

Ph-Abu 54, a diastereomer of 53. By varying the sequence 
of C−H alkylation, we can access both diastereomers of a 

variety of -alkylated amino acids. Additionally, C−H 
methylation of Ala 44 and Abu 47 with 13CH3I or CD3I un-
der the standard conditions gave isotope-labeled Val 
products 46, 48, and 49 in excellent yield.21 These reac-
tions offer a unique and simple means for the preparation 
of various site-selectively isotope-labeled amino acid 
products, which are of great value in biochemical studies 
of peptides and proteins.22 

Scheme 6. Removal of AQ Group Under Mild Conditions 

 

The amide-linked AQ group of the amino acid products 
can be removed under mild conditions using our previ-
ously reported protocol.23, 24 For example, the N-Phth 
group of 13C-labeled Val 48 can be deprotected with eth-

ylenediamine and converted into an azide group via 
treatment with TfN3

25 (Scheme 6A). Activation of the am-
ide group of 55 with Boc2O and subsequent treatment 
with LiOH/H2O2 gave the azido acid product 56 in good 

yield. -Me Phe 53 could be converted to the azido acid 57 
following the same sequence used for 48 (scheme 6B). 
Conventionally, compound 57 can be prepared from an 
anhydride derivative of enantio-enriched 3-phenylbutyric 
acid using the Evans auxiliary-mediated bromination and 
azidonation strategy.26 The N3 group of 57 can be reduced 
to NH2 by hydrogenation and protected with Boc2O to 

give the Boc-protected -Me Phe 5827 in good yield.  

In summary, we have discovered a new set of reactions 
based on the Pd-catalyzed alkylation of unactivated 
methylene C(sp3)−H bonds of aminoquinolyl aliphatic 

carboxamides with -haloacetate and methyl iodide. 
These reactions are highly efficient, versatile, and have 
broad substrate scope. These reactions represent the first 
generally applicable method for the catalytic alkylation of 
unconstrained and unactivated methylene C−H bonds 
with high synthetic relevance. These reactions enable a 
streamlined strategy for the synthesis of various natural 

and unnatural amino acids, particularly -alkylated -
amino acids, starting from readily available precursors in 
a diastereoselective manner following a straightforward 
template. With simple isotope-enriched reagents, they 
also provide a convenient and powerful solution to site-
selectively incorporate isotopes into the carbon scaffolds 
of amino acid compounds. Applications of this C−H alkyl-
ation methodology in the synthesis of complex peptide 

natural products containing various nonproteinogenic -

alkylated -amino acids are currently under investiga-
tion. 

Compounds 11 and 12: A mixture of carboxamide 4 (43 
mg, 0.2 mmol, 1 equiv), Pd(OAc)2 (4.4 mg, 0.02 mmol, 0.1 
equiv), Ag2CO3 (110 mg, 0.4 mmol, 2 equiv), (BnO)2PO2H 
(11 mg, 0.2 equiv), ICH2CO2Et (86 mg, 0.4 mmol, 2 equiv) 
and t-AmylOH (2 mL) in a 10 mL glass vial (purged with 
Ar, sealed with PTFE cap) was stirred at 110 oC for 6 hours. 
The reaction mixture was cooled to room temperature 
and concentrated in vacuo. The resulting residue was pu-
rified by silica gel flash chromatography to give the alkyl-
ated product 11 in 85 % isolated yield (Rf  = 0.5, 25 % 
EtOAc in hexanes). 1H NMR (CDCl3, 300 MHz, ppm): δ 
9.83 (s, 1 H), 8.79-8.76 (m, 2 H), 8.16-8.13 (m, 1 H), 7.55-
7.24 (m, 3 H), 4.14 (dd, J = 14.1 and 7.2 Hz, 2 H), 2.71-2.62 
(m, 2 H), 2.54-2.43 (m, 2 H), 2.36-2.29 (m, 1 H), 1.25 (t, J = 
7.2 Hz, 3 H), 1.13 (d, J = 6.3 Hz, 3 H); 13C NMR (CDCl3, 75 
MHz, ppm) δ 172.4, 170.3, 148.1, 138.3, 136.3, 134.4, 127.9, 
127.3, 121.6, 121.4, 116.4, 60.3, 44.6, 40.9, 28.1, 19.8, 14.2; 
HRMS: calculated for C17H21N2O3 [M+H+]: 301.1552; found: 
301.1553; Compound 12 (Rf  = 0.5, 35 % EtOAc in hexanes): 

NHAQ
N3

O

H3
13C 13CH3

1. NH2C2H4NH2, 

    nBuOH, rt
OH

N3

O

H3
13C 13CH3

1. Boc2O, DMAP, 

    CH3CN, rt, 92%

2. LiOH, H2O2

    THF/H2O

    rt, >80%

48

5655

2. TfN3, CuSO4, 

    CH2Cl2, Et3N, rt,

    82%, over 2 steps

NHAQ
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O

OH
N3

O

OH
BocHN

O
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for 48

1. Pd/C, NH4HCO2

    MeOH, rt
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53 57
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O

O
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O
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(ref 26)
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1H NMR (CDCl3, 300 MHz, ppm): δ 9.87 (s, 1 H), 8.81-8.71 
(m, 2 H), 8.36 (dd, J = 8.7 and 1.2 Hz, 1 H), 7.52-7.43 (m, 2 
H), 4.18-4.08 (m, 4 H), 3.98 (s, 2 H), 2.66 (dd, J = 9.6 and 
3.6 Hz, 2 H), 2.51-2.46 (m, 2 H), 2.36-2.33 (m, 1 H) 1.28-1.18 
(m, 6 H), 1.13 (d, J = 6.6 Hz, 3 H); 13C NMR (CDCl3, 75 
MHz, ppm) δ 172.5, 171.3, 170.4, 147.9, 138.6, 134.1, 133.0, 
129.1, 127.0, 124.6, 121.6, 116.0, 61.1, 60.4, 44.7, 41.0, 38.4, 
28.2, 19.9, 14.3, 14.2; HRMS: calculated for C21H27N2O5 
[M+H+]: 387.1920; found: 387.1922. 

Compound 48: A mixture of carboxamide 44 (69 mg, 
0.2 mmol, 1 equiv), Pd(OAc)2 (4.4 mg, 0.02 mmol, 0.1 
equiv), Ag2CO3 (110 mg, 0.4 mmol, 2 equiv), (BnO)2PO2H 
(11 mg, 0.2 equiv), 13CH3I (63 mg, 0.44 mmol, 2.2 equiv) 
and t-AmylOH (2 mL) in a 10 mL glass vial (purged with 
Ar, sealed with PTFE cap) was stirred at 110 oC for 3 hours. 
The reaction mixture was cooled to room temperature 
and concentrated in vacuo. The resulting residue was pu-
rified by silica gel flash chromatography to give the alkyl-
ated product 48 in 90 % yield (Rf = 0.50, 35 % EtOAc in 
hexanes). 1H NMR (CDCl3, 300 MHz, ppm): δ 10.58 (s, 1 
H), 8.86-8.75 (m, 2 H), 8.14-8.12 (m, 1 H), 7.89 (dd, J = 5.7 
and 3.3 Hz, 2 H), 7.73 (dd, J = 5.4 and 3.0 Hz, 2 H), 7.51-
7.44 (m, 3 H), 4.72-4.67 (m, 1 H), 3.28-3.19 (m, 1 H), 1.44 (t, 
J = 6.0 Hz, 1.5 H), 1.20 (t, J = 6.0 Hz, 1.5 H), 1.02 (t, J = 6.0 
Hz, 1.5 H), 0.78 (t, J = 6.0 Hz, 1.5 H); 13C NMR (CDCl3, 75 
MHz, ppm) δ 168.1, 166.8, 148.5, 136.1, 134.2, 131.6, 127.9, 
127.2, 123.6, 121,9, 121.6, 117.0, 63.2, 27.3, 20.4 (13C), 19.6 
(13C); HRMS: calculated for C20

13C2H20N3O3 [M+H+]: 
376.1572; found: 376.1573. 

Compound 55: A mixture of compound 48 (75 mg, 0.2 
mmol, 1 equiv) and ethylenediamine (120 mg, 2 mmol, 10 
equiv) in nBuOH (2 mL) was stirred at room temperature 
for 12 hours. The reaction mixture was concentrated in 
vacuo and the resulting residue was purified by silica gel 
flash chromatography (10% MeOH in CH2Cl2) to give the 
free amine intermediate. The amine intermediate was 
dissolved in CH2Cl2 (2 mL). CuSO4 (1 mg, 0.006 mmol, 
0.03 equiv), TfN3

25 (~0.6 M in CH2Cl2, ~4 equiv), and Et3N 
(0.6 mmol, 3 equiv) were added and the mixture was 
stirred at room temperature for 4 hours. Water was added 
and the mixture was extracted with CH2Cl2. The organic 
layer was dried over anhydrous Na2SO4 and concentrated 
in vacuo. The resulting residue was purified by silica gel 
flash chromatography to give the compound 55 in 82% 
yield (2 steps, Rf = 0.70, 25% EtOAc in hexanes). 1H NMR 
(CDCl3, 300 MHz, ppm): δ 10.64 (s, 1 H), 8.91 (dd, J = 4.2 
and 1.5 Hz, 1 H), 8.83-8.80 (m, 1 H), 8.20 (dd, J = 8.4 and 
1.5 Hz, 1 H), 7.59-7.49 (m, 3 H), 4.10 (dd, J = 7.5 and 4.5 
Hz, 1 H), 2.57-2.53 (m, 1 H), 1.42 (dd, J = 6.6 and 5.1 Hz, 1.5 
H), 1.28 (dd, J = 6.0 and 5.1 Hz, 1.5 H), 1.00 (dd, J = 6.6 and 
5.1 Hz, 1.5 H), 0.86 (dd, J = 6.6 and 5.4 Hz, 1.5 H); 13C NMR 
(CDCl3, 75 MHz, ppm) δ 167.7, 148.6, 138.7, 136.3, 133.6, 
128.0, 127.2, 122.3, 121.7, 116.7 71.5, 32.4, 19.7 (13C), 17.1 (13C); 
HRMS: calculated for C12

13C2H16N5O [M+H+]: 272.1422; 
found: 272.1427. 

Compound 56: A mixture of compound 55 (44 mg, 0.16 
mmol, 1 equiv), Boc2O (106 mg, 0.48 mmol, 3 equiv) and 
DMAP (40 mg, 0.32 mmol, 2 equiv) in anhydrous CH3CN 
(1 mL) was stirred at room temperature for 6 hours. The 
resulting residue was concentrated in vacuo and then pu-
rified by silica gel flash chromatography to give product 
55a in 92 % yield (54 mg, Rf = 0.60, 25% EtOAc in hex-
anes). 1H NMR (CDCl3, 300 MHz, ppm): δ 8.87 (d, J = 3.0 
Hz, 1 H), 8.16 (d, J = 8.1 Hz, 1 H), 7.82 (dd, J = 7.5 and 1.5 
Hz, 1 H), 7.59-7.51 (m, 2 H), 7.41 (dd, J = 8.4 and 4.2 Hz, 1 
H), 5.09 (br, 1 H), 2.52-2.38 (m, 1 H), 1.41 (t, J = 6.0 Hz, 1.5 
H), 1.32 (t, J = 6.0 Hz, 1.5 H), 1.21 (s, 9 H). 0.99 (t, J = 6.0 
Hz, 1.5 H), 0.90 (t, J = 6.0 Hz, 1.5 H); 13C NMR (CDCl3, 75 
MHz, ppm) δ 173.5, 152.5, 150.4, 143.9, 136.3, 135.9, 128.8, 
128.6, 128.3, 126.0, 121.6, 83.3, 67.7, 31.4, 27.5, 19.9 (13C), 17.9 
(13C); HRMS: calculated for C17

13C2H24N5O3 [M+H+]: 
372.1946; found: 372.1949; Compound 55a (37 mg, 0.1 
mmol, 1 equiv) was dissolved in THF/H2O (1 mL, 3:1), Li-
OH•H2O (8 mg, 0.2 mmol, 2 equiv) and 30% H2O2 (0.5 
mmol, 5 equiv) were then added at 0 oC. The reaction was 
stirred at room temperature for 3 hours and Na2SO3 (1 
mmol, 10 equiv) was added. The reaction mixture was 
diluted with EtOAc (2 mL), acidified with 0.5 M aq. HCl, 
and extracted with EtOAc. The organic layer was dried 
over anhydrous Na2SO4 and concentrated in vacuo. The 
resulting residue was purified by silica gel flash chroma-
tography to give compound 56 (14 mg, >80%) (Rf = 0.40, 
in 50% EtOAc in hexanes). 1H NMR (CDCl3, 300 MHz, 
ppm): δ 3.79 (br, 1 H), 2.29-2.19 (m, 1 H), 1.30-1.21 (m, 3 H), 
0.88-0.79 (m, 3 H); 13C NMR (CDCl3, 75 MHz, ppm) δ 
176.4, 67.7, 30.9, 19.4 (13C), 17.7 (13C); HRMS: calculated for 
C3

13C2H10N3O2 [M+H+]: 146.0840; found: 146.0843. 

Additional experimental procedures and spectroscopic data 
for all new compounds are supplied. This material is availa-
ble free of charge via the Internet at http://pubs.acs.org.  
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