

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Stereoselective Synthesis of (Z)- α , β -Unsaturated Ketones via Hydromagnesiation of Alkynylsilanes

Hong Zhao & Ming-Zhong Cai

To cite this article: Hong Zhao & Ming-Zhong Cai (2003) Stereoselective Synthesis of (Z)- α , β -Unsaturated Ketones via Hydromagnesiation of Alkynylsilanes, Synthetic Communications, 33:10, 1643-1650, DOI: 10.1081/SCC-120018925

To link to this article: http://dx.doi.org/10.1081/SCC-120018925

4	1	0

Published online: 17 Aug 2006.

Submit your article to this journal 🗹

Article views: 43

View related articles

Citing articles: 4 View citing articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS[®] Vol. 33, No. 10, pp. 1643–1650, 2003

Stereoselective Synthesis of (Z)- α , β -Unsaturated Ketones via Hydromagnesiation of Alkynylsilanes

Hong Zhao and Ming-Zhong Cai*

Department of Chemistry, Jiangxi Normal University, Nanchang, P.R. China

ABSTRACT

Hydromagnesiation of alkynylsilanes **1** gives (Z)- α -silylvinyl Grignard reagents **2**, which are treated with alkyl iodides in the presence of CuI to give (Z)-1,2-disubstituted vinylsilanes **3** in high yields. Intermediates **3** can undergo the Friedel–Crafts acylation reactions with acyl chlorides to afford (Z)- α , β -unsaturated ketones in good yields with high stereoselectivity.

 α , β -Unsaturated ketones are important synthetic intermediates because of their versatile reactivities and many synthetic applications of them have been reported in the literature.^[1] The great synthetic value of these α , β -unsaturated ketones derives from the fact that the positions α , β and γ to the carbonyl groups can be activated and functionalized by

1643

DOI: 10.1081/SCC-120018925 Copyright © 2003 by Marcel Dekker, Inc.

^{*}Correspondence: Ming-Zhong Cai, Department of Chemistry, Jiangxi Normal University, Nanchang 330027, P.R. China; E-mail: caimz@fm365.com.

YY

1644

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Zhao and Cai

various means. A number of methods can be used for the stereoselective synthesis of (E)- α , β -unsaturated ketones, such as the condensation reactions of dibutyl telluride with α -halogenated ketones and aromatic aldehydes,^[2] by the palladium catalyzed stepwise cross-coupling reactions of (E)-(2-bromoethenyl) diisopropoxyborane with α -alkoxyalkenylzinc chlorides and organic halides,^[3] by the conjugate addition of sulfonyl carbanions to nitroalkenes followed by ozonolysis and then the elimination of sulfinic acid,^[4] by CeCl₃ mediated addition of Grignard reagents to β -enamino ketones,^[5] and Nickel(0)-catalyzed hydroacylation of alkynes with aldehydes.^[6] However, only a few methods for the synthesis of (Z)- α , β -unsaturated ketones are available. The palladium catalyzed coupling reactions of alkenyl copper reagents with acid chlorides afforded (Z)- α , β -unsaturated ketones.^[7]

The phase transfer catalyzed hydroacylation of allenes with carbon monoxide, decacarbonyldimanganese and methyl iodide gave (Z)- α , β -unsaturated ketones in a stereospecific process.^[8]

Hydromagnesiation has emerged as a unique hydrometallation with some attractive features, such as the high regioselectivity and stereo-selectivity observed with alkynylsilanes.^[9,10] We now wish to report that (Z)- α , β -unsaturated ketones could be conveniently synthesized by hydromagnesiation of alkynylsilanes, followed by treatment with alkyl iodide and then the Friedel–Crafts acylation (Sch. 1).

Alkynylsilanes were easily prepared according to the literature procedure.^[11] Hydromagnesiation of alkynylsilanes 1 at 25°C in ether for 6 h afforded (Z)- α -silylvinyl Grignard reagents 2, which were treated with methyl iodide at room temperature to give (Z)-1,2-disubstituted vinylsilanes 3 in high yields. The intermediates 2 was found to present low reactivity with alkyl halides other than methyl iodide, however, it was readily alkylated by alkyl iodides in the presence of 10 mol% CuI to

Scheme 1.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Stereoselective Sy	vnthesis o	of (Z) - α .	B -Unsaturated	Ketones
--------------------	------------	-----------------------	-----------------------	---------

1645

Entry	R	R^1	Catalyst	Product ^a	Yield ^b (%)
1	$n-C_4H_9$	CH ₃		3a	91
2	$n-C_4H_9$	$n-C_4H_9$	CuI	3b	86
3	$i-C_5H_{11}$	CH_3		3c	88
4	$i-C_5H_{11}$	<i>n</i> -C ₄ H ₉	CuI	3d	87
5	$n - C_6 H_{13}$	CH_3		3e	89
6	$n-C_{6}H_{13}$	n-C ₄ H ₉	CuI	3f	85

Table 1. Synthesis of (Z)-1,2-disubstituted vinylsilanes 3.

^aAll compounds were characterized by ¹H NMR, IR and elemental analyses. ^bIsolated yield based on the alkynylsilane used.

afford (*Z*)-1,2-disubstituted vinylsilanes **3** in good yields. The typical results are summarized in Table 1. Investigation of the crude products **3** by ¹H NMR spectroscopy (300 MHz) showed isomeric purities of more than 96%. The olefinic proton signal of **3** characteristically splits into a triplet with coupling constant J = 7.0 Hz, which indicated that the hydromagnesiation of alkynylsilanes had taken place with strong preference for the addition of the magnesium atom at the carbon bearing the alkylsilyl group. Since the configuration of the intermediates **2** was known^[9] and the coupling reaction of intermediates **2** with alkyl iodides occurs with retentive configuration, the configuration of products **3** can be defined.

Vinylsilanes are important synthetic intermediates because of the versatile reactivity of the silvl group and the carbon-carbon double bond.^[12] (Z)-1,2-Disubstituted vinylsilanes 3 are also effective precursors for preparing (Z)- α , β -unsaturated ketones. They can easily undergo the Friedel-Crafts acylation with acyl chlorides with retention of configuration providing a convenient route to (Z)- α , β -unsaturated ketones. Thus, the Friedel–Crafts acylation of compounds 3 with acyl chlorides at 0°C in methylene chloride for 1 h afforded (Z)- α , β -unsaturated ketones 4 in good yields with high stereoselectivity. Both aliphatic and aromatic acid chlorides could be used as the acylating agents. The experimental results are summarized in Table 2. While the geometries of products 4 were not rigorously established, a reasonable assumption is made that the Friedel-Crafts acylation reaction proceeds stereospecifically with complete retention of configuration.^[13] The chemical shifts of the vinylic protons for 4a-l are in the range of 5.29-5.60 ppm, which is consistent with the (Z)-configuration of products $4^{[14]}$

In summary, compared to other methods that have been reported,^[7,8] the present method for the stereoselective synthesis of (Z)- α , β -unsaturated ketones has the advantages of readily available starting

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1646

Zhao and Cai

Entry	R	R^1	R^2	Product ^a	Yield ^b (%)
1	$n-C_4H_9$	CH ₃	CH ₃	4 a	74
2	$n-C_4H_9$	CH ₃	Ph	4 b	81
3	$n-C_4H_9$	$n-C_4H_9$	CH_3	4c	68
4	$n-C_4H_9$	$n-C_4H_9$	$4-ClC_6H_4$	4 d	80
5	$i-C_5H_{11}$	CH ₃	CH ₃	4 e	74
6	$i-C_5H_{11}$	CH_3	Ph	4 f	76
7	$i-C_5H_{11}$	$n-C_4H_9$	CH ₃	4 g	83
8	$i-C_5H_{11}$	$n-C_4H_9$	Ph	4 h	81
9	<i>n</i> -C ₆ H ₁₃	CH ₃	CH_3	4i	75
10	<i>n</i> -C ₆ H ₁₃	CH_3	$4-ClC_6H_4$	4j	69
11	<i>n</i> -C ₆ H ₁₃	$n-C_4H_9$	CH ₃	4k	71
12	$n - C_6 H_{13}$	$n-C_4H_9$	Ph	41	77

Table 2. Synthesis of (Z)- α , β -unsaturated ketones 4.

^aAll compounds were characterized using ¹H NMR, IR, and elemental analyses. ^bIsolated yield based on the (Z)-1,2-disubstituted vinylsilane used.

materials, straightforward, simple procedures, mild reaction conditions, and high yields.

EXPERIMENTAL

¹H NMR spectra were recorded on an AZ-300 MHz spectrometer with TMS as an internal standard in CDCl₃ as solvent. IR spectra were obtained by use of neat capillary cells on a Shimadzu IR-435 instrument. Microanalyses were performed on Vario EL and Perkin-Elmer CHN 2400. All solvents were dried, deoxygenated and freshly distilled before use.

General Procedure for the Synthesis of (*Z*)-1,2-Disubstituted Vinylsilanes 3a, 3c, and 3e

To a solution of isobutylmagnesium bromide (4.5 mmol) in diethyl ether (7 mL) was added Cp_2TiCl_2 (50 mg, 0.2 mmol) at 0°C under Ar, and the mixture was stirred for 30 min at that temperature. To this solution was added alkynylsilane **1** (4.0 mmol), and the mixture was stirred for 6 h at 25°C. After removal of the ether under reduced pressure (2 h, r.t./2 torr), the residue was dissolved in THF (6 mL) and treated with methyl iodide (0.71 g, 5 mmol) at 0°C for 10 min and then at room

YŤŁ

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Stereoselective Synthesis of (Z)- α , β -Unsaturated Ketones

1647

temperature for 2h. The resulting mixture was treated with sat. aq. NH₄Cl (25 mL) and extracted with Et₂O (2×30 mL). The ethereal solution was washed with water (3×30 mL) and dried (MgSO₄). Removal of solvent under reduced pressure gave an oil which was purified by column chromatography on silica gel using light petroleum as eluent.

3a: $\delta_{\rm H}$ 0.11 (s, 9H), 0.90 (t, 3H, J = 5.4 Hz), 1.08–1.60 (m, 4H), 1.74 (s, 3H), 1.85–2.40 (m, 2H), 5.84 (t, 1H, J = 7.0 Hz) ppm; $\nu_{\rm max}$ 2958, 2860, 1620, 1466, 1249, 838 cm⁻¹; Anal. calcd. for C₁₀H₂₂Si: C, 70.59; H, 12.94. Found: C, 70.36; H, 12.79.

3c: $\delta_{\rm H}$ 0.11 (s, 9H), 0.87 (d, 6H, J = 6.4 Hz), 1.05–1.68 (m, 3H), 1.69 (s, 3H), 1.84–2.38 (m, 2H), 5.77 (t, 1H, J = 7.0 Hz) ppm; $\nu_{\rm max}$ 2955, 1618, 1467, 1384, 1366, 1248, 836 cm⁻¹; Anal. calcd. for C₁₁H₂₄Si: C, 71.74; H, 13.04. Found: C, 71.50; H, 12.91.

3e: $\delta_{\rm H}$ 0.11 (s, 9H), 0.88 (t, 3H, J = 5.4 Hz), 1.10–1.65 (m, 8H), 1.73 (s, 3H), 1.84–2.41 (m, 2H), 5.81 (t, 1H, J = 7.0 Hz) ppm; $\nu_{\rm max}$ 2926, 2856, 1607, 1458, 1248, 837 cm⁻¹; Anal. calcd. for C₁₂H₂₆Si: C, 72.73; H, 13.13. Found: C, 72.51; H, 13.02.

General Procedure for the Synthesis of (Z)-1,2-Disubstituted Vinylsilanes 3b, 3d, and 3f

To a solution of isobutylmagnesium bromide (4.5 mmol) in diethyl ether (7 mL) was added Cp₂TiCl₂ (50 mg, 0.2 mmol) at 0°C under Ar, and the mixture was stirred for 30 min at that temperature. To this solution was added alkynylsilane **1** (4.0 mmol), and the mixture was stirred for 6 h at 25°C. After removal of the ether under reduced pressure, the residue was dissolved in THF (7 mL), cooled to -10° C, and treated with butyl iodide (0.828 g, 4.5 mmol) and CuI (76 mg, 0.4 mmol). The reaction mixture was brought to room temperature gradually and stirred for 2 h. After the usual workup (see above) the residue was chromatographed through a silica gel column using light petroleum as eluent.

3b: $\delta_{\rm H}$ 0.11 (s, 9H), 0.66–1.08 (m, 6H), 1.10–1.62 (m, 8H), 1.78–2.40 (m, 4H), 5.83 (t, 1H, J=7.0 Hz) ppm; $\nu_{\rm max}$ 2954, 2860, 1612, 1466, 1249, 848 cm⁻¹; Anal. calcd. for C₁₃H₂₈Si: C, 73.58; H, 13.21. Found: C, 73.40; H, 13.13.

3d: $\delta_{\rm H}$ 0.12 (s, 9H), 0.78–1.05 (m, 9H), 1.08–1.64 (m, 7H), 1.74–2.38 (m, 4H), 5.83 (t, 1H, J=7.0 Hz) ppm; $\nu_{\rm max}$ 2955, 2871, 1612, 1466, 1384, 1366, 1248, 835 cm⁻¹; Anal. calcd. for C₁₄H₃₀Si: C, 74.34; H, 13.27. Found: C, 74.19; H, 13.06.

YYY.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1648

Zhao and Cai

3f: $\delta_{\rm H}$ 0.11 (s, 9H), 0.68–1.03 (m, 6H), 1.04–1.72 (m, 12H), 1.74–2.40 (m, 4H), 5.82 (t, 1H, J = 7.0 Hz) ppm; $\nu_{\rm max}$ 2958, 2857, 1612, 1466, 1249, 838 cm⁻¹; Anal. calcd. for C₁₅H₃₂Si: C, 75.00; H, 13.33. Found: C, 75.11; H, 13.24.

General Procedure for the Synthesis of (Z)- α , β -Unsaturated Ketones 4a-l

To a stirred suspension of AlCl₃ (146 mg, 1.1 mmol) and (Z)-1,2disubstituted vinylsilane **3** (1.0 mmol) in CH₂Cl₂ (2 mL) was added a solution of the appropriate acyl chloride (1.0 mmol) in CH₂Cl₂ (2 mL) at 0°C and the mixture was stirred for1 h. The reaction mixture was treated with sat. aq. NaHCO₃ (10 mL) and extracted with Et₂O (2 × 20 mL). The organic layer was washed with water (3 × 20 mL), dried (MgSO₄) and concentrated in vacuo. The oily residue was purified by flash column chromatography on silica gel (EtOAc/light petroleum, 1:8) to give **4a–l** as oils.

4a: $\delta_{\rm H}$ 0.89 (t, 3H, J = 5.4 Hz), 1.08–1.80 (m, 4H), 1.90 (s, 3H), 2.04–2.50 (m, 5H), 5.55 (m, 1H) ppm; $\nu_{\rm max}$ 2958, 2870, 1690, 1641, 1467 cm⁻¹; Anal. calcd. for C₉H₁₆O: C, 77.14; H, 11.43. Found: C, 76.89; H, 11.21.

4b: $\delta_{\rm H}$ 0.91 (t, 3H, J = 5.4 Hz), 1.05–1.75 (m, 4H), 1.91 (s, 3H), 2.05–2.41 (m, 2H), 5.50 (m, 1H), 7.18–7.63 (m, 3H), 7.65–7.97 (m, 2H) ppm; $\nu_{\rm max}$ 2957, 2872, 1665, 1598, 1448, 1337 cm⁻¹; Anal. calcd. for C₁₄H₁₈O: C, 83.17; H, 8.91. Found: C, 83.26; H, 8.83.

4c: $\delta_{\rm H}$ 0.69–1.10 (m, 6H), 1.12–1.78 (m, 8H), 1.91–2.40 (m, 7H), 5.25 (m, 1H) ppm; $\nu_{\rm max}$ 2958, 2872, 1670, 1637, 1458 cm⁻¹; Anal. calcd. for C₁₂H₂₂O: C, 79.12; H, 12.09. Found: C, 79.33; H, 12.14.

4d: $\delta_{\rm H}$ 0.67–1.11 (m, 6H), 1.12–1.83 (m, 8H), 1.98–2.41 (m, 4H), 5.42 (m, 1H), 7.39 (d, 2H, J = 9.0 Hz), 7.86 (d, 2H, J = 9.0 Hz) ppm; $\nu_{\rm max}$ 2957, 2865, 1666, 1595, 1490, 1445 cm⁻¹; Anal. calcd. for C₁₇H₂₃OCI: C, 73.25; H, 8.26. Found: C, 73.40; H, 8.38.

4e: $\delta_{\rm H}$ 0.87 (d, 6H, J = 6.4 Hz), 1.09–1.78 (m, 3H), 1.92 (s, 3H), 2.01–2.41 (m, 5H), 5.50 (m, 1H) ppm; $\nu_{\rm max}$ 2960, 2871, 1690, 1640, 1467, 1384, 1366 cm⁻¹; Anal. calcd. for C₁₀H₁₈O: C, 77.92; H, 11.69. Found: C, 77.65; H, 11.47.

4f: $\delta_{\rm H}$ 0.91 (d, 6H, J = 6.4 Hz), 1.08–1.81 (m, 3H), 1.91 (s, 3H), 2.04–2.42 (m, 2H), 5.45 (m, 1H), 7.16–7.61 (m, 3H), 7.65–7.98 (m, 2H) ppm; $\nu_{\rm max}$ 2955, 2870, 1664, 1598, 1448, 1384, 1366 cm⁻¹; Anal. calcd. for C₁₅H₂₀O: C, 83.33; H, 9.26. Found: C, 83.05; H, 9.11.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Stereoselective Synthesis of (Z)- α , β -Unsaturated Ketones

1649

4g: $\delta_{\rm H}$ 0.70–1.10 (m, 9H), 1.11–1.80 (m, 7H), 1.95–2.41 (m, 7H), 5.29 (m, 1H) ppm; $\nu_{\rm max}$ 2957, 2871, 1670, 1637, 1466, 1384, 1366 cm⁻¹; Anal. calcd. for C₁₃H₂₄O: C, 79.59; H, 12.24. Found: C, 79.35; H, 12.07.

4h: $\delta_{\rm H}$ 0.67–1.10 (m, 9H), 1.11–1.78 (m, 7H), 1.85–2.40 (m, 4H), 5.38 (m, 1H), 7.10–7.57 (m, 3H), 7.68–7.99 (m, 2H) ppm; $\nu_{\rm max}$ 2956, 2871, 1683, 1597, 1448, 1384, 1366 cm⁻¹; Anal. calcd. for C₁₈H₂₆O: C, 83.72; H, 10.08. Found: C, 83.50; H, 9.85.

4i: $\delta_{\rm H}$ 0.90 (t, 3H, J = 5.4 Hz), 1.09–1.80 (m, 8H), 1.92 (s, 3H), 2.00–2.41 (m, 5H), 5.60 (m, 1H) ppm; $\nu_{\rm max}$ 2931, 2858, 1681, 1629, 1458 cm⁻¹; Anal. calcd. for C₁₁H₂₀O: C, 78.57; H, 11.90. Found: C, 78.31; H, 11.71.

4j: $\delta_{\rm H}$ 0.90 (t, 3H, J = 5.4 Hz), 1.10–1.79 (m, 8H), 1.91 (s, 3H), 1.97–2.39 (m, 2H), 5.50 (m, 1H), 7.35 (d, 2H, J = 9.0 Hz), 7.84 (d, 2H, J = 9.0 Hz) ppm; $\nu_{\rm max}$ 2958, 2865, 1662, 1623, 1595, 1445 cm⁻¹; Anal. calcd. for C₁₆H₂₁OCl: C, 72.59; H, 7.94. Found: C, 72.31; H, 7.69.

4k: $\delta_{\rm H}$ 0.69–1.10 (m, 6H), 1.12–1.81 (m, 12H), 1.95–2.41 (m, 7H), 5.35 (m, 1H) ppm; $\nu_{\rm max}$ 2958, 2872, 1683, 1632, 1466 cm⁻¹; Anal. calcd. for C₁₄H₂₆O: C, 80.00; H, 12.38. Found: C, 79.75; H, 12.14.

41: $\delta_{\rm H}$ 0.68–1.10 (m, 6H), 1.11–1.79 (m, 12H), 1.90–2.41 (m, 4H), 5.37 (m, 1H), 7.10–7.49 (m, 3H), 7.60–8.05 (m, 2H) ppm; $\nu_{\rm max}$ 2957, 2859, 1683, 1622, 1598, 1448 cm⁻¹; Anal. calcd. for C₁₉H₂₈O: C, 83.82; H, 10.29. Found: C, 83.58; H, 10.07.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (Project: 20062002) and the Natural Science Foundation of Jiangxi Province for financial support.

REFERENCES

- (a) House, H.O. *Modern Synthetic Reactions*, 2nd. Ed.; Benjamine, W.A., Ed.; New York, 1972; (b) Volkmann, R.A.; Andrews, G.G. J. Am. Chem. Soc. **1975**, *97*, 4777; (c) Stork, G.; Logusch, E.W. Tetrahedron Lett. **1979**, 3361; (d) House, H.O.; Umen, M.J. J. Org. Chem. **1973**, *38*, 3893; (e) Brown, H.C. Synthesis **1984**, 303.
- 2. Huang, X.; Xie, L.H.; Wu, H. J. Org. Chem. 1988, 53, 4862.
- 3. Ogima, M.; Hyuga, S.; Hara, S.; Suzuki, A. Chem. Lett. 1989, 1959.
- 4. Awen, B.Z.; Miyashita, M.; Shiratani, T.; Yoshikoshi, A.; Irie, H. Chem. Lett. **1992**, 767.

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1650

Zhao and Cai

- 5. Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M. J. Chem. Soc., Chem. Commun. **1994**, 715.
- 6. Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55, 2554.
- 7. Jabri, N.; Alexakis, A.; Normant, J.F. Tetrahedron Lett. **1983**, 24, 5081.
- 8. Satyanarayana, N.; Alper, H. J. Chem. Soc., Chem. Commun. 1991, 8.
- 9. Sato, F.; Watanabe, H.; Tanaka, Y.; Yamaji, T.; Sato, M. Tetrahedron Lett. **1983**, *24*, 1041.
- 10. Sato, F. J. Organomet. Chem. 1985, 285, 53.
- 11. Eaborn, C.; Walton, D.R.M. J. Organomet. Chem. 1964, 2, 95.
- 12. Chan, T.H.; Fleming, I. Synthesis 1979, 761.
- 13. Fleming, I.; Pearce, A. J. Chem. Soc., Chem. Commun. 1975, 633.
- Chan, T.H.; Lau, P.W.K.; Mychajlowskij, W. Tetrahedron Lett. 1977, 3317.

Received in Japan June 16, 2002