Synthesis of N-Substituted Methyl 4*H*-Thieno[3,2-*b*]pyrrole-5-carboxylates

S. A. Torosyan^a, F. A. Gimalova^a, V. V. Zagitov^b, A. S. Erastov^a, and M. S. Miftakhov^a*

^a Ufa Institute of Chemistry, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, 450054 Bashkortostan, Russia *e-mail: bioreg@anrb.ru

^b Bashkir State University, ul. Zaki Validi 32, Ufa, 450076 Bashkortostan, Russia

Received September 27, 2017

Abstract—The alkylation of methyl 4*H*-thieno[3,2-*b*]pyrrole-5-carboxylate with methyl iodide and allyl, propargyl, and benzyl bromides in the presence of sodium hydride in THF afforded the corresponding N-substituted derivatives. Some reactions of the alkylation products were studied.

DOI: 10.1134/S1070428018060131

Derivatives of methyl and ethyl 4*H*-thieno[3,2-*b*]-pyrrole-5-carboxylates [1, 2] can be used for the synthesis of biologically active compounds of the thienopyrrole series [3–8]; they also provide basic scaffolds for the construction of π -conjugated fused systems for optoelectronics [9–12].

By alkylation of ester 1 with methyl iodide and allyl, propargyl, and benzyl bromides we obtained compounds 2a–2d with the goal of studying their chemical properties and converting to simpler monomers or more complex cross-conjugated structures.

The hydrolysis of ester 2a in aqueous alkali gave carboxylic acid 3a with a high yield. Decarboxylation of 3a afforded monomer 4a which was intended for further polymerization. The reduction of 2a-2d with

LiAlH₄ in THF gave alcohols 5a-5d which were oxidized with (diacetoxy- λ^3 -iodanyl)benzene in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) [13]; as a result, aldehydes 6a-6d were isolated in good yields (Scheme 1).

Using *N*-propargyl derivative **2c** we obtained dimeric structures. The Glaser coupling [14] of **2c** led to the formation of dimer **7** in a moderate yield. Attempts to improve the yield of dimer **7** by using Hg(OAc)₂ [15] instead of Cu(OAc)₂ resulted in the formation of hydration product **8**. Enyne **9** was synthesized by the reduction of diacetylenic compound **7** under mild conditions (Scheme 2).

Esters 2 and their derivatives are planned to use as initial compounds for the synthesis of other structures.

Scheme 1.

 $R = Me(\mathbf{a}), CH_2 = CHCH_2(\mathbf{b}), CH = CCH_2(\mathbf{c}), PhCH_2(\mathbf{d}).$

Scheme 2.

EXPERIMENTAL

The IR spectra were recorded on a Shimadzu Prestige-21 IR spectrometer from samples prepared as thin films. The ¹H and ¹³C NMR spectra were measured on Bruker AM-300 (300.13 and 75.47 MHz, respectively) and Bruker Avance-500 spectrometers (500.13 and 125.77 MHz) using tetramethylsilane as internal standard. The mass spectra were obtained using Thermo Finnigan MAT 95XP (electron impact, 70 eV; ion source temperature 200°C; sample injection temperature 5-270°C, heating rate 22 deg/min) and Shimadzu LCMS-2010EV instruments (samples were dissolved in chloroform-acetonitrile and introduced with a syringe; eluent acetonitrile-water, 95:5; flow rate 0.1 mL/min; positive ion detection, needle electrode voltage 4.5 kV, capillary voltage 5 V, capillary temperature 250°C). The elemental compositions were determined with a Euro EA-2000 CHN analyzer. The progress of reactions was monitored by TLC on Sorbfil plates (Russia); spots were detected by treatment with a solution of 4-methoxybenzaldehyde in ethanol acidified with sulfuric acid, followed by heating at 120-150°C. The products were isolated by column chromatography on silica gel using 30–60 g of the sorbent per gram of substrate.

Methyl 4*H*-thieno[3,2-*b*]pyrrole-5-carboxylate (1) was synthesized according to [1, 2]; its spectral parameters coincided with those given therein.

Methyl 4-methyl-4*H*-thieno[3,2-*b*]pyrrole-5-car-boxylate (2a). A solution of 0.20 g (1.10 mmol) of

methyl 4H-thieno[3,2-b]pyrrole-5-carboxylate (1) in 2 mL of THF was added dropwise with stirring under argon to a suspension of 55.0 mg (2.29 mmol) of sodium hydride (a 55% suspension of NaH in mineral oil was preliminarily washed with anhydrous hexane) in 10 mL of anhydrous THF. The mixture was stirred for 15 min, 0.14 mL (2.19 mmol) of methyl iodide was added dropwise, and the mixture was stirred on heating until initial compound 1 disappeared (TLC). The mixture was cooled to room temperature, treated with a saturated aqueous solution of ammonium chloride, and extracted with methylene chloride (3×20 mL). The extract was evaporated, and the residue was purified by silica gel column chromatography using petroleum ether-ethyl acetate (5:1) as eluent. Yield 0.14 g (65%), light yellow crystals, mp 62-63°C. IR spectrum, v, cm⁻¹: 1710, 1695, 1532, 1464, 1445, 1378, 1369, 1235, 1209, 1179, 1095, 1075, 962, 728. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 3.86 s $(3H, OCH_3)$, 4.06 s $(3H, NCH_3)$, 6.95 d (1H, 3-H, J =5.4 Hz), 7.18 s (1H, 6-H), 7.34 d (1H, 2-H, J =5.4 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 51.27 (NCH₃, OCH₃), 109.00 (C⁶), 110.04 (C³), $114.83 \text{ (C}^{6a}), 121.90 \text{ (C}^{5}), 129.13 \text{ (C}^{2}), 138.00 \text{ (C}^{3a}),$ 164.60 (C=O).

Compounds 2b-2d were synthesized in a similar way.

Methyl 4-(prop-2-en-1-yl)-4*H*-thieno[3,2-*b*]pyr-role-5-carboxylate (2b) was synthesized from 0.06 g (0.33 mmol) of compound 1 and 79.9 mg (0.66 mmol) of allyl bromide using 9.5 mg (0.39 mmol) of NaH and

6 mg of Bu₄NI as phase-transfer catalyst. After appropriate treatment and chromatographic purification (SiO₂, petroleum ether-ethyl acetate, 5:1), we isolated 0.7 g (95%) of **2b** as oily material. IR spectrum, v, cm⁻¹: 2948, 1703, 1699, 1532, 1464, 1441, 1395, 1303, 1256, 1216, 1175, 1103, 759, 719. ¹H NMR spectrum $(CDCl_3, 500 \text{ MHz}), \delta, \text{ ppm: } 3.86 \text{ s } (3H, OMe),$ 4.98 d.d (1H, =CH₂, J = 17.1, 1.1 Hz), 5.13 d.d (1H, $=CH_2$, J = 16.6, 1.2 Hz), 5.14–5.16 m (2H, NCH₂), 6.01 q.d.q (1H, =CH, J = 5.3, 5.1, 17.0 Hz), 6.92 d (1H, 3-H, J = 5.5 Hz), 7.21 s (1H, 6-H), 7.33 d (1H, 6-H)2-H, J = 5.3 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), δ_C, ppm: 49.38 (NCH₂), 51.31 (OMe), $109.51 (C^6)$, $110.44 (=CH_2)$, $116.34 (C^3)$, $122.24 (C^{6a})$, $125.86 (C^5)$, $129.32 (C^2)$, 133.95 (=CH), 145.14 (C^{3a}) , 161.92 (C=O). Found: m/z 221.0505 $[M]^+$. C₁₁H₁₁NO₂S. Calculated: M 221.0510.

Methyl 4-(prop-2-yn-1-yl)-4H-thieno[3,2-b]pyrrole-5-carboxylate (2c) was synthesized from 0.37 g (2.04 mmol) of compound 1 and 0.45 mL (4.10 mmol) of a 80% solution of propargyl bromide in toluene. Yield 0.42 g (94%), bright yellow crystals, mp 83-86°C. IR spectrum, v, cm⁻¹: 3106, 3265, 2953, 1692, 1534, 1492, 1464, 1438, 1394, 1377, 1306, 1261, 1220, 1181, 1171, 1111, 776, 732, 659. ¹H NMR spectrum (CDCl₃, 500 MHz), δ , ppm: 2.32 t (1H, \equiv CH, J =2.3 Hz), 3.88 s (3H, OMe), 5.38 d (2H, CH_2 , J =2.4 Hz), 7.09 d (1H, 3-H, J = 5.2 Hz), 7.22 s (1H, 6-H), 7.38 d (1H, 2-H, J = 5.2 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), δC, ppm: 36.13 (NCH₂), 51.46 (OMe), 72.52 (\equiv CH), 78.41 (\equiv C), 110.10 (C⁶), 110.54 (C^3) , 122.60 (C^{6a}) , 125.47 (C^5) , 129.73 (C^2) , 144.60 (C^{3a}) , 163.0 (C=O). Found: m/z 219.0349 $[M]^+$. C₁₁H₉NO₂S. Calculated: *M* 219.0354.

Methyl 4-benzyl-4*H*-thieno[3,2-*b*]pyrrole-5-carboxylate (2d) was synthesized from 0.06 g (0.33 mmol) of compound 1 and 0.084 g (0.66 mmol) of benzyl bromide. Yield 82 mg (92%), yellowish crystals, mp 81–83°C. IR spectrum, v, cm⁻¹: 2950, 1703, 1532, 1490, 1464, 1441, 1395, 1303, 1257, 1216, 1175, 1103, 1085, 991, 918, 781, 759, 719, 666. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 3.83 s (3H, OMe), 5.76 s (1H, NCH₂), 6.86 d (1H, 3-H, J =5.4 Hz), 7.13 d (2H, Ph, J = 7.4 Hz), 7.25 s (1H, 6-H), 7.23–7.28 m (3H, Ph), 7.32 d (1H, 2-H, J = 5.7 Hz). 13 C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 50.39 (NCH₂), 51.28 (OMe), 109.78 (C⁶), 110.58 (C³), 122.39 (C^{6a}), 126.09 (C⁵), 126.65 (C_{arom}), 127.34 (C_{arom}) , 128.56 (C_{arom}) , 129.44 (C^2) , 137.94 (C_{arom}) , 145.43 (C^{3a}), 161.90 (C=O). Found: m/z 271.0662 $[M]^+$. C₁₅H₁₃NO₂S. Calculated: M 271.0667.

4-Methyl-4*H***-thieno**[**3,2-***b*]**pyrrole-5-carboxylic acid** (**3a**). mp 172–174°C; published data [16]: mp 154°C. IR spectrum, v, cm⁻¹: 3445, 3094, 3080, 272, 2655, 2593, 1657, 1545, 1493, 1417, 1366, 1249, 1176, 1080, 908, 717. ¹H NMR spectrum (CDCl₃, 300 MHz), δ, ppm: 4.04 s (3H, NCH₃), 7.05 d (1H, 3-H, J = 5.1 Hz), 7.16 s (1H, 6-H), 7.42 d (1H, 2-H, J = 5.3 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), δ_C, ppm: 33.37 (NCH₃), 108.73 (C⁶), 109.81 (C³), 121.47 (C^{6a}), 126.75 (C⁵), 128.66 (C²), 134.80 (C^{3a}), 163.31 (C=O). Mass spectrum, m/z (I_{rel} , %): 180 [M - H]⁺ (100), 221 [M - H + MeCN]⁺ (26). C₈H₇NO₂S. Calculated: M 181.0197.

4-(Prop-2-en-1-vl)-4H-thieno[3,2-b]pvrrol-5-vlmethanol (5b). A solution of 60 mg (0.27 mmol) of compound 2b in 5 mL of anhydrous THF was added dropwise with stirring under argon to a suspension of 12 mg (0.32 mmol) of LiAlH₄ in 10 mL of anhydrous THF. The mixture was stirred until the initial compound disappeared (TLC) and treated with a solution of ammonium chloride. Tetrahydrofuran was distilled off, and the residue was extracted with methylene chloride (3×10 mL). The combined extracts were washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (5:1) as eluent. Yield 38 mg (72%), oily material. IR spectrum, v, cm⁻¹: 2948, 1703, 1699, 1532, 1464, 1441, 1395, 1303, 1256, 1216, 1175, 1103, 759, 719. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 1.82 br.s (1H, OH), 4.65 s (2H, OCH₂), 4.75 d (2H, NCH_2 , J = 4.8 Hz), 4.99 d (1H, = CH_2 , J = 17.1 Hz), 5.16 d (1H, =CH₂, J = 10.1 Hz), 5.99 d.d.d (1H, =CH, J = 5.1, 10.2, 5.3 Hz), 6.38 s (1H, 6-H), 6.89 d (1H, 3-H, J = 5.1 Hz), 7.09 d (1H, 2-H, J = 5.3 Hz). 13 C NMR spectrum (CDCl₃, 75 MHz), δ_{C} , ppm: 48.04 (NCH_2) , 57.51 (OCH_2) , 101.17 (C^6) , 110.46 $(=CH_2)$, 116.57 (C³), 121.94 (C^{6a}), 122.01 (C⁵), 123.78 (C²), 134.06 (=CH), 141.47 (C^{3a}). Found, %: C 62.48; H 5.49; N 7.46; S 16.98. C₁₀H₁₁NOS. Calculated, %: C 62.15; H 5.74; N 7.25; S 16.59.

Compounds 5a, 5c, and 5d were synthesized in a similar way.

4-Methyl-4*H***-thieno**[**3,2-***b*]**pyrrol-5-ylmethanol** (**5a**) was synthesized from 70 mg (0.36 mmol) of compound **2a** using 40.0 mg (1.05 mmol) of LiAlH₄. Yield 38 mg (63%), mp 71–73°C. IR spectrum, ν, cm⁻¹: 3527, 3230, 2727, 1530, 1377, 1366, 1337, 1295, 1241, 1135, 1078, 987, 975, 823, 763, 713, 654. ¹H NMR spectrum (acetone-*d*₆, 300 MHz), δ, ppm: 2.86 s (1H, OH), 3.79 s (3H, NCH₃), 4.64 d (2H,

OCH₂, J = 5.5 Hz), 6.27 s (1H, 6-H), 7.02 d (1H, 3-H, J = 5.3 Hz), 7.11 d (1H, 2-H, J = 5.2 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 31.28 (NCH₃), 56.29 (OCH₂), 99.58 (C⁶), 110.23 (C³), 120.70 (C^{6a}), 121.30 (C⁵), 122.18 (C²), 138.36 (C^{3a}). Mass spectrum, m/z ($I_{\rm rel}$, %): 168 [M + H]⁺ (10), 150 [M - OH]⁺ (100). C₈H₉NOS. Calculated: M 167.0405.

4-(Prop-2-yn-1-yl)-4H-thieno[3,2-b]pyrrol-5-ylmethanol (5c) was synthesized by the reduction of 60 mg (0.27 mmol) of compound 2c with 12.4 mg (0.33 mmol) of LiAlH₄ in THF. Yield 42 mg (81%), light yellow crystals, mp 66-68°C. IR spectrum, v, cm⁻¹: 3312, 3270, 3203, 2950, 1462, 1400, 1438, 1377, 1364, 1330, 1295, 1013, 782, 721, 682, 655. ¹H NMR spectrum (acetone- d_6 , 500 MHz), δ , ppm: 2.79 s (1H, OH), 2.87 t (1H, \equiv CH, J = 2.3 Hz), 4.73 s (2H, OCH₂), 5.06 d (2H, CH₂, J = 2.3 Hz), 6.33 s (1H, 6-H), 7.12 d (1H, 3-H, J = 5.3 Hz), 7.15 d (2H, 2-H, J = 5.3 Hz). 13 C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 34.40 (CH_2) , 56.38 (OCH_2) , 73.08 $(\equiv CH)$, 78.91 $(\equiv C)$, $100.47 (C^6)$, $110.72 (C^3)$, $122.10 (C^{6a})$, $122.77 (C^2)$, 125.86 (C⁵), 144.10 (C^{3a}). Found, %: C 62.46; H 4.49; N 7.46; S 16.49. C₁₀H₉NOS. Calculated, %: C 62.80; H 4.74; N 7.32; S 16.77.

4-Benzyl-4H-thieno[3,2-b]pyrrol-5-ylmethanol (5d) was synthesized from 60 mg (0.22 mmol) of compound 2d using 10.0 mg (0.27 mmol) of LiAlH₄. Yield 34 mg (64%), oily material. ¹H NMR spectrum (CDCl₃, 300 MHz), δ, ppm: 2.17 s (1H, OH), 4.65 s (2H, OCH₂), 5.39 s (1H, NCH₂), 6.45 s (1H, 6-H), 6.78 d (1H, 3-H, J = 5.3 Hz), 7.06 d (1H, 2-H, J =5.2 Hz), 7.09 d (2H, Ph, J = 7.1 Hz), 7.23–7.29 m (3H, Ph). 13 C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 49.24 (CH₂), 57.68 (OCH₂), 101.56 (C⁶), 110.50 (C³), $122.60 (C^{6a}), 123.93 (C^{2}), 126.10 (C^{5}), 126.44 (C_{arom}),$ 127.56 (C_{arom}), 128.80 (C_{arom}), 136.98 (C_{arom}), 137.70 (C^{5a}). Mass spectrum, m/z (I_{rel} , %): 244 [M + H]⁺ (5), 226 $[M - OH]^+$ (100). Found, %: C 69.10; H 5.39; N 5.76; S 13.18. C₁₀H₉NOS. Calculated, %: C 68.89; H 5.47; N 5.44; S 13.44.

4-Methyl-4*H***-thieno[3,2-b]pyrrole-5-carbaldehyde (6a).** Alcohol **5a**, 30.0 mg (0.18 mmol), was dissolved in 5 mL of methylene chloride, 87.10 mg (0.27 mmol) of PhI(OAc)₂ and 0.3 mg (0.003 mmol) of TEMPO were added in one portion under argon, and the mixture was stirred at room temperature until initial compound **5a** disappeared (~3 h; TLC). The solvent was evaporated, and the residue was purified by column chromatography on silica gel using ethyl acetate–petroleum ether (1:5) as eluent. Yield 20 mg (68%), oily material. IR spectrum, v, cm⁻¹: 1662, 1539,

1472, 1382, 1291, 1154, 1135, 1085, 846, 835, 763, 726, 669, 601. 1 H NMR spectrum (CDCl₃, 300 MHz), δ , ppm: 4.09 s (3H, CH₃), 6.96 d (1H, 3-H, J = 5.4 Hz), 7.10 s (1H, 6-H), 7.48 d (1H, 2-H, J = 5.4 Hz), 9.64 s (1H, CHO). 13 C NMR spectrum (CDCl₃, 125 MHz), δ _C, ppm: 34.47 (NCH₃), 109.82 (C⁶), 115.39 (C³), 123.15 (C^{6a}), 132.33 (C²), 136.10 (C^{3a}), 147.82 (C⁵), 180.69 (CHO). Mass spectrum, m/z (I_{rel} , %): 166 [M + H]⁺ (56), 183 [M + H + H₂O]⁺ (17), 207 [M + H + MeCN]⁺ (50). C₈H₇NOS. Calculated: M 165.0248.

Compounds **6b–6d** were synthesized in a similar way.

4-(Prop-2-en-1-yl)-4H-thieno[3,2-b]pyrrole-5carbaldehyde (6b) was synthesized by oxidation of 60 mg (0.31 mmol) of compound **5b** with 0.15 g (0.47 mmol) of PhI(OAc)₂ in the presence of a catalytic amount of TEMPO. The product was purified by column chromatography on silica gel using ethyl acetate-petroleum ether (1:5) as eluent. Yield 0.048 g (82%), oily material. IR spectrum, v, cm⁻¹: 2924, 2850, 1730, 1652, 1648, 1533, 1472, 1409, 1388, 1298, 831, 726. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 5.02 d (1H, =CH₂, J = 17.1 Hz), 5.15-5.16 m (1H, $=CH_2$), 5.17 d (2H, NCH₂, J = 4.9 Hz), 5.97–6.10 m (1H, =CH), 6.94 d (1H, 3-H, J = 5.4 Hz), 7.13 s (1H, -1)6-H), 7.46 d (1H, 2-H, J = 5.4 Hz), 9.63 s (1H, CHO). 13 C NMR spectrum (CDCl₃, 75 MHz), δ_{C} , ppm: 49.43 (NCH_2) , 110.29 (C^6) , 115.84 (C^3) , 116.81 $(=CH_2)$, $123.65 (C^{6a}), 132.35 (=CH), 133.48 (C^{2}), 135.54 (C^{3a}),$ 150.52 (C^5), 180.36 (CHO). Found: m/z 191.0399 $[M]^+$. C₁₀H₉NOS. Calculated: M 191.0405.

4-(Prop-2-yn-1-yl)-4H-thieno[3,2-b]pyrrole-5carbaldehyde (6c) was synthesized by oxidation of 60 mg (0.31 mmol) of compound **5c** with 0.15 g (0.47 mmol) of PhI(OAc)₂ in the presence of a catalytic amount of TEMPO. Yield 46 mg (78%), light yellow crystals, mp 60–62°C. IR spectrum, v, cm⁻¹: 3215, 3102, 2828, 2798, 2112, 1651, 1534, 1467, 1387, 1337, 1295, 1248, 1188, 1134, 1055, 968, 776, 728, 675, 601. ¹H NMR spectrum (CDCl₃, 300 MHz), δ, ppm: 2.35 s (1H, ≡CH), 5.41 d (2H, CH₂, J = 7.3 Hz), 7.12 d (1H, 3-H, J = 5.8 Hz), 7.13 s (1H, 6-H), 7.51 d (1H, 2-H, J = 5.4 Hz), 9.63 s (1H, CHO). 13 C NMR spectrum (CDCl₃, 125 MHz), δ_C , ppm: 36.19 (CH_2) , 73.09 ($\equiv CH$), 76.99 ($\equiv C$), 110.55 (C^6), 116.47 (C^3) , 124.60 (C^{6a}) , 127.40 (C^5) , 132.77 (C^2) , 146.80 (C^{3a}) , 180.56 (CHO). Found: m/z 189.0243 $[M]^+$. C₁₀H₇NOS. Calculated: *M* 189.0248.

4-Benzyl-4*H***-thieno[3,2-b]pyrrole-5-carbalde-hyde (6d)** was synthesized by oxidation of 0.034 g (0.14 mmol) of crude alcohol **5d** with 68.7 mg

(0.21 mmol) of PhI(OAc)₂ in the presence of 0.25 mg (0.0015 mmol) of TEMPO. The product was purified by column chromatography on silica gel using ethyl acetate–petroleum ether (1:5) as eluent. Yield 23.3 mg (68%), oily material. ¹H NMR spectrum (CDCl₃, 500 MHz), δ , ppm: 4.86 s (2H, OCH₂), 6.54 d (1H, 6-H, J = 5.0 Hz), 7.28–7.38 m (6H, 3-H, Ph), 7.43 d (1H, 2-H, J = 5.5 Hz), 7.89 d (1H, CHO, J = 5.0 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), δ _C, ppm: 45.69 (CH₂), 105.10 (C⁶), 113.55 (C³), 124.60 (C^{6a}), 127.0 (C⁵), 127.71 (C_{arom}), 128.36 (C_{arom}), 128.58 (C_{arom}), 129.10 (C²), 134.50 (C_{arom}), 143.76 (C^{3a}), 161.50 (CO₂Me). Found, %: C 69.29; H 4.36; N 5.68; S 13.66. C₁₄H₁₁NOS. Calculated, %: C 69.68; H 4.59; N 5.80; S 13.29.

Dimethyl 4,4'-(hexa-2,4-diyne-1,6-diyl)bis(4Hthieno[3,2-b]pyrrole-5-carboxylate) (7). Compound 2c, 40 mg (0.18 mmol), was dissolved in 10 mL of a 1:1:3 pyridine-methanol-diethyl ether mixture, 8 mg of copper(II) acetate was added, and the mixture was refluxed for 2 h with stirring. The mixture was cooled, acidified with 5% aqueous HCl, and extracted with methylene chloride (3×5 mL). The combined extracts were dried over MgSO₄ and evaporated, and the residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (first 5:1 and then 2:1) as eluent. Yield 15 mg (38%), colorless crystals, mp 182–184°C. IR spectrum, v. cm⁻¹: 3306. 3210, 1712, 1688, 1465, 1436, 1391, 1377, 1342, 1303, 1259, 1253, 1211, 1173, 1105, 714. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 3.85 s (6H, OCH_3), 5.42 s (4H, CH_2), 7.00 d (2H, 3-H, 3'-H, J =5.5 Hz), 7.18 s and 7.26 s (2H, 6-H, 6'-H), 7.36 d (1H, 2-H, 2'-H, J = 5.4 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 36.68 (CH₂), 51.46 (OMe), 68.36, 73.60 (C=C), 110.35 (C⁶), 110.26 (C³), 122.85 (C^{6a}), 125.41 (C⁵), 129.93 (C²), 144.69 (C^{3a}), 161.83 (CO₂Me). Mass spectrum, m/z (I_{rel} , %): 437 $[M + H]^+$ (100), 405 $[M - OCH_3]^+$. $C_{22}H_{18}N_2O_4S_2$. Calculated: M 436.0551.

Dimethyl 4,4'-(hex-2-en-4-yne-1,6-diyl)bis(4*H***-thieno[3,2-b]pyrrole-5-carboxylate) (9).** A solution of 100 mg (0.25 mmol) of dimer 7 in 5 mL of anhydrous THF was added dropwise with stirring under argon to a suspension of 60 mg (1.01 mmol) of LiAlH₄ in 20 mL of anhydrous THF cooled to –5°C. The mixture was stirred until initial compound 7 disappeared (TLC) and was then treated as described above for the synthesis of 7. The product was purified by column chromatography on silica gel using petroleum etherethyl acetate (5:1) as eluent. Yield 50 mg (50%), white

crystals, mp 122–124°C. IR spectrum, v, cm⁻¹: 3101, 3085, 2722, 1709, 1490, 1436, 1377, 1339, 1303, 1259, 1209, 1174, 1107, 1085, 1057, 1042, 971, 937, 823, 773, 757, 721, 664. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 3.84 s (3H, OCH₃), 3.86 s (3H, OCH_3), 5.28 d (2H, CH_2 , J = 6.8 Hz), 5.59 s (2H, CH₂), 5.61 d (1H, =CH, J = 1.6 Hz), 6.05–6.10 m (1H, =CH), 6.68 d (1H, 3-H, J = 5.4 Hz), 7.11 d (1H, 3'-H, J = 5.3 Hz), 7.14 d (1H, 2-H, J = 5.3 Hz), 7.14 s and 7.24 s (1H each, 6-H, 6'-H), 7.38 d (1H, 2'-H, J =5.3 Hz). 13 C NMR spectrum (CDCl₃, 125 MHz), $\delta_{\rm C}$, ppm: 37.07 and 46.27 (NCH₂), 51.34 and 51.50 (OMe), 80.00 and 90.03 (C \equiv C), 109.60 (C⁶), 110.21 (C⁶), $110.48 (C^3)$, $110.80 (C^{3'})$, 110.86 (=CH), $122.20 (C^{6a})$, 122.86 ($C^{6a'}$), 125.53 ($C^{5'}$), 125.57 ($C^{5'}$), 129.22 (C^{2}), 129.95 ($C^{2'}$), 138.93 (=C), 144.86 (C^{3a}), 145.08 ($C^{3a'}$), 161.95 and 162.01 (C=O). Mass spectrum, m/z (I_{rel} , %): 439 $[M + H]^+$ (10), 407 $[M - OCH_3]^+$ (4), 391 (100), 281 (10). C₂₂Hz₂₀N₂O₄S₂. Calculated: M 438.0708.

Methyl 4-(2-oxopropyl)-4H-thieno[3,2-b]pyrrole-**5-carboxylate (8).** A solution of 0.07 g (0.23 mmol) of compound 2c and 0.11 g (0.34 mmol) of Hg(OAc)₂ in 5 mL of methanol was refluxed for 1 h with stirring. The resulting orange-red solution was cooled to 0°C, 20 mL of methylene chloride, 0.5 mL of a 1 M solution of sodium hydroxide, and 21.0 mg (0.58 mmol) of NaBH₄ were added, and the mixture was stirred for 1 h. Excess NaBH₄ was decomposed with 3 mL of water, and the aqueous phase was extracted with methylene chloride (3×10 mL). The combined extracts were washed with brine, dried over MgSO₄, filtered, and evaporated, and the residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (1:1) as eluent. Yield 60 mg (79%). IR spectrum, v, cm⁻¹: 2880, 2820, 1729, 1699, 1491, 1469, 1441, 1398, 1376, 1347, 1304, 1256, 1234, 1189, 1174, 1116, 723. ¹H NMR spectrum (CDCl₃, 500 MHz), δ, ppm: 2.19 s (3H, CH₃CO), 3.83 s (3H, OMe), 5.21 s (2H, CH₂), 6.83 d (1H, 3-H, J = 5.4 Hz), 7.25 s (1H, 6-H), 7.36 d (1H, 2-H, J = 5.4 Hz). ¹³C NMR spectrum (CDCl₃, 125 MHz), δ_C , ppm: 26.87 (CH₃CO), 56.59 (CH₂), 51.45 (OMe), 109.53 (C⁶), $109.97 \text{ (C}^3)$, $122.57 \text{ (C}^{6a})$, $125.91 \text{ (C}^5)$, $130.05 \text{ (C}^2)$, 145.39 (C^{3a}), 162.22 (CO₂Me), 202.64 (CH₃CO). Found: m/z 237.0454 $[M]^+$. $C_{11}H_{11}NO_3S$. Calculated: *M* 237.0459.

This study was performed in the framework of state assignment no. AAAA-A17-117011910032-4. The spectral and analytical data were obtained using the equipment of the *Khimiya* Joint Center (Ufa Institute of Chemistry, Russian Academy of Sciences).

REFERENCES

- 1. Hemetsberger, H. and Knittel, D., *Monatsh. Chem.*, 1972, vol. 103, p. 194.
- 2. Yarovenko, V.N., Semenov, S.L., Zavarzin, I.V., Ignatenko, A.V., and Krayushkin, M.M., *Russ. Chem. Bull.*, *Int. Ed.*, 2003, vol. 52, p. 451.
- 3. Ching, K.-Ch., Kam, Y.-W., Merits, A., Ng, L.F.P., and Chai, Ch.L.L., *J. Med. Chem.*, 2015, vol. 58, p. 9196.
- Ching, K.-Ch., Tran, T.N.Q., Amrun, S.N., Kam, Y.-W., Ng, L.F.P., and Chai, Ch.L.L., *J. Med. Chem.*, 2017, vol. 60, p. 3165.
- Sartori, L., Mercurio, C., Amigoni, F., Cappa, A., Faga, G., Fattori, R., Legnaghi, E., Ciossani, G., Mattevi, A., Meroni, G., Moretti, L., Cecatiello, V., Pasqualato, S., Romussi, A., Thaler, F., Trifiro, P., Villa, M., Vultaggio, S., Botrugno, O.A., Dessanti, P., Minucci, S., Zagarri, E., Carettoni, D., Iuzzolino, L., Varasi, M., and Vianello, P., J. Med. Chem., 2017, vol. 60, p. 1673.
- 6. Ashok, D., Goud, P., Shravani, D., Rajaiah, J., Sarasija, M., and Bhaskar, K., *Indian J. Heterocycl. Chem.*, 2010, vol. 20, p. 81.
- 7. Ilyin, A.P., Dmitrieva, I.G., Kustova, V.A., Manaev, A.V., and Ivachtchenko, A.V., *J. Comb. Chem.*, 2007, vol. 9, p. 96.

- 8. Sindac, J.A., Yestrepsky, B.D., Barraza, S.J., Bolduc, K.L., Blakely, P.K., Keep, R.F., Irani, D.N., Miller, D.J., and Larsen, S.D., *J. Med. Chem.*, 2012, vol. 55, p. 3535.
- 9. Verbitskiy, E.V., Slepukhin, P.A., Valova, M.S., Cheprakova, E.M., Schepochkin, A.V., Rusinov, G.L., and Charushin, V.N., *Eur. J. Org. Chem.*, 2014, p. 8133.
- Krayushkin, M.M., Yarovenko, V.N., Semenov, S.L., Zavarzin, I.V., Ignatenko, A.V., Martynkin, A.Yu., and Uzhinov, B.M., *Org. Lett.*, 2002, vol. 4, p. 3879.
- 11. Jones, C., Boudinet, D., Xia, Y., Denti, M., Das, A., Facchetti, A., and Driver, T.G., *Chem. Eur. J.*, 2014, vol. 20, p. 5938.
- 12. Jiang, X.-D., Zhang, H., Zhang, Y., and Zhao, W., *Tetrahedron*, 2012, vol. 68, p. 9795.
- 13. De Mico, A., Margarita, R., Parlanti, L., Vescovi, A., and Piancatelli, G., *J. Org. Chem.*, 1997, vol. 62, p. 6974.
- Li, J.J., Name reactions: A Collection of Detailed Reaction Mechanisms, New York: Springer, 2003, 2nd ed. Translated under the title Mekhanizmy organicheskikh reaktsii, Moscow: BINOM, 2006, p. 101.
- 15. Vostrikov, N.S., Abutkov, A.V., and Miftakhov, M.S., *Russ. Chem. Bull., Int. Ed.*, 2001, vol. 50, p. 1238.
- 16. Lotz, S., Landman, M., Goerls, H., Crause, Ch., Nienaber, H., and Olivier, A., *Z. Naturforsch. B: Chem. Sci.*, 2007, vol. 62, no. 3, p. 419.