Synthesis of New Sulfonium Ylides Bearing the Chiral Diazaphospholidine Group as Reagents for Asymmetric Cyclopropanation

Krzysztof Owsianik,¹ Wanda Wieczorek,² Agnieszka Balińska,³ and Marian Mikołajczyk¹

¹Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland

²Institute of General and Ecological Chemistry, Technical University of Łódź, 90-924 Łódź, Poland

³*Institute of Chemistry and Environmental Protection, Jan Długosz Academy, 42-200 Częstochowa, Poland*

Received 21 February 2014; revised 25 April 2014

ABSTRACT: Sulfonium ylides derived from chiral N,N'-substituted (benzyl, isopropyl, neopentyl) phosphonamides were prepared by reacting appropriate chiral diamidophosphites with potassium hydride and chloromethyl methyl sulfide, and then with methyl iodide in the presence AgBF₄ to give the corresponding sulfonium salts in high yields. One of them was analyzed by X-ray crystallography. The salts upon treatment with different bases (LithiumDiisopropylAmine, BuLi, K_2CO_3) were converted in situ into ylides, which were reacted with activated olefins to produce phosphonocyclopropanes as a mixture of two diastereoisomers with moderate-to-high diastereoselectivities. © 2014 Wiley Periodicals, Inc. Heteroatom Chem. 25:690-697, 2014; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21183

INTRODUCTION

Aminophosphonic acids (APs) are analogues of protein and nonprotein amino acids. They attracted a great interest of scientific community due to very wide spectrum of biological activities [1]. Since the planar carboxylic group in aminoacids is replaced by a tetrahedral phosphonic acids moiety, APs mimic the unstable tetrahedral transition state formed in enzymatic peptide bond cleavage and act as inhibitors of proteolytic enzymes. Moreover, they show antibacterial, anticancer, and antiviral properties as well as exhibit pesticidal, insecticidal, and herbicidal activities. The selected APs have found practical applications in medicine and agriculture.

As part of our program on the asymmetric synthesis of APs [2], we have also been engaged in the invention and development of methods for the synthesis of aminocyclopropanephosphonic acids, which are the so-called conformationally constrained APs [3]. It should be pointed out that the design and synthesis of conformationally constrained peptidomimetics has been an important strategy in modern drug discovery processes. Our endeavors resulted in the elaboration of new asymmetric synthesis of β -amino- γ phenylcyclopropanephosphonic acid [4], cyclopropylphosphonate analogues of purine nucleotides [5], and 2-amino-6-phosphonobicyclo[3.0.1]hexane-2-carboxylic acid [6]. These constrained analogues of APs were obtained by a tandem Michael addition/ring closure reaction of achiral, properly

Correspondence to: Marian Mikolajczyk; e-mail: marmikol@ cbmm.lodz.pl.

Dedicated to Professor Renji Okazaki on the occasion of his 77th birthday.

^{© 2014} Wiley Periodicals, Inc.

FIGURE 1 Chiral sulfinyl reagents used in cyclopropanation.

substituted sulfur ylides to chiral electron-deficient alkenes such as 1-(diethoxyphosphoryl)vinyl *p*-tolyl sulfoxide and 2-(*p*-tolylsulfinyl)cyclopent-2-enone (see Fig. 1).

Recently, Midura and colleagues have designed and synthesized a new type of a chiral sulfur ylide containing the sulfinyl group bonded to the ylidic carbon atom [7]. Using this ylide, she prepared in three steps (*R*)-[2,2–²H₂]-1-aminocyclopropane-1-phosphonic acid in which the α -carbon atom is chiral due to isotopic substitution (CH₂ vs. CD₂) [8].

In this paper, we wish to describe the synthesis of new chiral sulfur ylides in which the ylidic carbon atom is bonded to the chiral diamidophosphonic group derived from *trans-N,N'*-disubstituted 1,2-diaminocyclohexane. This stereodirecting group with a cyclic diamino C₂-symmetric system at phosphorus was introduced to asymmetric synthesis by Hanessian et al. [9] and also used in the asymmetric synthesis of β -aminocyclopropanephosphonic acid [10]. Our initial results on asymmetric cyclopropanation of activated alkenes with these new sulfonium ylides are also reported herein.

RESULTS

The enantiomerically pure *trans*-1,2-cyclohexanediamine [11] was converted into its *N*,*N*'-dibenzyl analogue **1a** through reductive amination with benzaldehyde [12]. The *N*,*N*'-diizopropyl-(1*R*,2*R*)-1,2cyclohexanediamine **1b** was obtained by a reaction with acetone, followed by H₂/PtO₂ reduction in ethanol [13]. The *N*,*N*'-dineopentyl-*trans*-(1*R*,2*R*)-1,2-cyclohexanediamine **1c** was prepared from the corresponding *N*,*N*'-diacyl compound by reduction with BH₃·SMe₂ in THF [14] (Scheme 1).

Condensation of the diamines 1a-c with PCl₃ and Et₃N in a toluene solution followed by filtration of the resulting Et₃N·HCl gave the crude diamido chlorophosphites. The addition of 1 equiv of water and 1 equiv of NEt₃ to a toluene solution of the latter gave the corresponding diamido phosphites **2a–c** (Scheme 2) [15].

We have found that phosphonamides **2** react with potassium hydride and chloromethyl methyl sulfide at low temperature in THF to give opti-

SCHEME 1 Synthesis of *N*,*N*⁻disubstituted *trans*-1,2-cyclohexanediamines **1a**–**c**.

cally active (methylsulfanyl)methylphosphonamides 3. After chromatographic purification to remove unreacted chloromethyl methyl sulfide, phosphonamides **3a-c** were obtained as viscous oils in 64-76% overall yields. These new compounds were fully characterized by NMR, IR, MS, and elemental analysis or HRMS. The methylsulfanyl protons in the ¹H NMR spectra of **3** appeared as singlets at 2.12 and 2.13 ppm for **3a** and **3b**, respectively, and as a doublet with a small coupling constant ${}^{4}J_{P-H} = 1.5$ Hz for **3c**. The ³¹P NMR spectra show singlets at 32.4–39.8 ppm in CDCl₃. The ¹³C NMR spectra exhibit characteristic doublets at 31.2–33.0 ppm with a large coupling constant: 88.7 Hz for 3c, 113.3 Hz for **3b**, and 131.2 Hz for **3a**, which are typical for the P-C-S methylene bridge.

The phosphonamides **3a–c** formed the corresponding sulfonium salts **4a–c** upon treatment with methyl iodide in the presence of $AgBF_4$ (Scheme 2). They were purified by column chromatography and characterized by NMR spectroscopy. The ¹H NMR spectra showed strong signals of the two methyl groups, which appear as singlets in the region of 2.78–3.18 ppm. In the ³¹P NMR (CDCl₃) spectra, the salts **4** resonate at 24.2–31.1 ppm.

Single crystals of the salt 4a, which were suitable for X-ray diffraction study, were obtained by slow diffusion of hexane into a saturated solution of 4a in chloroform. The molecular structure of this compound is depicted in Fig. 2. Absolute

SCHEME 2 Synthesis of sulfonium salts 4a-c.

FIGURE 2 Molecular structure of solid 4a. The thermal ellipsoids were drawn at the 50% probability level. Selected bond distances (Å) and angles (°): P(1)—N(1), 1.641(3); P(1)—N(2), 1.634(3); P(1)—C(21), 1.822(3); S(1)—C(21), 1.787(3); S(1)—C(22), 1.793(4); S(1)—C(23), 1.762(4); N(1)—C(1), 1.464(4); N(1)—C(7), 1.471(4); N(2)—C(2), 1.481(4); N(2)—C(14), 1.462(4); C(1)—C(2), 1.514(4); P(1)—O(1), 1.459(2); O(1)—P(1)—N(1), 121.6(1); O(1)—P(1)—N(2), 117.4(1); O(1)—P(1)—C(21), 107.4(1); N(2)—P(1)—N(1), 94.9(1); N(2)—P(1)—C(21), 109.8(2); O(1)—P(1)—N(1), 121.6(1).

configuration of the two carbon atoms was confirmed as R_{C1} and R_{C2} . The P–N distances are 1.641(3) and 1.634(3) and are slightly shorter than in the other phosphonamides [16–20, 22]. The valence angles of the sulfur atom are in the range of 101.3(2)– 103.8(2) and are characteristic for the tetrahedral geometry. The sum of valence angles of nitrogen atoms are $\Sigma N1 = 355.8(6)^{\circ}$ and $\Sigma N2 = 351.4(6)^{\circ}$ instead of $\Sigma N = 360^{\circ}$ for planar groups, which proves the nonplanar configuration of nitrogen. Both nitrogen atoms are tilted out of the plane formed by the three neighboring atoms, about 0.181(3) and -0.259(3) Å. The phosphorus center adopts a slightly deformed tetrahedral geometry. The average value of the six valence angles around the phosphorus atom is 109.3°. Torsion angles are in the range of 94.9 (1)°-121.6 (1)°. The N2–P1–N1 torsion angle is the smallest, and the O-P-N angle is the largest. The same relationships exist in other phosphonamides [16-24]. The angle between the phenyl rings, C8–C13 and C15–C20, is 35.7(2)°. The cyclohexane ring C1–C6 adopts a chair conformation [16, 17, 19, 20, 24], C3 and C6 atoms are tilted with respect to the plane C1, C2, C4, C5 of -0.725(6) and 0.717(5) Å, respectively. The five-membered ring has an envelope conformation [17, 20]. The C2 atom is tilted from the plane 1 (P1, N1, N2, C1) of 0.593 Å, and the angle between the planes 1 and 2 (N2, C2, C1) is 39.5 (2)° [16]. The angle between the cyclohexane ring and fivemembered ring is $-5.07(9)^{\circ}$ [23].

The C22 and C23 atoms of the methyl groups adopt a conformation -ap ($\phi = -176.9(3)^{\circ}$) and +sc($\phi = 76.9(3)^{\circ}$) relative to the phosphorus atom P1. The atoms O1, N1, and N2 adopt a conformation -sc ($\phi = -31.1(3)^{\circ}$), -ap ($\phi = -161.6(2)^{\circ}$), and +ac($\phi = 97.6(2)^{\circ}$), respectively, relative to the phosphorus atom P1 (Fig. 3).

The crystal structure of the compound **4a** is stabilized by weak hydrogen bonds (Fig. 4, Table 1).

The generation of sulfonium ylides was achieved by treatment of the sulfonium salts **4a–c** with butyllitium, lithium diisopropylamide in THF or K_2CO_3 in dichloromethane. Owing to their instability, the

FIGURE 3 Newman projection along the C21—S1 bond (a) and C21—P1 bond (b) for compound **4a**.

resulting ylides **5a–c** are characterized only by the ³¹P NMR. A significant downfield shift has been observed in the ³¹P NMR spectra of the compounds **5a–c** (**5a** δ = 45.8 ppm; **5b** δ = 43.4 ppm; **5c** δ = 50.4 ppm) in comparison with the sulfonium salts **4a–c** (**4a** δ = 28.1 ppm; **4b** δ = 24.2 ppm; **4c** δ = 31.1 ppm).

The ylides **5a-c** were found to react with different activated symmetrical 1,1-disubstituted ethylenes $[R^1 = P(O)(OEt)_2, SO_2Ph, COO^tBu]$, yielding a mixture of the two diastereoisomeric cyclopropanes 6, 7, and 8 in moderate-to-good yields and with diastereoselectivity in the range from 60:40 to 90:10 (Scheme 3, Table 2). The presence of two electron-withdrawing groups in ethylenes makes them much more reactive than those with one activating group such as, e.g., vinylphosphonate. We found that the reaction of ylides **5a–c** with vinylphosphonate does not lead to the corresponding cyclopropanes. A similar lack of reactivity of the ylides was observed with diethyl 2-(propan-2ylidene)malonate. In this case, the decisive factor is probably the steric hindrance. Therefore, as shown in Table 2, preliminary results of the cyclopropanation reaction represent a compromise between the

TABLE 1 Hydrogen-Bond Parameters (Å, °) for 4a

	D—H	H…A	D…A	D—H…A
C23—H23A…O1	0.96	2.46	3.116(5)	125.7
C20—H20…N2	0.93	2.56	2.889(4)	101.5
C22—H22A…F3 ⁱ	0.96	2.39	3.251(5)	148.5

Symmetry codes: (i) 2 - x, -1/2 + y, 1/2 - z.

electron and steric factors having an influence on the reaction course. Moreover, an inspection of the results in Table 2 revealed that a little better stereoselection was obtained with smaller substituents such as Bn (entry 1, 7) and ⁱPr (Entry 2, 5), whereas slightly worse for larger substituents like neopentyl (entry 3, 6). Other aspects of the asymmetric cyclopropanation reaction briefly reported herein such as the effect of solvent and base on yield and diastereoselectivity, separation of diastereoisomers, and determination of their absolute configuration and hydrolysis of the chiral phosphonamido auxiliary are under current investigation.

CONCLUSIONS

In conclusion, we have presented the synthesis of a new type of sulfonium ylides containing a chiral stereodirecting phosphonoamido group derived from N,N'-disubstituted *trans*-diaminocyclohexane. The reaction of the sulfonium ylides prepared with activated olefins afforded cyclopropylamidophosphonates with moderate-to-high diastereoselectivities. Further studies on asymmetric cyclopropanation are continued.

FIGURE 4 Unit-cell packing diagram for 4a. Dashed line represents a hydrogen bond.

SCHEME 3 Synthesis of cyclopropanes 6-8.

TABLE 2 Formation of Cyclopropanes 6-8 from Ylides 5

Entry	Compound	R	R^{1}	Ratio of Diastereoisomers ^a	Yield ^b (%)
1	6a	Bn	P(O)(OEt) ₂	85:15	63
2	6b	[/] Pr	P(O)(OEt) ₂	90:10	70
3	6c	^t BuCH ₂	P(O)(OEt) ₂	67:33 ^d	66
4	7a	Bn	SO ₂ Ph	60:40 ^c	60 ^c
5	7b	[/] Pr	SO ₂ Ph	90:10	52
6	7c	^t BuCH ₂	SO ₂ Ph	64:36 ^d	60
7	8a	Bn	COO ^t Bu	80:20 ^c	62 ^c
8	8b	[/] Pr	COO ^t Bu	60:40	35
9	8c	^t BuCH ₂	COO ^t Bu	75:25 ^d	38

^aDetermined from the ³¹P NMR spectra of the crude product mixture.

^bYield of isolated product after chromatographic work-up.

 ${}^{c}K_{2}CO_{3}$ in $CH_{2}CI_{2}$ was used as a base.

^dBuLi in THF was used as a base.

EXPERIMENTAL

General

¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AC 200 spectrometer at 200.13, 50.32, and 81.02 MHz, respectively (using CDCl₃ as a solvent) unless otherwise noted. IR spectra were measured on an Ati Mattson Infinity FTIR 60 spectrometer. MS spectra (FAB and HRMS) were recorded on a Finnigan MAT 95 spectrometer. Optical rotation values were measured in a 100-mm cell on Perkin-Elmer 241 MC under Na lamp radiation. Column chromatography was conducted on a Merck silica gel (70-230 mesh). All solvents were dried by conventional methods and distilled before use. All commercially available products were purified by either distillation or crystallization and were bought from Aldrich. Tetraethyl ethenylidenebis(phosphonate) [25] and di-tert-butyl methylenemalonate [26] were obtained according to a known procedure.

General Procedure for Synthesis of Sulfides 3a-c

To a suspension of 0.735 g (5.5 mmol) of KH (30% dispersion in mineral oil) in 10 mL of THF, a solution of 5 mmol of phosphorus acid diamide 2 was added in 20 mL of THF at -78° C. The resulting mixture was allowed to warm to room temperature and

stirred for 1 h. The temperature was decreased to -78° C, and 0.483 g (5 mmol) of chloromethyl methyl sulfide in 5 mL of THF was added dropwise and stirred for 12 h at room temperature. The mixture was washed at 0°C with 5 mL of a saturated solution of NH₄Cl and extracted with CH₂Cl₂ (2×10 mL). After aqueous work-up, the organic layer was separated, dried (MgSO₄), and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using toluene/ethyl acetate (2/1 v/v) for elution to give viscous oil of sulfide **3**.

1,3-Bis(phenylmethyl)-2-[(methylthio)methyl] octahvdro-2-oxide-(3aR,7aR)-1H, 1,3,2-benzodiazap*hosphole* **3***a*. Yellowish oil; 83% yield; $[\alpha]_D^{25} = -69$ (CHCl₃, 1.1). IR (film): $\nu = 2935$, 2862, 1453, 1209, 1171, 1028, 738 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.70-7.05$ (m, 10H), 4.62–4.25 (m, 2H), 4.20– 3.82 (m, 2H), 3.14 (ddd, J = 2.8, 2.9, 11.8 Hz, 1H),3.00-2.62 (m, 3H), 2.13 (s, 3H), 1.90-1.45 (m, 4H), 1.35–0.72 (m, 4H) ppm. ³¹P NMR (81 MHz, CDCl₃): $\delta = 37.3$ (s) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta =$ 139.8, 138.5, 128.4, 128.2, 127.4, 127.1, 126.9 (s), 65.2, 63.8 (d, *J* = 6.8 Hz), 47.6, 46.5 (s), 31.2 (d, *J* = 131.2 Hz), 29.5 (d, J = 6.1 Hz), 24.2 (s), 13.5 (d, J =6.7 Hz) ppm. MS(FAB) 401 (M + H). HRMS (FAB) calcd. for $C_{22}H_{30}OPSN_2 [M + H]^+$ 401.1816; found 401.1820.

TABLE 3	Crystallographic	Data	for	4a
---------	------------------	------	-----	----

$D_x = 1.308 \text{ g} \cdot \text{cm}^{-3}$
Mo K α radiation
Cell parameters from 18,034 reflections
$\theta = 1.9-27.8^{\circ}$
$\mu=$ 0.24 mm $^{-1}$
T = 296 (2) K
Needle, colorless
$0.35 \times 0.15 \times 0.10$ mm
3,707 reflections with $I > 2\sigma(I)$
$R_{\rm int}=0.029$
$\theta_{\max} = 27.0^{\circ}$
$h = -11 \rightarrow 10$
$k = -11 \rightarrow 11$
$I = -39 \rightarrow 39$
Calculated weights $w = 1/[\sigma^2(F_o^2) + (0.0817P)^2]$, where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.0001$
$\Delta ho_{max} = 0.32 \ e \ \AA^{-3}$
$\Delta \rho_{\min} = -0.29 \text{ e} \text{ Å}^{-3}$
Extinction correction: none
Absolute structure/ Flack [23] parameter
Flack parameter: – 0.10 (10)

1,3-Bis(1-methylethyl)-2-[(methylthio)methyl] octahydro-2-oxide-(3aR,7aR)-1H, 1,3,2-benzodiaza*phosphole* **3b**. Yellowish oil; 87% yield; $[\alpha]_D^{25} =$ -75 (CHCl₃, 1). IR (film): $\nu = 2930, 2871, 1440, 1209,$ 1015, 693 cm⁻¹.¹H NMR (200 MHz, CDCl₃): δ = 3.65-3.27 (m, 2H), 3.08-2.84 (m, 3H), 2.80-2.58 (m, 1H), 2.12 (s, 3H), 2.10–1.83 (m, 2H), 1.80–1.52 (m, 2H), 1.30 (d, *J* = 6.8 Hz, 6H), 1.28–1.17 (m, 4H), 1.15 $(d, J = 6.8 \text{ Hz}, 6\text{H}) \text{ ppm.}^{31}\text{P NMR} (81 \text{ MHz}, \text{CDCl}_3):$ $\delta = 32.4$ (s) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta =$ 60.6 (d, *J* = 7.5 Hz), 59.6 (d, *J* = 6.2 Hz), 44.6 (d, *J* = 2.5 Hz), 43.8 (d, *J* = 5.5 Hz), 33.0 (d, *J* = 113.3 Hz), 30.1 (d, J = 7.5 Hz), 29.7 (d, J = 10.1 Hz), 24.0 (s),23.0 (d, J = 3.0 Hz), 21.8 (d, J = 4.5 Hz), 20.4, 20.0 (s), 17.6 (d, *J* = 7.5 Hz) ppm. MS(FAB) 305 (M + H). Anal. Calcd. for C₁₄H₂₉N₂POS (304.46): C, 55.22; H, 9.62. Found: C, 55.18; H, 9.66.

1,3-Bis(2,2-dimethylpropyl)-2-[(methylthio)

methyl]octahydro-2-oxide-(3aR, 7aR)-1H, 1,3,2-benzodiazaphosphole **3c**. Yellowish oil; 85% yield; $[\alpha]_D^{25} = -77$ (CHCl₃, 1). IR (film): $\nu = 2973$, 2870, 1458, 1220, 1106, 1043, 731, 705 cm⁻¹. ¹H NMR (200 MHz, C₆D₆): $\delta = 3.65$ (dd, J = 16.7, 16.7 Hz, 1H), 3.04 (d, J = 13.7 Hz, 2H), 2.92–2.80 (m, 2H), 2.65–2.30 (m, 2H), 2.12 (dd, J = 14.6, 14.6 Hz, 1H), 1.78 (d, J = 1.5 Hz, 3H), 1.75–1.58 (m, 2H), 1.55–1.28 (m, 2H), 1.07 (s, 9H), 1.02–0.83 (m, 4H), 0.99 (s, 9H) ppm. ³¹P NMR (81 MHz, C_6D_6): δ = 39.8 (s) ppm. ¹³C NMR (50 MHz, C_6D_6): δ = 67.1 (d, J = 5.7 Hz), 66.2 (d, J = 7.6 Hz), 58.2 (s), 56.7 (d, J = 2.5 Hz), 32.3 (d, J = 20.5 Hz), 32.0 (d, J = 21.6 Hz), 31.2 (d, J = 88.7 Hz), 29.3 (d, J = 6.7 Hz), 25.4 (s), 18.1 (d, J = 9.0 Hz) ppm. MS(FAB) 361 (M + H). Anal. Calcd. for $C_{18}H_{37}N_2POS$ (360.58): C, 59.95; H, 10.36. Found: C, 59.81; H, 10.34.

General Procedure for Synthesis of Sulfonium Salts **4a–c**

To a solution of sulfide **3** in methyl iodide, $AgBF_4$ at 0°C was added and the suspension was stirred at room temperature overnight. Volatiles were removed in vacuo, and acetone was added. The yellow precipitate that formed was collected by filtration on Celite, and a solution was concentrated to give a sulfonium salt **4** as a glassy white or yellowish solid. Colorless needle-shaped crystals suitable for X-ray crystallography were obtained by slow diffusion of hexane into a saturated solution of **4a** in chloroform.

{[1,3-Bis(phenylmethyl)octahydro-2-oxide-(3aR, 7aR)-1H-1,3,2-benzodiazaphosphol-2-yl]methyl}(dimethyl)sulfonium Tetrafluoroborate **4a**. Colorless crystals; 87% yield; $[\alpha]_D^{25} = -35$ (CHCl₃, 1.2). IR (film): v = 3030, 2938, 2866, 1454, 1211, 1106, 1053, 1067, 739, 700 cm⁻¹.¹H NMR (200 MHz, CDCl₃): $\delta = 7.70-7.05$ (m, 10H), 4.50–3.95 (m, 3H), 3.80 (dd, J = 10.8, 10.9 Hz, 1H), 3.40 (dd, J = 12.1, 12.4 Hz, 1H), 3.06 (dd, J = 11.5, 11.5 Hz, 1H), 2.82 (s, 3H), 2.78 (s, 3H), 2.05–1.85 (m, 2H), 1.82–1.45 (m, 3H), 1.43–1.05 (m, 3H), 1.04–0.65 (m, 2H) ppm. ³¹P NMR (81 MHz, CDCl₃): $\delta = 28.1$ (s) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 138.8$ (d, J = 5.0 Hz), 136.5, 128.9, 128.7, 128.3, 127.7, 127.5, 127.2 (s), 63.4 (d, J = 9.5 Hz), 62.5 (d, J = 7.0 Hz), 46.1 (s), 45.5 (d, J = 4.5 Hz), 38.8 (d, J = 104.8 Hz), 29.0 (d, J = 8.4 Hz), 28.5 (d, J = 9.0 Hz), 26.9, 24.7 (s) ppm. MS(FAB) 415 (M-BF₄). HRMS (FAB) calcd. for C₂₃H₃₂OPSN₂ [M – BF₄]⁺ 415.1973; found 415.1989.

{[1,3-Bis(1-methylethyl)octahydro-2-oxide-(3aR, 7aR)-1H-1,3,2-benzodiazaphosphol-2-yl]methyl] (dimethyl)sulfonium Tetrafluoroborate 4b. Glassy white solid; 90% yield; $[\alpha]_{D}^{25} = -24$ (CHCl₃, 1). IR (film): $\nu = 3028, 2944, 2870, 1208, 1064, 1071, 736$ cm^{-1} .¹H NMR (200 MHz, CDCl₃): $\delta = 4.10-3.65$ (m, 2H), 3.65-3.40 (m, 2H), 3.18 (s br, 6H), 3.08-2.75 (m, 2H), 2.34–1.97 (m, 2H), 1.97–1.65 (m, 2H), 1.60–1.08 (m, 4H), 1.35 (d, *J* = 5.9 Hz, 6H), 1.25 (d, J = 5.9 Hz, 6H) ppm. ³¹P NMR (81 MHz, CDCl₃): $\delta = 24.2$ (s) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta =$ 62.8 (d, J = 7.8 Hz), 58.9 (d, J = 6.0 Hz), 45.4 (d, J = 3.0 Hz), 43.0 (d, J = 4.0 Hz), 37.5 (d, J = 108.0 Hz), 30.6 (d, *J* = 7.0 Hz), 28.9 (d, *J* = 9.2 Hz), 24.8, 24.0, 22.6 (s), 22.0 (d, J = 4.0 Hz), 21.1, 20.9 (s), 20.5 (d, J = 6.5 Hz) ppm. MS (FAB) 319 (M – BF₄). Anal. Calcd. for C₁₅H₃₂N₂POSBF₄ (406.27): C, 44.34; H, 7.95. Found: C, 44.28; H, 7.92.

{[1,3-Bis(2,2-dimethylpropyl)octahydro-2-oxide-(3aR,7aR)-1H-1,3,2-benzodiazaphosphol-2-yl]meth*vl(dimethyl)sulfonium Tetrafluoroborate* **4***c.* Glassv vellowish solid; 95% yield; $[\alpha] = -22$ (CHCl₃, 1). IR (film): $\nu = 3032, 2941, 2851, 1452, 1207, 1050,$ 1073, 732 cm⁻¹.¹H NMR (200 MHz, CDCl₃): δ = 4.15-3.95 (m, 1H), 3.80-3.56 (m, 1H), 3.15 (s, 6H), 3.05-2.23 (m, 4H), 1.92-1.71 (m, 2H), 1.58-1.10 (m, 4H), 1.10-0.90 (m, 4H), 0.96 (s, 9H), 0.93 (s, 9H) ppm. ³¹P NMR (81 MHz, CDCl₃): $\delta = 31.1$ (s) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 64.6$ (d, J = 8.6 Hz), 64.0 (d, J = 11.0 Hz), 57.7 (s), 55.5 (d, *J* = 28.1 Hz), 54.4 (d, *J* = 33.6 Hz), 38.2 (d, *J* = 98.5 Hz), 32.9, 31.7, 30.9, 28.6, 28.3, 27.3, 27.1, 24.3, 22.9 (s) ppm. MS(FAB) 375 (M – BF₄). Anal. Calcd. for C₁₉H₄₀N₂POSBF₄ (462.46): C, 49.34; H, 8.74. Found: C, 49.29; H, 8.72.

X-Ray Crystallography

Crystal Data for {[1,3-bis(phenylmethyl)octahydro-2-oxide-(3aR,7aR)-1H-1,3,2-benzodiazaphosphol-2-yl]methyl](dimethyl)sulfonium Tetrafluoroborate 4a. C23H32N2OPS·BF4, colorless, needle 0.35 \times 0.15 \times 0.10 mm, orthorhombic, space group $P2_12_12_1, a = 8.6160$ (2), b = 9.2538 (2), c = 31.9945(8) Å, V = 2550.95 (10) Å³, $M_r = 502.36$, Z = 4, $d_{\text{calcd}} = 1.308 \text{ g cm}^{-3}$, $\mu = 0.24 \text{ mm}^{-1}$, T = 296 (2) K, F(000) = 1056 (see Table 3). Data collection: Kuma KM4 CCD area-detector diffractomer with graphite monochromatized Mo K α radiation. Measured reflections 45,044 (θ_{max} 27.0°), 5376 independent $(R_{int} 0.029)$. Structure solution: direct method, anisotropic refinement on F^2 for all non-H atoms, hydrogen atoms attached to C atoms were included using a riding model. The structure was refined over 3707 reflections with $I > 2 \sigma$ (I) (300 refined parameters with 12.4 reflections on parameter). The correct absolute structure was proved by the Flack parameter [27] x = -0.10 (10). For all data, the final wR_2 was 0.144, $R_1 = 0.043$, S = 1.12, max. $\Delta \rho =$ 0.32 e Å⁻³. Data processing was carried out with the Oxford Diffraction [28, 29]; structure solution SHELXS [30]; structure refinement SHELXL [31].

SUPPLEMENTARY MATERIAL

Full details (excluding the structure factors) for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center, as supplementary publication no. CCDC 976694 and can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).

REFERENCES

- Kukhar, V. P.; Hudson, H. R. (Eds.). Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: Chichester, UK, 2000.
- [2] Łyżwa, P.; Błaszczyk, J.; Sieroń, L.; Mikołajczyk, M. Eur J Org Chem 2013, 2106–2115.
- [3] Mikołajczyk, M. J Organomet Chem 2005, 690, 2488– 2496.
- [4] Midura, W. H.; Mikołajczyk, M. Tetrahedron Lett 2002, 43, 3061–3065.
- [5] Midura, W. H.; Krysiak, J.; Mikołajczyk, M. Tetrahedron: Asymmetry 2003, 14, 1245–1249.
- [6] Krysiak, J.; Midura, W. H.; Wieczorek, W.; Mikołajczyk, M. Tetrahedron: Asymmetry 2010, 21, 1486–1493.
- [7] (a) Midura, W. H. Synlett 2006, 733–736; (b) Midura,
 W. H. Tetrahedron Lett 2007, 48, 3807–3910; (c)
 Cypryk, M.; Midura, W. H. Tetrahedron: Asymmetry 2010, 21, 177–186.

- [8] Midura, W. H.; Rzewnicka, A. Tetrahedron: Asymmetry 2013, 24, 937–941.
- [9] Bennani, Y. L.; Hanessian, S. Chem Rev 1997, 97, 3161–3195.
- [10] Hanessian, S.; Cantin, L.-D.; Roy, S.; Andreotti, D.; Gomtsyan, A. Tetrahedron Lett 1997, 38, 1103–1106.
- [11] Larrow J. F.; Jacobsen, N. E. J Org Chem 1994, 59, 1939–1942.
- [12] Denmark, S. E.; Stadler, H.; Dorow, R. L.; Kim, J.-H. J Org Chem 1991, 56, 5063–5079.
- [13] Cermak, D. M.; Du, Y.; Wiemer, D. F. J Org Chem 1999, 64, 388–393.
- [14] Alexakis, A.; Mutti, S.; Mangeney, P. J Org Chem 1992, 57, 1224–1227.
- [15] De la Cruz, A.; Koeller, K. J.; Rath, N. P.; Spilling, C. D.; Vasconcelos, C. F. Tetrahedron 1998, 54, 10513–10524.
- [16] Belanger-Gariepy, F.; Delorme, D.; Hanessian, S.; Brisse, F. Acta Crystallogr, Sect C: Cryst Struct Commun 1986, 42, 856–860.
- [17] Belanger-Gariepy, F.; Bennani, Y. L.; Hanessian, S.; Brisse, F. Acta Crystallogr, Sect C: Cryst Struct Commun 1989, 45, 289–291.
- [18] Bennani, Y. L.; Belanger-Gariepy, F.; Hanessian, S.; Acta Crystallogr, Sect C: Cryst Struct Commun 1990, 46, 653–656.
- [19] Bennani, Y. L.; Hanessian, S. Acta Crystallogr, Sect C: Cryst Struct Commun 1991, 47, 1230–1234.

- [20] Simard, M.; Beaudoin, S.; Hanessian, S. Acta Crystallogr, Sect C: Cryst Struct Commun 1992, 48, 1535– 1537.
- [21] Koeller, K. J.; Rath, N. P.; Spilling, C. D. Acta Crystallogr, Sect C: Cryst Struct Commun 1993, 49, 1547– 1549.
- [22] Blazis, V. J.; Koeller, K. J.; Rath, N. P.; Spilling, C. D. Acta Crystallogr, Sect C: Cryst Struct Commun 1995, 51, 86–88.
- [23] Koeller, K. J.; Rath, N. P.; Spilling, C. D. Phosphorus, Sulfur Silicon 1995, 103, 171–181.
- [24] Moreno, G. E.; Quintero, L.; Bernes, S.; Anaya de Parrodi, C. Acta Crystallogr, Sect C: Cryst Struct Commun 2004, 60, 411–414.
- [25] Degenhardt, C. R.; Burdsall, D. C. J Org Chem 1986, 51, 3488–3490.
- [26] Ballesteros, P.; Roberts, B. W. Org Synth 1986, 64, 63.
- [27] Flack, H. D. Acta Crystallogr, Sect A: Found Crystallogr 1983, 39, 876–881.
- [28] Oxford Diffraction. Data collection program CrysAlis-CCD; Oxford Diffraction Poland: Wrocław, Poland, 2006.
- [29] Oxford Diffraction. Data reduction program *CrysAl-isRED*; Oxford Diffraction Poland; Wrocław, Poland, 2006.
- [30] Sheldrick, G. M. SHELXS97 (1990); University of Göttingen: Göttingen, Germany, 1997.
- [31] Sheldrick, G. M. SHELXL97 (1997); University of Göttingen: Göttingen, Germany, 1997.