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Graphical Abstract
A D-A-D-A-D type oligomer of 5BDTBDD and its D-A-Oype small molecule of
3BDTBDD were primarily designed and synthesizechgidbenzol[1,2-c:4,5-c']dithio-
phene-4,8-dione (BDD) as electron-accepting (A)t.uBly structure evolution of
inserting a repeated D-A unit, the 5BDTBDD showschmumproved crystallization,

absorption, mobility, morphology and photovoltaroperties than the 3BDTBDD.
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Abstract:

In order to study the influence of structure ewioln on properties, a D-A-D-A-D-type
oligomer of5BDTBDD and its D-A-D type small molecule 8BDTBDD were designed and
synthesized, which consist of electron-accepting At of benzo[1,2-c:4,5-c'] dithiophene-
4,8-dione (BDD) and electron-donating (D) unit gB-4li(6-ethylhexylthiophen-2-yl)benzo
[1,2-b:4,5-bldithiophene (BDT). The effect of stture evolution on crystallinity, absorption,
mobility, morphology and photovoltaic propertiessy@imarily investigated. It is found that,
by simply inserting a D-A repeat unSBDTBDD shows more improved crystallization,
absorption, mobility and morphology thaBDTBDD. As a resulttBDTBDD exhibits better
photovoltaic properties thaBBDTBDD in their non-fullerene organic solar cells using 9
bis(2-methylene-(3-(1,1-dicyanomethylene)-indanpe),11,11-tetrakis(4-hexylphenyl)-di
thieno[2,3-d:2',3'-d"]-s-indaceno[1,2-b:5,6-b"] hddphene I(TIC) as acceptor material. An
increasing power conversion efficiency of 7.89%wolgained in thésBDTBDD:ITIC cells,
which is 1.8 times higher than that value (4.3366)he3BDTBDD:ITIC cells. It indicates
that structure evolution from D-A-D type small molde toward D-A-D-A-D type oligomer

is an efficient strategy to achieve high-efficiertmnor materials in organic solar cells.

KEYWORDS:. Oligomer, Benzodithiophene-4,8-dione, Benzoditheqdy Non-fullerene,

Organic solar cells.



1. Introduction

Organic photovoltaics (OPVs) with buck-heterojuacti(BHJ) structure as a promising
clean energy have attracted great attention ddieeio low cost, light weight, flexibility, and
large-area roll-to-roll fabrication [1-4]. Recentlyhrough development of non-fullerene
acceptors and optimization of device structureympelr-based organic solar cells (P-OSCs)
have been made much progress with an encouragiBg(Bfver conversion efficiency) over
16% in single-junction binary devices fabricatedhn laboratory [5-7]. The small molecules
based organic solar cells (SM-OSCs) in single-joncbinary devices have also received a
PCE value over 14% [8,9]. However, higher PCE aediat repeatability are still critical
issue for the commercialization of organic soldlsce

Conjugated polymers are a type of the importantodonaterials owing to their excellent
film-formation and charge transfer resulting frohe textensional conjugated backbone and
good electron delocalization. Using polymers asodenthe P-OSCs have showed high PCE,
but exist the unexpected batch-to-batch variatiffs11]. In contrast, small molecules,
another type of donor materials, have well-defisgdcture without batch-to-batch variations
[12]. But their film-formation and morphology aréffatult to be controlled [13]. Thus, a
special class of donor materials with multiple &#lec donating-accepting (D-A) repeat units,
that is so-called D-A type oligomers, has been pesl in recent years [14-21]. The
advanced PCEs about 8.10% ~ 9.25% have been atiaitiee oligomer-based organic solar
cells (OM-OSCs). The results show these OM-OSCesnottke fullerenes (PCBMs) as
acceptors. And the D-A structures and attachingniteal groups are crucial factor for
oligomers to get advanced photovoltaic properties.

Non-fullerene-based organic solar cells (NF-OS@we received rapid progress owing to

the adjustable absorption spectra and energy levelen-fullerene acceptor recently [22-31].



In order to obtain high-performance non-fullereneeptors (NFAS), some electron-accepting
n-fused conjugated units, such as diketopyrrolopgr{®PP), perylenediimide (PDI), naph-

thalene diimide (NDI), anthene diimide (ADI) anddatenothiophene diimide (IDT), have

been employed to construct NFAs [32-36]. It is fouhat the NFAs show more outstanding
advantage than fullerene acceptors in enhancirey sdisorption and reducing energy loss,
which is available to increase short-circuit cutréansity (s and open-circuit voltagev{)

for their OSCs [37-39]. High PCE over 12% was rélgenbtained in NF-OSCs using

polymer PBDB-T as donor material [40-42}hich indicates that using suitable non-fullerene

acceptor is an advisably choice to improve thecigfficy of OSCs. However, high-
performance NF-OSCs using D-A type oligomers adomaterials were seldom reported.

In order to study the influence of structure etioin on photovoltaic properties and get high-
performance photovoltaic donor materials used iIRQSEs, a D-A-D-A-D type oligomer of
5BDTBDD and a D-A-D type small molecule (SM) 8BDTBDD were primarily designed
and synthesized, in which a weak electron-accepffjgunit of benzo[1,2-c:4,5-c']dithio
phene-4,8-dione (BDD) and an electron-donating B} of 4,8-di(6-ethylhexylthiophen-2-
yl)benzo[1,2-b:4,5-b"|dithiophene (BDT) are empldyeTheir molecular structures are
showed in Figure 1. And their crystallinity, absoop, mobility, morphology and
photovoltaic properties were systematically stud@dr results demonstrate thaBDTBDD
oligomer, by simply embedding a D-A skeleton inteAED type SM, exhibited strongern
stacking and intermolecular dipolar interactionyedl as better crystallinity and morphology
than3BDTBDD small molecule. As a resuBBDTBDD oligomer exhibits more intense red-
shifted absorption, higher carrier mobility, and rencordered molecular packing than

3BDTBDD small molecule. Benefited from these qualiti88DTBDD exhibit significantly



improved photovoltaic properties with a higher PQE7.89% than3BDTBDD in the NF-
OSCs usindTIC as NFA. This is first example using a weak eleatctaacepting BDD unit to
construct high-performance oligomer. This work pde¢ an effective strategy to improve
photovoltaic properties of photovoltaic donor medsr by structure evolution from D-A-D-

type SM toward D-A-D-A-D type oligomer in the NF-QS.

Small molecule

Oligomer

5BDTBDD

Figure 1. Molecular structures &BDTBDD oligomer anBBDTBDD small molecule.
2. Experimental section

2.1 Materialsand Synthesis

The synthetic route 8BDTBDD and5BDTBDD is depicted in Scheme 1. Compourds
and 4 were purchased from Chemical Corporation [43,4Bhe synthetic details of
compound2, 3, 5, 6 and7 are depicted in Electronic Supporting Informat{&$sl) [43,44].
3BDTBDD and5BDTBDD were respectively prepared by Stille coupling tieacas follows.
Both molecules were characterized’bly **C NMR, and HRMS. They show good solubility

in common solvents, such as dichloromethane, cfdoroand chlorobenzene.
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Scheme 1. Synthetic routes #3BDTBDD and3BDTBDD.

Synthesis of compound 3BDTBDD

In a 50 mL two-neck round-bottom flask, a mixtufecompound3 (0.167 g, 0.22 mmaol),
compoundb (0.358 g, 0.48 mmol), and Kdba) (10 mg, 0.011 mmol), tri(o-tolyl)phosphine
(13.4 mg, 0.044 mmol) in toluene was degassed utiter\, atmosphere and stirred at
refluxing temperature for 12 h. After cooled to mtemperature, the mixture was poured into
water (150 mL) and extracted with @E(30 mLx3). The organic phases were combined
and dried over anhydrous Mg&Qhe solvents were removed off under reduced presnd
the red residue was purified by silica gel chrorgedphy, eluting with PE-CKLl, (4:1) to
give purplish red solid (225 mg, 62%H NMR (300 MHz, CDCJ) & (ppm): 7.79 (s, 2H),
7.72 (d,J = 4.0 Hz, 2H), 7.62 (d] = 5.7 Hz, 2H), 7.45 (d] = 5.7 Hz, 2H), 7.32 (dd] = 3.4,

2.5 Hz, 4H), 7.28 (d] = 4.0 Hz, 2H), 6.92 (1 = 3.8 Hz, 4H), 3.41 — 3.23 (m, 4H), 2.88 (dd,



J=6.7, 2.7 Hz, 8H), 1.77 — 1.69 (m, 6H), 1.47 251(m, 48H), 0.99 — 0.86 (m, 36HC
NMR (75 MHz, CDC}) & 177.6, 153.6, 145.9, 141.9, 141.2, 139.5, 138%,.3, 137.1,
137.0, 136.9, 133.5, 132.9, 132.6, 131.6, 128.0,812125.5, 125.5, 124.1, 123.7, 123.6,
120.0, 41.5, 41.3, 34.3, 33.7, 32.8, 32.6, 32.50,288.8, 26.2, 25.8, 23.1, 23.0, 14.2, 14.2,

11.0. HRMS (m/z) of @yH12d00.S;, for [M+H] *: caled. 1761.6010; found, 1761.6055.

Synthesis of compound 5BDTBDD

In a 50 mL two-neck round-bottom flask, a mixtufecompound6 (0.041 g, 0.045 mmol),
compound 7 (0.12 g, 0.095 mmol) and Rdba} (2.1 mg, 0.0023 mmol), tri(o-
tolyl)phosphine (2.7 mg, 0.009 mmol) in toluene w@sgassed toluene and stirred at
refluxing temperature for 12 h under the d&imosphere. After cooled to room temperature,
the mixture was poured into water (150 mL), andaoted with CHCIl, (30 mLx3). The
organic phases were combined, and then dried oiter amhydrous MgS® The solvents
were removed off under reduced pressure. The rselue was purified by silica gel
chromatography eluting with PE-GEll, (3:1) to give purple black solid (80 mg, 60 ).
NMR (300 MHz, CDC}) & (ppm): 7.80 (s, 2H), 7.76 (s, 2H), 7.72 {d= 4.0 Hz, 4H), 7.63
(d,J = 5.7 Hz, 2H), 7.46 (d] = 5.7 Hz, 2H), 7.37 (d] = 3.5 Hz, 2H), 7.34 (dd] = 3.4, 2.1
Hz, 4H), 7.29 (dJ = 1.4 Hz, 4H), 6.97 (d] = 3.5 Hz, 2H), 6.95 — 6.91 (m, 4H), 3.41 — 3.27
(m, 8H), 2.95 — 2.87 (m, 12H), 1.80 — 1.70 (m, 5H}9 — 1.36 (m, 40H), 1.00 — 0.93 (m,
30H). **C NMR (75 MHz, CDC}) § 177.4, 153.2, 145.8, 142.0, 141.6, 141.1, 13%8,8,
138.4, 137.3, 137.1, 136.9, 133.5, 132.9, 132.2,9.3128.5, 128.0, 127.8, 127.6, 125.5,
125.4, 125.1, 124.0, 123.6, 119.8, 118.3, 41.42,434.4, 34.3, 33.6, 32.8, 32.6, 32.5, 29.8,
29.0, 28.8, 26.2, 25.7, 23.2, 23.1, 23.1, 14.32,144.2, 11.1, 11.0. HRMS (m/z) of

C170H10801S,0 for [M] ™: calcd. 2942.9704; found, 2942.9731.



3. Results and discussion

3.1. Thermal Property and Crystallinity

Figure S1 shows the thermogravimetry (TG) curve3BIDTBDD and5BDTBDD. Under
a nitrogen atmosphere, high decomposition temperadfi 380°C at 5% weight loss is
observed for both molecules. It indicates that ID-A\-D type oligomer and its D-A-D type
SM have good thermal stability. Figure S2 depidts tifferential scanning calorimetry
(DSC) curves of two molecules. It is found thatréharen’t obvious melting temperatufig,)
upon heating process and crystallization tempesatuii;) upon cooling process for
3BDTBDD small molecule. HoweveEBDTBDD oligomer displays obvious melting and
crystalling peaks. It indicates theBDTBDD oligomer has stronger intermolecular forces
and crystallinity tharBBDTBDD small molecule. Inserting D-A repeat unit into aAED

type small molecule can efficiently tune molecudgystallinity.

3.2. Absor ptive and Electrochemical Properties

The UV-vis absorption spectra 6BDTBDD and3BDTBDD are depicted in Figure 2.
Their absorptive data are summarized in Table 1o Tywical absorption bands are observed
for both molecules, which contain a high-lying battd00 ~ 400 nm and a low-lying band at
400 ~ 600 nm in diluted chloroform solution. Ther&BDTBDD oligomer shows a remark-
ably red-shifted absorption spectrum peaked atrgh2with an increasing molar extinction
coefficient of 1.32x10M™ cm* in comparison wittlBBDTBDD small molecule. It indicates
that the embedding D-A repeat unit is availablanrease conjugation degree and intra-
molecular charge transfer (ICT) effect for tBBDTBDD oligomer. The observed maximum
absorption peak at 562 nm for tBBDTBDD film and 516 nm for the8BDTBDD film

further support this speculation. As a result dEalation, the optical band gaps are 1.87 eV



for 5BDTBDD and 2.03 eV foBBDTBDD from their absorption band edgdégc’(”) in the
thin films. It is noted that th&BDTBDD film rather than the3BDTBDD film displays
another pronounced shoulder peak at 606 nm. lti@sphatS5BDTBDD oligomer has better
crystallinity and strongeri—n stacking effect thar8BDTBDD small molecule [45]. This

phenomenon is consistent with the DSC testing t&sul
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Figure 2. UV-vis absorption spectra 88DTBDD and3BDTBDD in chloroform solution
(a) and in their neat films (b).

Table 1. Absorptive and electrochemical propertie$BDTBDD and3BDTBDD.

Amax (NM) Aonset film EgOpI Enomo ELumo

Donor . - b )
Solution Film (nm) (eVv)? (eV) (eV)

3BDTBDD 484 516 610 2.03 -5.50 -3.38

SBDTBDD 512 562, 606 663 1.87 -5.46 -3.51

2Calculated from the absorption band edge of thesfiE,"=1240/2 gnset

b Calculated from empirical equatioBiomo = —(Eox + 4.8) eV,ELumo = (Ereq + 4.8) eV (The formal potential of
Fc/F¢ was 0.48Ws Ag/AgCl measured in this work)

Figure S3 shows cyclicvoltammetry curves5®&DTBDD and3BDTBDD in chloroform
solution. Similar reversible redox processes aesgmted for both molecules. The calculated
electrochemical data are listed in Table 1. Thédmsg occupied molecular orbit (HOMO) and
the lowest unoccupied molecular orbit (LUMO) enelgyels Exomvo / ELumo) are calculated

to be -5.46 eV /-3.51 eV fGBDTBDD and -5.50 eV/ -3.38 eV f@BDTBDD by empirical



equation [46]. It is found that the inserting D-Apeat unit plays an important role in
decreasing th& yvo value. In comparison with the energy levels of tplkoltaic materials
used in photoactive layer depicted in Figure 3fa¥ decreasing umo value forsBDTBDD
oligomer can diminish the LUMO energy level diffece betweerbBDTBDD donor and
ITIC acceptor and further promote excition separationphotoactive layer. Therefore,

S5BDTBDD oligomer should exhibit better photovoltaic prdps than3BDTBDD in the
ITIC-based OSCs [47].

—
Q
-~

Energy levels(eV)

Figure 3. (a) Energy levels 3BDTBDD, 3BDTBDD andITIC and (b) the device structure.

3.3. Theoretical Calculations

The molecular geometries and frontier orbitals 5S@DTBDD and 3BDTBDD were
theoretically simulated with the hybrid density ¢tional theory (DFT) at the B3LYP/6-31G*
level using Gaussian 09W program. In order to simglalculation, long alkyl chains were
replaced by methyl. Figure 4 shows the simulatedtedstatic potential distribution of the
electron-donating (D) unit of BDT and the electiemeepting (A) unit of BDD, as well as
their 5BDTBDD oligomer and3BDTBDD small molecule. It is observed that the dipole
moment of BDT is 0.0002 D, which is significantlgnaller than that of BDD (1.1341 D).

Therefore, while inserting D-A repeat unit 8BDTBDD, the resultingBDTBDD oligomer

10



should have an increasing proportion of A unit amalecular dipole moment. It implies that
5BDTBDD oligomer has stronger intermolecular effect tf88DTBDD small molecule.
Here, lower electrostatic potential observed3BDTBDD oligomer thar3BBDTBDD small

molecule is consistent with the intermolecular etfe
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Figure 4. Electrostatic potentials of BDT, BDBBDTBDD and3BDTBDD.

The optimal geometries (front and side view) andeviunctions (HOMO and LUMO) of
5BDTBDD and3BDTBDD are shown in Figure 5. It is found that the elmttdensities of
LUMO are most localized on the central electronaleft BDD unit for3BBDTBDD, but on
the central backbone of two BDD and one BDT urotsthe5BDTBDD. It implies that the
S5BDTBDD oligomer is in favor of intramolecular charge ster. However, the electron
densities of HOMO are distributed across the maéecbackbone forsBDTBDD and
3BDTBDD. Based on the dihedral angles of the optimal gé&oeseof 5SBDTBDD and
3BDTBDD in Figure 5(a), it is further found that both nmié&ar backbones ddBDTBDD
and 3BBDTBDD have good planarity, which is favorable for their stacking. And the

backbone planarization 05BDTBDD is more available for the HOMO-LUMO wave

11



function overlap to yield a higher extinction coe#nt [13]. As a resulttBDTBDD exhibits

more intense absorption thaBDTBDD.
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Figure 5. Optimized geometries of the (a) front and (b) sigavs. Electron densities of (c)
LUMO and (d) HOMO for3BDTBDD and 5BDTBDD calculated by Gaussian at the
B3LYP/6-31G* level.

3.4. Photovoltaic Properties

The organic solar cells were fabricated usiigC as acceptor anéBDTBDD or
3BDTBDD as donor in active layer. The device structuresiass/ITO/ZnO/active layer
IMoOs/Ag, as shown in Figure 3(b). In these cells, lij8eibctane (DIO) was used as an

additive at various concentrations from 0.1 wt%0t8 wt%. The measured photovoltaic

12



parameters are summarized in Table S1 and S2 anddumination of AM 1.5G simulated
solar light at 100 mWi/cfn It is found that the optimal donor/acceptor weigitio and DIO
concentration are respectively 1:0.8 and 0.2 wttgureé 6(a) depicts the current density-
voltage (—V) curves of the cells at the optimal processingddmns and Table 2 summarizes
the corresponding photovoltaic parameters. The maxi PCE value of 7.89% with a short-
circuit current densityJ, of 13.23 mAcr is observed in theBDTBDD:ITIC cells. Here,
the PCE andJsc are 1.8 and 1.4 times higher than those correspgndalues in the
3BDTBDD:ITIC cells, respectively. Higheds value for the5BDTBDD:ITIC cells is
consistent with the wider UV-Vis absorption spentréor the 5BDTBDD oligomer. It is
noted that thé®BDB-T:ITIC-based devices exhibit a decreasing PCE of 7.148&ruthe
same processing conditions. It indicates that oligis have great potential as photovoltaic
materials.

The EQE spectra of the optimal cells are depicted in Fega¢b). The maximuntEQE
values of 65% and 47% are observed forSB®TBDD:ITIC and3BDTBDD:ITIC blend
films, respectively. The broader photo-responseéore§¢rom 350 nm to 750 nm and higher
EQE value indicate thabBDTBDD oligomer has more efficient photo-response than
3BDTBDD small molecule in theitTIC blend films. As a result, it can further facilgat

5BDTBDD exhibit highers; values in their cells.

13
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Figure 6. (a) J — V curves of thesBDTBDD:ITIC, 3BDTBDD:ITIC and PBDB-T:ITIC
cells under a simulated AM 1.5 G irradiation (100Vncm?) and (b) EQE curves of
5BDTBDD:ITIC, 3BDTBDD:ITIC andPBDB-T:ITIC cells.

Table 2. Photovoltaic parameters of teBBDTBDD:ITIC, 3BBDTBDD:ITIC andPBDB-

T:ITIC cells.
Voc Js& Jsc FF PCEnax PCEave)
Donor V)  (mAcm?d) (mAcm?d (%) (%) (%)
3BDTBDD 0.90 9.51 9.38 50.6 4.33 4.02
5BDTBDD 0.91 13.23 13.15 65.6 7.89 7.66
PBDB-T 0.91 14.66 13.96 535 7.14 7.00

2Jsc measured from solar celRs. estimated fronEQE spectra® PCE obtained from 20 cells,
at 0.2% DIO additive.

Figure 7(a) shows the photoluminescence (PL) spedftithel TIC neat film and blend
films with 5BDTBDD or 3BBDTBDD. An intense emission peaked at 680 nm is obsedrved
the ITIC neat film. However, its emission is quickly queadhby addinggBDTBDD and
3BDTBDD with a quenching efficiency of 95.0% and 66.5%spectively. It indicates that
the exciton is transferred and separated moreiaitiy from thel TIC to the5SBDTBDD
donor. This can make tfDTBDD:ITIC cells have an increasiidg.

The characteristics of exciton dissociation, chacglection, and charge recombination

also support the result of highEF andJs; values for th&sBDTBDD:ITIC cells, which are
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measured by the characteristics of photocurrensiiedyn) versus effective voltageVvéy)

and the dependence & on light intensity Rign) [48]. Figure 7(b) shows the curves B

versusVes for the optimizedsBDTBDD:ITIC and3BDTBDD:ITIC cells. It is found that

both devices exhibit a saturated photocurrent terdi,) at ~2 V, suggesting that charge

recombination in both cells is minimized at highettage due to the high internal electric

field. The Jy/Jsat ratio is up to 0.93 for th&BDTBDD:ITIC cells under short-circuit

conditions, which is higher than that value of 0f86the3BDTBDD:ITIC cells. Therefore,

the 5BDTBDD:ITIC cells should possess more efficient exciton dissoen and charge

collection than th&BDTBDD:ITIC cells.
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Figure 7. (a) Photoluminescent spectra of the neat and Hiens excited at 680 nm, (b)The
curves ofJpn versusVes in the optimizedsBDTBDD:ITIC and3BDTBDD:ITIC cells, (c)
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The dependence ®ign: on Vo of theSBDTBDD:ITIC and3BDTBDD:ITIC cells, (d) The
dependence d¥jigh: onJsc of theSBDTBDD:I TIC and3BDTBDD: ITIC cells .

Figure 7(c) shows the characteristics\gf versusPign: Of the optimized cells. For trap-
assisted recombination system, it is suggestedhatlope oV, versudog(Pignt) is close to
2kBT/q, here, kB is Boltzmann’s constant, T is temgure and q is the elementary charge
[49]. It is found that the optim@BDTBDD:ITIC cell shows a lower slope of 1.31 than the
3BDTBDD:ITIC cell kBT/gq= 1.651). Hence, there is a weaker trap-assistsmhreination
in the5BDTBDD:ITIC cells. In general, more compactt stacking could reduce the inter-
molecular interfacial trap densities in the actieger and thus suppressed trap-assisted
recombination [50]. ThereforéBDTBDD oligomer with an enhancedn stacking exhibits a
weaker trap-assisted recombination tBBIDTBDD small molecule, which is also one of key
factors for thesBDTBDD:I TIC cells to obtain highels.value.

To better probe the charge recombination behawithe devices, the light-intensiti;gn.)
dependence als; was also measured. Figure 7(d) shows the curv@gmfversusls. of the

optimal 5SBDTBDD:ITIC and3BDTBDD:ITIC cells. It is suggested that the relationship of
Jsc and Piign: is usually represented by the power-law equatibds@ Pign”, in which the
power-law exponent refers to the extent of bimolecular recombinaf{ish]. In comparison
with o values of 0.94 for the optimé@BDTBDD:ITIC cell and 0.85 for the optimal
3BDTBDD:ITIC cell, less bimolecular recombination should ocdaor the optimal

5BDTBDD:ITIC cell, which is available to result in higl. andFF values for this solar cell

[48].

3.5. Morphology and Charge Transport
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Figure 8 shows the morphology of the active layeemasured by atomic force microscopy
(AFM) using the trapping mode. A better-distributeaho-fibrillar interpenetrating network is
observed for theSBDTBDD:ITIC blend film. The measured root-mean-square (RMS)
roughness is 0.87 nm for tB8DTBDD:ITIC blend film and 1.23 nm for theBDTBDD:
ITIC blend film. Here, the enhenced packing and aggeyproperties o6BDTBDD are
responsible for the slightly increasing RMS rougtsef thesBDTBDD:ITIC blend film. In
general, well-distributed interpenetrating netwaikh appropriate domain size is very crucial
for exciton separation and transportion [24]. Unttés morphology, th&BDTBDD:ITIC

cells exhibit some increase &f and FF values.

(b)Y 5BDTBDODITIC
RMS=1.23'hm

(3) 3BDTBDDITIC
RMS =087 .Am”

.

Height 600.0 nm

Height 600.0 nm

5000 mV 2% 500.0 mV

A -500.0 mV SRS -500.0 mV

Tpping ase ‘ 6 Tapping Phs v 6
Figure 8. AFM height images and tapping phases foraBBTBDD:ITIC blend film (a, c)
and for thesBDTBDD:I TIC blend film (c, d).
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The charge transport properties of both activerkayeere measured by the space-charge
limited current (SCLC) method. The hole-only dewaéh a structure of Glass/ITO/ PEDOT:
PSS/active layer/ MogJAu and the electron-only device with a structufestass/Al/active
layer/Al were made for this purpose. Figure 9 shtiwes}*%V characteristics of these hole-
only and electron-only cells. The detail results aummarized in Table 3. A hole mobility
(Un) of 1.110% cm? V' s' and an electron mobilitypg) of 8.93x10° cm? V! st are
obtained with gu/pe ratio of 1.25 for théoBDTBDD:ITIC cells. Thep, andpe values are
6.5 and 2.3 times higher than the correspondingesafor the3BDTBDD:ITIC cells with a
Hn/He ratio of 0.45. It indicates that simply embedda®-A repeat unit into the D-A-D type
SM is available for the resulting oligomer to ohtdietter charge transport properties. The
increasing, and pe values, as well as the matched/. ratio are in favour of the

S5BDTBDD:ITIC cells to improvéd-F and PCE values [28].

—o—3BDTBDD —o—3BDTBDD

—a— 5BDTBDD —o—5BDTBDD
100 4 100 4

J112 (A m-2)112

T T T T
0.01 0.1 1 10 0.01 0.1 1 10

VappVbiVr (V) VappVbi Ve (V)

Figure 9. (a) JY%-V characteristics of the hole-only devices (a) dreldlectron-only devices
(b) based 03BDTBDD:ITIC and3BDTBDD:ITIC.
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Table 3. Hole and electron mobilities of the cells based SBDTBDD:ITIC and
3BDTBDD: ITIC blend films under optimal conditions

. HUh He

Active Iayer (sz V_1 S_l) (sz V_1 S_l) ,uh//,ce
3BDTBDD:ITIC 1.73x10° 3.84x10° 0.45
5BDTBDD:ITIC 1.12x10" 8.93x10° 1.25

4. Conclusion

A D-A-D-A-D type oligomer of5BDTBDD and a D-A-D type SM oB8BDTBDD were
primarily obtained using BDD as electron-accept{Aj unit. It is found that the structure
evolution from D-A-D type SM toward D-A-D-A-D typeligomer plays an important effect
on crystallinity, absorption, mobility, morphologynd photovoltaic properties of photovoltaic
donor materials. By inserted the D-A repeat urtih BBDTBDD small molecule5SBDTBDD
oligomer exhibits more intense absorption with d-shifted absorption spectrum, higher
carrier mobility, stronger crystallization, and morrdered molecular packing than
3BDTBDD small molecule. As a result, tte8DTBDD:ITIC cells present a significantly
increasing PCE of 7.89 %, which is 1.8 times highan that of th&BDTBDD:ITIC cells.
Our work provides an effective strategy to imprgetovoltaic properties of donor materials

by simply inserting a D-A repeat unit in D-A-D tyf& to get D-A-D-A-D type oligomers.
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Research Highlights

A D-A-D-A-D type oligomer of 5BDTBDD and its D-A-D type small molecule
of 3BBDTBDD were synthesized.

The crystalline, absorption, mobility and photovoltaic properties were primarily
investigated.

5BDTBDD shows better photovoltaic properties than 3BDTBDD in the ITIC
based organic solar cells.

The PCE in the 5BDTBDD-based cell is 1.8 times higher than that in the
3BDTBDD-based cell.
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