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Graphical Abstract 
A D-A-D-A-D type oligomer of 5BDTBDD and its D-A-D type small molecule of 

3BDTBDD were primarily designed and synthesized using benzo[1,2-c:4,5-c']dithio- 

phene-4,8-dione (BDD) as electron-accepting (A) unit. By structure evolution of 

inserting a repeated D-A unit, the 5BDTBDD shows much improved crystallization, 

absorption, mobility, morphology and photovoltaic properties than the 3BDTBDD.  
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Abstract: 

  In order to study the influence of structure evolution on properties, a D-A-D-A-D-type 

oligomer of 5BDTBDD and its D-A-D type small molecule of 3BDTBDD were designed and 

synthesized, which consist of electron-accepting (A) unit of benzo[1,2-c:4,5-c'] dithiophene-

4,8-dione (BDD) and electron-donating (D) unit of 4,8-di(6-ethylhexylthiophen-2-yl)benzo 

[1,2-b:4,5-b']dithiophene (BDT). The effect of structure evolution on crystallinity, absorption, 

mobility, morphology and photovoltaic properties was primarily investigated. It is found that, 

by simply inserting a D-A repeat unit, 5BDTBDD shows more improved crystallization, 

absorption, mobility and morphology than 3BDTBDD. As a result, 5BDTBDD exhibits better 

photovoltaic properties than 3BDTBDD in their non-fullerene organic solar cells using 9-

bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-di 

thieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b'] dithiophene (ITIC) as acceptor material. An 

increasing power conversion efficiency of 7.89% is obtained in the 5BDTBDD:ITIC cells, 

which is 1.8 times higher than that value (4.33%) in the 3BDTBDD:ITIC cells. It indicates 

that structure evolution from D-A-D type small molecule toward D-A-D-A-D type oligomer 

is an efficient strategy to achieve high-efficiency donor materials in organic solar cells. 

 

KEYWORDS: Oligomer, Benzodithiophene-4,8-dione, Benzodithiophene, Non-fullerene, 

Organic solar cells. 
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1. Introduction 

Organic photovoltaics (OPVs) with buck-heterojunction (BHJ) structure as a promising 

clean energy have attracted great attention due to their low cost, light weight, flexibility, and 

large-area roll-to-roll fabrication [1-4]. Recently, through development of non-fullerene 

acceptors and optimization of device structure, polymer-based organic solar cells (P-OSCs) 

have been made much progress with an encouraging PCE (power conversion efficiency) over 

16% in single-junction binary devices fabricated in the laboratory [5-7]. The small molecules 

based organic solar cells (SM-OSCs) in single-junction binary devices have also received a 

PCE value over 14% [8,9]. However, higher PCE and device repeatability are still critical 

issue for the commercialization of organic solar cells.  

Conjugated polymers are a type of the important donor materials owing to their excellent 

film-formation and charge transfer resulting from the extensional conjugated backbone and 

good electron delocalization. Using polymers as donors, the P-OSCs have showed high PCE, 

but exist the unexpected batch-to-batch variations [10,11]. In contrast, small molecules, 

another type of donor materials, have well-defined structure without batch-to-batch variations 

[12]. But their film-formation and morphology are difficult to be controlled [13]. Thus, a 

special class of donor materials with multiple electron donating-accepting (D-A) repeat units, 

that is so-called D-A type oligomers, has been developed in recent years [14-21]. The 

advanced PCEs about 8.10% ~ 9.25% have been obtained in the oligomer-based organic solar 

cells (OM-OSCs). The results show these OM-OSCs often take fullerenes (PCBMs) as 

acceptors. And the D-A structures and attaching terminal groups are crucial factor for 

oligomers to get advanced photovoltaic properties.  

   Non-fullerene-based organic solar cells (NF-OSCs) have received rapid progress owing to 

the adjustable absorption spectra and energy levels of non-fullerene acceptor recently [22-31]. 
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In order to obtain high-performance non-fullerene acceptors (NFAs), some electron-accepting 

π-fused conjugated units, such as diketopyrrolopyrrole (DPP), perylenediimide (PDI), naph- 

thalene diimide (NDI), anthene diimide (ADI) and indacenothiophene diimide (IDT), have 

been employed to construct NFAs [32-36]. It is found that the NFAs show more outstanding 

advantage than fullerene acceptors in enhancing solar absorption and reducing energy loss, 

which is available to increase short-circuit current density (Jsc) and open-circuit voltage (Voc) 

for their OSCs [37-39]. High PCE over 12% was recently obtained in NF-OSCs using 

polymer PBDB-T as donor material [40-42], which indicates that using suitable non-fullerene 

acceptor is an advisably choice to improve the efficiency of OSCs. However, high-

performance NF-OSCs using D-A type oligomers as donor materials were seldom reported. 

  In order to study the influence of structure evolution on photovoltaic properties and get high-

performance photovoltaic donor materials used in NF-OSCs, a D-A-D-A-D type oligomer of 

5BDTBDD and a D-A-D type small molecule (SM) of 3BDTBDD were primarily designed 

and synthesized, in which a weak electron-accepting (A) unit of benzo[1,2-c:4,5-c']dithio 

phene-4,8-dione (BDD) and an electron-donating (D) unit of 4,8-di(6-ethylhexylthiophen-2-

yl)benzo[1,2-b:4,5-b']dithiophene (BDT) are employed. Their molecular structures are 

showed in Figure 1. And their crystallinity, absorption, mobility, morphology and 

photovoltaic properties were systematically studied. Our results demonstrate that, 5BDTBDD 

oligomer, by simply embedding a D-A skeleton into D-A-D type SM, exhibited stronger π-π 

stacking and intermolecular dipolar interaction, as well as better crystallinity and morphology 

than 3BDTBDD small molecule. As a result, 5BDTBDD oligomer exhibits more intense red-

shifted absorption, higher carrier mobility, and more ordered molecular packing than 

3BDTBDD small molecule. Benefited from these qualities, 5BDTBDD exhibit significantly 
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improved photovoltaic properties with a higher PCE of 7.89% than 3BDTBDD in the NF-

OSCs using ITIC as NFA. This is first example using a weak electron-accepting BDD unit to 

construct high-performance oligomer. This work provides an effective strategy to improve 

photovoltaic properties of photovoltaic donor materials by structure evolution from D-A-D-

type SM toward D-A-D-A-D type oligomer in the NF-OSCs. 

 

 Figure 1. Molecular structures of 5BDTBDD oligomer and 3BDTBDD small molecule. 

2. Experimental section 

2.1 Materials and Synthesis  

The synthetic route of 3BDTBDD and 5BDTBDD is depicted in Scheme 1. Compounds 1 

and 4 were purchased from Chemical Corporation [43,44]. The synthetic details of 

compounds 2, 3, 5, 6 and 7 are depicted in Electronic Supporting Information (ESI) [43,44]. 

3BDTBDD and 5BDTBDD were respectively prepared by Stille coupling reaction as follows. 

Both molecules were characterized by 1H, 13C NMR, and HRMS.  They show good solubility 

in common solvents, such as dichloromethane, chloroform and chlorobenzene.  
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Scheme 1. Synthetic routes of 5BDTBDD and 3BDTBDD. 

 
Synthesis of compound 3BDTBDD 

In a 50 mL two-neck round-bottom flask, a mixture of compound 3 (0.167 g, 0.22 mmol), 

compound 5 (0.358 g, 0.48 mmol), and Pd2(dba)3 (10 mg, 0.011 mmol), tri(o-tolyl)phosphine 

(13.4 mg, 0.044 mmol) in toluene was degassed under the N2 atmosphere and stirred at 

refluxing temperature for 12 h. After cooled to room temperature, the mixture was poured into 

water (150 mL) and extracted with CH2Cl2(30 mL×3). The organic phases were combined 

and dried over anhydrous MgSO4. The solvents were removed off under reduced pressure and 

the red residue was purified by silica gel chromatography, eluting with PE-CH2Cl2 (4:1) to 

give purplish red solid (225 mg, 62%). 1H NMR (300 MHz, CDCl3) δ (ppm): 7.79 (s, 2H), 

7.72 (d, J = 4.0 Hz, 2H), 7.62 (d, J = 5.7 Hz, 2H), 7.45 (d, J = 5.7 Hz, 2H), 7.32 (dd, J = 3.4, 

2.5 Hz, 4H), 7.28 (d, J = 4.0 Hz, 2H), 6.92 (t, J = 3.8 Hz, 4H), 3.41 – 3.23 (m, 4H), 2.88 (dd, 
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J = 6.7, 2.7 Hz, 8H), 1.77 – 1.69 (m, 6H), 1.47 – 1.25 (m, 48H), 0.99 – 0.86 (m, 36H). 13C 

NMR (75 MHz, CDCl3) δ 177.6, 153.6, 145.9, 141.9, 141.2, 139.5, 138.5, 137.3, 137.1, 

137.0, 136.9, 133.5, 132.9, 132.6, 131.6, 128.0, 127.8, 125.5, 125.5, 124.1, 123.7, 123.6, 

120.0, 41.5, 41.3, 34.3, 33.7, 32.8, 32.6, 32.5, 29.0, 28.8, 26.2, 25.8, 23.1, 23.0, 14.2, 14.2, 

11.0. HRMS (m/z) of C102H120O2S12 for [M+H]  +: calcd. 1761.6010; found, 1761.6055. 

Synthesis of compound 5BDTBDD 

In a 50 mL two-neck round-bottom flask, a mixture of compound 6 (0.041 g, 0.045 mmol), 

compound 7 (0.12 g, 0.095 mmol) and Pd2(dba)3 (2.1 mg, 0.0023 mmol), tri(o-

tolyl)phosphine (2.7 mg, 0.009 mmol) in toluene was degassed toluene and stirred at 

refluxing temperature for 12 h under the N2 atmosphere. After cooled to room temperature, 

the mixture was poured into water (150 mL), and extracted with CH2Cl2 (30 mL×3). The 

organic phases were combined, and then dried over with anhydrous MgSO4. The solvents 

were removed off under reduced pressure. The red residue was purified by silica gel 

chromatography eluting with PE-CH2Cl2 (3:1) to give purple black solid (80 mg, 60 %).1H 

NMR (300 MHz, CDCl3) δ (ppm): 7.80 (s, 2H), 7.76 (s, 2H), 7.72 (d, J = 4.0 Hz, 4H), 7.63 

(d, J = 5.7 Hz, 2H), 7.46 (d, J = 5.7 Hz, 2H), 7.37 (d, J = 3.5 Hz, 2H), 7.34 (dd, J = 3.4, 2.1 

Hz, 4H), 7.29 (d, J = 1.4 Hz, 4H), 6.97 (d, J = 3.5 Hz, 2H), 6.95 – 6.91 (m, 4H), 3.41 – 3.27 

(m, 8H), 2.95 – 2.87 (m, 12H), 1.80 – 1.70 (m, 5H), 1.49 – 1.36 (m, 40H), 1.00 – 0.93 (m, 

30H). 13C NMR (75 MHz, CDCl3) δ 177.4, 153.2, 145.8, 142.0, 141.6, 141.1, 139.3, 138.8, 

138.4, 137.3, 137.1, 136.9, 133.5, 132.9, 132.2, 131.9, 128.5, 128.0, 127.8, 127.6, 125.5, 

125.4, 125.1, 124.0, 123.6, 119.8, 118.3, 41.4, 41.2, 34.4, 34.3, 33.6, 32.8, 32.6, 32.5, 29.8, 

29.0, 28.8, 26.2, 25.7, 23.2, 23.1, 23.1, 14.3, 14.2, 14.2, 11.1, 11.0. HRMS (m/z) of 

C170H198O4S20 for [M]  +: calcd. 2942.9704; found, 2942.9731. 
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3. Results and discussion 

3.1. Thermal Property and Crystallinity 

Figure S1 shows the thermogravimetry (TG) curves of 3BDTBDD and 5BDTBDD. Under 

a nitrogen atmosphere, high decomposition temperature of 380 oC at 5% weight loss is 

observed  for both molecules. It indicates that D-A-D-A-D type oligomer and its D-A-D type 

SM have good thermal stability. Figure S2 depicts the differential scanning calorimetry 

(DSC) curves of two molecules. It is found that there aren’t obvious melting temperature (Tm) 

upon heating process and crystallization temperatures (Tc) upon cooling process for 

3BDTBDD small molecule. However, 5BDTBDD oligomer displays obvious melting and 

crystalling peaks. It indicates that 5BDTBDD oligomer has stronger intermolecular forces 

and crystallinity than 3BDTBDD small molecule. Inserting D-A repeat unit into a D-A-D 

type small molecule can efficiently tune molecular crystallinity. 

3.2. Absorptive and Electrochemical Properties 

The UV-vis absorption spectra of 5BDTBDD and 3BDTBDD are depicted in Figure 2. 

Their absorptive data are summarized in Table 1. Two typical absorption bands are observed 

for both molecules, which contain a high-lying band at 300 ~ 400 nm and a low-lying band at 

400 ~ 600 nm in diluted chloroform solution. Therein, 5BDTBDD oligomer shows a remark-

ably red-shifted absorption spectrum peaked at 512 nm with an increasing molar extinction 

coefficient of 1.32×105 M-1 cm-1 in comparison with 3BDTBDD small molecule. It indicates 

that the embedding D-A repeat unit is available to increase conjugation degree and intra- 

molecular charge transfer (ICT) effect for this 5BDTBDD oligomer. The observed maximum 

absorption peak at 562 nm for the 5BDTBDD film and 516 nm for the 3BDTBDD film 

further support this speculation. As a result of calculation, the optical band gaps are 1.87 eV 
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for 5BDTBDD and 2.03 eV for 3BDTBDD from their absorption band edges (Eg
opt) in the 

thin films. It is noted that the 5BDTBDD film rather than the 3BDTBDD film displays 

another pronounced shoulder peak at 606 nm. It implies that 5BDTBDD oligomer has better 

crystallinity and stronger π−π stacking effect than 3BDTBDD small molecule [45]. This 

phenomenon is consistent with the DSC testing results.  

 

Figure 2. UV-vis absorption spectra of 5BDTBDD and 3BDTBDD in chloroform solution 
(a) and in their neat films (b). 

Table 1. Absorptive and electrochemical properties of 5BDTBDD and 3BDTBDD. 

Donor 
λmax (nm) λonset.film Eg

opt EHOMO ELUMO 

Solution Film (nm) (eV)a (eV)b (eV)b 
3BDTBDD 484 516 610 2.03 -5.50 -3.38 

5BDTBDD 512 562, 606 663 1.87 -5.46 -3.51 
a Calculated from the absorption band edge of the films, Eg

opt=1240/λonset 
b Calculated from empirical equation: EHOMO = −(Eox + 4.8) eV, ELUMO = (Ered + 4.8) eV (The formal potential of 
Fc/Fc+ was 0.48V vs. Ag/AgCl measured in this work) 
 

Figure S3 shows cyclicvoltammetry curves of 5BDTBDD and 3BDTBDD in chloroform 

solution. Similar reversible redox processes are presented for both molecules. The calculated 

electrochemical data are listed in Table 1. The highest occupied molecular orbit (HOMO) and 

the lowest unoccupied molecular orbit (LUMO) energy levels (EHOMO / ELUMO) are calculated  

to be -5.46 eV /-3.51 eV for 5BDTBDD and  -5.50 eV/ -3.38 eV for 3BDTBDD by empirical 
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equation [46]. It is found that the inserting D-A repeat unit plays an important role in 

decreasing the ELUMO value. In comparison with the energy levels of photovoltaic materials 

used in photoactive layer depicted in Figure 3(a), this decreasing ELUMO value for 5BDTBDD 

oligomer can diminish the LUMO energy level difference between 5BDTBDD donor and 

ITIC acceptor and further promote excition separation in photoactive layer. Therefore, 

5BDTBDD oligomer should exhibit better photovoltaic properties than 3BDTBDD in the 

ITIC-based OSCs [47].  

 

Figure 3. (a) Energy levels of 5BDTBDD, 3BDTBDD and ITIC and (b) the device structure. 

3.3. Theoretical Calculations 

The molecular geometries and frontier orbitals of 5BDTBDD and 3BDTBDD were 

theoretically simulated with the hybrid density functional theory (DFT) at the B3LYP/6-31G* 

level using Gaussian 09W program. In order to simplify calculation, long alkyl chains were 

replaced by methyl. Figure 4 shows the simulated electrostatic potential distribution of the 

electron-donating (D) unit of BDT and the electron-accepting (A) unit of BDD, as well as 

their 5BDTBDD oligomer and 3BDTBDD small molecule. It is observed that the dipole 

moment of BDT is 0.0002 D, which is significantly smaller than that of BDD (1.1341 D). 

Therefore, while inserting D-A repeat unit on 3BDTBDD, the resulting 5BDTBDD oligomer 
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should have an increasing proportion of A unit and molecular dipole moment. It implies that 

5BDTBDD oligomer has stronger intermolecular effect than 3BDTBDD small molecule. 

Here, lower electrostatic potential observed for 5BDTBDD oligomer than 3BDTBDD small 

molecule is consistent with the intermolecular effect. 

 

Figure 4. Electrostatic potentials of BDT, BDD, 5BDTBDD and 3BDTBDD. 

The optimal geometries (front and side view) and wave functions (HOMO and LUMO) of 

5BDTBDD and 3BDTBDD are shown in Figure 5. It is found that the electron densities of 

LUMO are most localized on the central electron-deficient BDD unit for 3BDTBDD, but on 

the central backbone of two BDD and one BDT units for the 5BDTBDD. It implies that the 

5BDTBDD oligomer is in favor of intramolecular charge transfer. However, the electron 

densities of HOMO are distributed across the molecular backbone for 5BDTBDD and 

3BDTBDD. Based on the dihedral angles of the optimal geometries of 5BDTBDD and 

3BDTBDD in Figure 5(a), it is further found that both molecular backbones of 5BDTBDD  

and 3BDTBDD have good planarity, which is favorable for their π-π stacking. And the 

backbone planarization of 5BDTBDD is more available for the HOMO-LUMO wave 
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function overlap to yield a higher extinction coefficient [13]. As a result, 5BDTBDD exhibits 

more intense absorption than 3BDTBDD. 

 
Figure 5. Optimized geometries of the (a) front and (b) side views. Electron densities of (c) 
LUMO and (d) HOMO for 3BDTBDD and 5BDTBDD calculated by Gaussian at the 
B3LYP/6-31G* level. 

3.4. Photovoltaic Properties 

The organic solar cells were fabricated using ITIC as acceptor and 5BDTBDD or 

3BDTBDD as donor in active layer. The device structure is Glass/ITO/ZnO/active layer 

/MoO3/Ag, as shown in Figure 3(b). In these cells, 1,8-diiodoctane (DIO) was used as an 

additive at various concentrations from 0.1 wt% to 0.3 wt%. The measured photovoltaic 
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parameters are summarized in Table S1 and S2 under an illumination of AM 1.5G simulated 

solar light at 100 mW/cm2. It is found that the optimal donor/acceptor weight ratio and DIO 

concentration are respectively 1:0.8 and 0.2 wt%. Figure 6(a) depicts the current density-

voltage (J–V) curves of the cells at the optimal processing conditions and Table 2 summarizes 

the corresponding photovoltaic parameters. The maximum PCE value of 7.89% with a short-

circuit current density (Jsc) of 13.23 mAcm2 is observed in the 5BDTBDD:ITIC cells. Here, 

the PCE and Jsc are 1.8 and 1.4 times higher than those corresponding values in the 

3BDTBDD:ITIC cells, respectively. Higher Js value for the 5BDTBDD:ITIC cells is 

consistent with the wider UV-Vis absorption spectrum for the 5BDTBDD oligomer. It is 

noted that the PBDB-T:ITIC-based devices exhibit a decreasing PCE of 7.14% under the 

same processing conditions. It indicates that oligomers have great potential as photovoltaic 

materials. 

The EQE spectra of the optimal cells are depicted in Figure 6(b). The maximum EQE 

values of 65% and 47% are observed for the 5BDTBDD:ITIC and 3BDTBDD:ITIC blend 

films, respectively. The broader photo-response region from 350 nm to 750 nm and higher 

EQE value indicate that 5BDTBDD oligomer has more efficient photo-response than 

3BDTBDD small molecule in their ITIC blend films. As a result, it can further facilitate 

5BDTBDD exhibit higher Jsc values in their cells. 
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Figure 6. (a) J – V curves of the 5BDTBDD:ITIC, 3BDTBDD:ITIC and PBDB-T:ITIC 
cells under a simulated AM 1.5 G irradiation (100 mW cm-2) and (b) EQE curves of 
5BDTBDD:ITIC, 3BDTBDD:ITIC and PBDB-T:ITIC cells. 

 
Table 2. Photovoltaic parameters of the 5BDTBDD:ITIC, 3BDTBDD:ITIC and PBDB-

T:ITIC cells. 

aJsc measured from solar cells. bJsc estimated from EQE spectra. c PCE obtained from 20 cells, 
at 0.2% DIO additive. 

Figure 7(a) shows the photoluminescence (PL) spectra of the ITIC neat film and blend 

films with 5BDTBDD or 3BDTBDD. An intense emission peaked at 680 nm is observed in 

the ITIC neat film. However, its emission is quickly quenched by adding 5BDTBDD and 

3BDTBDD with a quenching efficiency of 95.0% and 66.5%, respectively. It indicates that 

the exciton is transferred and separated more efficiently from the ITIC to the 5BDTBDD 

donor. This can make the 5BDTBDD:ITIC cells have an increasing Jsc. 

The characteristics of exciton dissociation, charge collection, and charge recombination 

also support the result of higher FF and Jsc values for the 5BDTBDD:ITIC cells, which are 

Donor 
Voc 
(V) 

Jsc
a 

(mA cm-2) 
Jsc

b 
(mA cm-2) 

FF 
(%) 

PCEmax
c 

(%) 
PCE(ave)

c 
(%) 

3BDTBDD 0.90 9.51 9.38 50.6 4.33 4.02 

5BDTBDD 0.91 13.23 13.15 65.6 7.89 7.66 

PBDB-T 0.91 14.66 13.96 53.5 7.14 7.00 
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measured by the characteristics of photocurrent density (Jph) versus effective voltage (Veff) 

and the dependence of Jsc on light intensity (Plight) [48]. Figure 7(b) shows the curves of Jph 

versus Veff for the optimized 5BDTBDD:ITIC and 3BDTBDD:ITIC cells. It is found that 

both devices exhibit a saturated photocurrent density (Jsat) at ∼2 V, suggesting that charge 

recombination in both cells is minimized at higher voltage due to the high internal electric 

field. The Jph/Jsat ratio is up to 0.93 for the 5BDTBDD:ITIC cells under short-circuit 

conditions, which is higher than that value of 0.85 for the 3BDTBDD:ITIC cells. Therefore, 

the 5BDTBDD:ITIC cells should possess more efficient exciton dissociation and charge 

collection than the 3BDTBDD:ITIC cells. 

  

 

Figure 7. (a) Photoluminescent spectra of the neat and blend films excited at 680 nm, (b)The 
curves of Jph versus Veff  in the optimized 5BDTBDD:ITIC and 3BDTBDD:ITIC cells, (c) 
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The dependence of Plight on Voc of the 5BDTBDD:ITIC and 3BDTBDD:ITIC cells, (d) The 
dependence of Plight on Jsc of the 5BDTBDD:ITIC and 3BDTBDD: ITIC cells . 

 

Figure 7(c) shows the characteristics of Voc versus Plight of the optimized cells. For trap-

assisted recombination system, it is suggested that the slope of Voc versus log(Plight ) is close to 

2kBT/q, here, kB is Boltzmann’s constant, T is temperature and q is the elementary charge 

[49]. It is found that the optimal 5BDTBDD:ITIC cell shows a lower slope of 1.31 than the 

3BDTBDD:ITIC cell (kBT/q = 1.651). Hence, there is a weaker trap-assisted recombination 

in the 5BDTBDD:ITIC cells. In general, more compact π-π stacking could reduce the inter- 

molecular interfacial trap densities in the active layer and thus suppressed trap-assisted 

recombination [50]. Therefore, 5BDTBDD oligomer with an enhanced π-π stacking exhibits a 

weaker trap-assisted recombination than 3BDTBDD small molecule, which is also one of key 

factors for the 5BDTBDD:ITIC cells to obtain higher Jsc value. 

To better probe the charge recombination behavior in the devices, the light-intensity (Plight) 

dependence of Jsc was also measured. Figure 7(d) shows the curves of Plight versus Jsc of the 

optimal 5BDTBDD:ITIC and 3BDTBDD:ITIC cells. It is suggested that the relationship of 

Jsc and Plight is usually represented by the power-law equation of Jsc∝ Plight
α, in which the 

power-law exponent α refers to the extent of bimolecular recombination [51]. In comparison 

with α values of 0.94 for the optimal 5BDTBDD:ITIC cell and 0.85 for the optimal 

3BDTBDD:ITIC cell, less bimolecular recombination should occur in the optimal 

5BDTBDD:ITIC cell, which is available to result in high Jsc and FF values for this solar cell 

[48]. 

3.5. Morphology and Charge Transport 
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Figure 8 shows the morphology of the active layers measured by atomic force microscopy 

(AFM) using the trapping mode. A better-distributed nano-fibrillar interpenetrating network is 

observed for the 5BDTBDD:ITIC blend film. The measured root-mean-square (RMS) 

roughness is 0.87 nm for the 3BDTBDD:ITIC blend film and 1.23 nm for the 5BDTBDD: 

ITIC blend film. Here, the enhenced packing and aggregation properties of 5BDTBDD are 

responsible for the slightly increasing RMS roughness of the 5BDTBDD:ITIC blend film. In 

general, well-distributed interpenetrating network with appropriate domain size is very crucial 

for exciton separation and transportion [24]. Under this morphology, the 5BDTBDD:ITIC 

cells exhibit some increase of Jsc and FF values. 

 

Figure 8. AFM height images and tapping phases for the 3BDTBDD:ITIC blend film (a, c) 
and for the 5BDTBDD:ITIC blend film (c, d). 
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The charge transport properties of both active layers were measured by the space-charge 

limited current (SCLC) method. The hole-only device with a structure of Glass/ITO/ PEDOT: 

PSS/active layer/ MoO3 /Au and the electron-only device with a structure of Glass/Al/active 

layer/Al were made for this purpose. Figure 9 shows the J1/2-V characteristics of these hole-

only and electron-only cells. The detail results are summarized in Table 3. A hole mobility 

(µh) of 1.12×10-4 cm-2 V-1 s-1 and an electron mobility (µe) of 8.93×10-5 cm-2 V-1 s-1 are 

obtained with a µh/µe ratio of 1.25 for the 5BDTBDD:ITIC cells. The µh and µe values are 

6.5 and 2.3 times higher than the corresponding values for the 3BDTBDD:ITIC cells with a 

µh/µe ratio of 0.45. It indicates that simply embedding a D-A repeat unit into the D-A-D type 

SM is available for the resulting oligomer to obtain better charge transport properties. The 

increasing µh and µe values, as well as the matched µh/µe ratio are in favour of the 

5BDTBDD:ITIC  cells to improve FF and PCE values [28].   

 

Figure 9. (a) J1/2-V characteristics of the hole-only devices (a) and the electron-only devices 
(b) based on 5BDTBDD:ITIC and 3BDTBDD:ITIC.  
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Table 3. Hole and electron mobilities of the cells based on 5BDTBDD:ITIC and  
3BDTBDD: ITIC blend films under optimal conditions 

Active layer 
μh 

(cm2 V-1 s-1) 
μe 

(cm2 V-1 s-1) 
μh/μe 

3BDTBDD:ITIC 1.73×10-5 3.84×10-5 0.45 

5BDTBDD:ITIC 1.12×10-4 8.93×10-5 1.25 

 

4. Conclusion 

  A D-A-D-A-D type oligomer of 5BDTBDD and a D-A-D type SM of 3BDTBDD were 

primarily obtained using BDD as electron-accepting (A) unit. It is found that the structure 

evolution from D-A-D type SM toward D-A-D-A-D type oligomer plays an important effect 

on crystallinity, absorption, mobility, morphology and photovoltaic properties of photovoltaic 

donor materials. By inserted the D-A repeat unit into 3BDTBDD small molecule, 5BDTBDD 

oligomer exhibits more intense absorption with a red-shifted absorption spectrum, higher 

carrier mobility, stronger crystallization, and more ordered molecular packing than 

3BDTBDD small molecule. As a result, the 5BDTBDD:ITIC cells present a significantly 

increasing PCE of 7.89 %, which is 1.8 times higher than that of the 3BDTBDD:ITIC cells. 

Our work provides an effective strategy to improve photovoltaic properties of donor materials 

by simply inserting a D-A repeat unit in D-A-D type SM to get D-A-D-A-D type oligomers.  
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Research Highlights 

� A D-A-D-A-D type oligomer of 5BDTBDD and its D-A-D type small molecule 

of 3BDTBDD were synthesized. 

� The crystalline, absorption, mobility and photovoltaic properties were primarily 

investigated. 

� 5BDTBDD shows better photovoltaic properties than 3BDTBDD in the ITIC 

based organic solar cells. 

� The PCE in the 5BDTBDD-based cell is 1.8 times higher than that in the 

3BDTBDD-based cell. 
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