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Iridium-Catalyzed Regioselective Reaction of 1-Naphthols with Alkynes at the peri-Position

Tetsuya Satoh, Yuko Nishinaka, Masahiro Miura,* and Masakatsu Nomura
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871

(Received April 13, 1999; CL-990291)

1-Naphthols efficiently couple with internal alkynes in the
presence of an iridium catalyst to selectively afford the
corresponding 8-substituted 1-naphthol derivatives.

The activation of C-H bonds in organic compounds by
transition-metal complexes is currently one of the most significant
subjects in organometallic chemistry. An effective strategy to
regioselectively activate an aromatic C-H bond by transition-metal
complexes is to introduce a functional group having ligating
ability at an appropriate position of a given aromatic substrate.!
Recently, a number of catalytic coupling reactions of aromatic
compounds bearing carbonyl or nitrogen-containing groups with
alkenes and/or alkynes involving such a C-H bond activation
mode as the key step have also been successfully developed.?3
Meanwhile, we have recently reported that intermolecular
arylation reactions of 2-phenylphenols and 1-naphthols with aryl
halides using palladium catalysts can regioselectively take place at
the spatially neighboring positions of phenolic function to give 2-
(2'-arylphenyl)phenols and 8-aryl-1-naphthols, respectively.*
The coordination of phenolic oxygen to intermediary
arylpalladium species is consider to be the key for the reactions
via C-H bond cleavage.’ The latter reaction using 1-naphthols
seems to be of particular interest since it has been known to be
difficult to achieve direct C-C coupling at their 8-position owing
to peri-strain.% In the course of our study to extend this unique
substitution reaction, we found that 1-naphthols also react
efficiently with internal alkynes in the presence of an iridium
catalyst to give the corresponding 8-substituted products (Eq. 1).
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When 1-naphthol (1a) (2 mmol) was treated with 4-octyne
(2a) (2 mmol) in the presence of [lrCl(cod)], (0.01 mmol, 0.5
mol%), PPh; (0.04 mmol), and Na,CO, (0.1 mmol) in refluxing
toluene for 5 h, a small amount of 8-[(E)-1-propyl-1-pentenyl]-1-
naphthol (3a) was produced (Entry 1 in Table 1).” Reaction

efficiency was found to be sensitive to the identity of added
phosphine ligands. Thus, the use of P(o-Tol); in place of PPh,
improved the product yield up to 64% (Entry 2). Since the
reaction using P(cyclo-C¢H, ,); gave a similar result (Entry 3),
sterically hindered phosphine ligands appear to be suitable for the
present reaction. Expectedly, in the case using a further bulky
phosphine, PBu’;, 3a was formed in a yield of 83% within 2 h
(Entry 4). While increase in the amount of PBu’; to 0.09 mmol
did not affect the product yield (Entry 5), the coupling was
suppressed by elimination of Na,CO; (Entry 6). The reaction
was sluggish in refluxing benzene (Entry 7). In our previous
study, it has been shown that the cross-coupling of
salicylaldehydes with alkynes can efficiently take place by using
[RhCl(cod)],-dppf-Na,CO, catalyst system.S""“| For the present
reaction, however, either this or [RhCl(cod)]2—PBu"3-N212CO3
system was ineffective.

Table 1. Reaction of 1-naphthol (1a) with 4-octyne (2a)?

Pr"
oOH [IrCl(cod)],/ PRs P’"OH
+ Pr"——p"
v ()
1a 2a 3a
Time Yield of 3a°
E PR; (mmol
ntry 3 ( ; ) I e
1 PPh; (0.04) 5 2
2 P(o-Tol); (0.04) 5 64
3 P(cyclo-CgH1)3 (0.04) 5 56
4 PBu’; (0.03) 2 83
5 PBu’; (0.09) 5 84
64 PBu’; (0.03) 2 tr.
7° PBu’; (0.03) 50 45

#Reaction conditions: 1a (2 mmol), 2a (2 mmol), [IrCl(cod)3]2 (0.01
mmol), Na,CO; (0.1 mmol), in refluxing toluene (5cm’) under
nitrogen. ®The structure was unambiguously determined by its 2D-
NMR spectra and NOE experiments. “GLC yield. 9Reaction in the
absence of Na;COj3. “Reaction in refluxing benzene (5 cm’).

Table 2 summarizes the results for the reactions of a number
of substituted 1-naphthols and of internal alkynes. All of
examined 1-naphthols bearing electron-withdrawing or -donating
groups at 4- or 5-position 1b-e with 2a gave the corresponding
8-substituted products 3b-e. The reactions of 1a using alkynes
2b and 2c¢ in place of 2a also gave compounds 4 and.-5. The
reaction of 1a with an unsymmetrical alkyne, 2-heptyne (6), gave
a mixture of two regioisomers (Eq. 2).
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Table 2. Reaction of 1-naphthols 1 with alkynes 2*

1 2 Time Product® Yield
/h / %°
Py
N Pr’z)H
b 2a 2 OO 3b; X = ClI 93 (42)¢
Ic 2a 3 ] seXx=ome 67 (54)°
Py
X PH’OH
I
1d 2a 2 Y 3d;Y=NHCOCF; 85 (44)
le 2a 5 3e; Y = OMe 82 (42)¢
Bu"
X Bu:)H
la 2b 2 OO 4 73 (41)
(CH2)2CH(CHa),
X (CH2)2CH(CHy),
1la 2¢ 2 5 75 (61)

()
()2

#Reaction conditions: 1 (2 mmol), 2 (2 mmol), [IrCl(cod)], (0.01

mmol), PBu'; (0.03 mmol), Na,CO; (0.1 mmol) in refluxing toluene
(5 cm® under nitrogen. PSatisfactory spectra were obtained in
measurements of 'H and '*C NMR and MS. °GLC yield. Value in
parentheses indicates yield after isolation. YIsolated after acetylation
with Ac,0 in pyridine.
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Bu” Me
n
\iM% H NBlon
+

Total 89% (62 : 38)

The present reaction may involve initial coordination of 1 to
a chloroiridium(I) species to form a naphtholate complex
accompanied by liberation of HCI and then oxidative addition of
the aromatic C-H bond at 8-position to the metal center to give an
arylhydridoiridium(III) species as the key steps.® A possible role
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of the added base, Na,CO;, seems to be removal of initially
formed HCl, as was proposed for the rhodium-catalyzed reaction
of salycylaldehydes.>> The origin of high efficiency of sterically
hindered phosphines as ligand, however, is not definitive at the
present stage.
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