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Abstract
Highly-substituted isoquinolines are important scaffolds in syntheses of natural products and in drug development and hence, effec-

tive synthetic approaches are required. Here we present a novel method for the introduction of a methyl group at C1 of isoquino-

lines. This is exemplified by a new total synthesis of the alkaloid 7-hydroxy-6-methoxy-1-methylisoquinoline. Direct metalation of

7-benzyloxy-6-methoxyisoquinoline with Knochel–Hauser base, followed by cuprate-mediated methylation gives the target alka-

loid directly, but separation from the educt is cumbersome. Quenching the metalated intermediate with Eschenmoser’s reagent

gives an easy to clean tertiary benzylamine, which, after quaternization with iodomethane, is easily converted into the desired

1-methylisoquinoline by hydrogenolysis of both the benzylamine and benzyl ether groups.
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Introduction
The isoquinoline ring system has considerable relevance in drug

development, since it is found in both complex [1] and “simple”

alkaloids (variously substituted derivatives of the native

isoquinoline) isolated from different plants [2], and antiviral

and antimicrobial activities have been found for numerous

isoquinoline alkaloids [3]. Further, isoquinoline is regarded as a

“privileged scaffold” in drug design, and a large number of drug

candidates containing this partial structure are in clinical devel-

opment [4]. Consequently, synthetic approaches enabling a free

variation of substituents on this heteroaromatic ring system are

required. Numerous methods have been published over the

decades for the construction of highly substituted isoquinolines

[4]. Alternatively, subsequent functionalization of isoquino-

lines is feasible, e.g., via Pd-catalyzed C–H functionalization
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Figure 1: Previously published total syntheses of alkaloid 1 [11,12].

[5] or regioselective direct ring metalation (at C1) [6-8].

General aspects of the direct methylation of electron-deficient

N-heterocycles have been reviewed [9].

In a project aimed at the synthesis of tri- and tetracylic alka-

loids containing the isoquinoline scaffold, we were interested in

isoquinoline building blocks which bear a methyl group at C1,

since this group should, due to its intrinsic C–H acidity, open

opportunities for further functionalization. Since most isoquino-

line alkaloids bear hydroxy and/or methoxy substituents at the

positions 6 and 7, we regarded 7-hydroxy-6-methoxy-1-

methylisoquinoline (1) as well as analogues containing a pro-

tected 7-hydroxy group as highly attractive building blocks for

our project. A literature search revealed that compound 1 is in

fact a natural product. It was isolated from the trunk bark of the

Taiwanese tree Hernandia nymphaeifolia (Hernandiaceae) in

1996 [10]. No data on the biological activities of this alkaloid

have been reported so far. Further, this literature search showed

that two total syntheses of isoquinoline 1 had been published

even before its identification as a natural product (Figure 1). In

1963, Franck and Blaschke [11] obtained 1 by dehydrogenation

of its 1,2,3,4-tetrahydro analogue (which itself had to be pre-

pared in several steps) with MnO2 in poor yield (24% crude

product; yield of the final crystallization step for purification

not given). In 1965, Bruderer and Brossi [12] reported on an ap-

proach whose central step was a Pictet–Gams cyclization of

N-acetylated β,3-dimethoxy-4-benzyloxyphenethylamine,

which gave the 7-O-benzyl derivative of alkaloid 1 in 27%

yield. The required precursor is available from commercially

available precursor 2 via a nitrostyrene intermediate in three

steps in 45% overall yield [13]. In conclusion, no efficient ap-

proach to this “simple” alkaloid 1 has yet been published.

This prompted us to work out a novel synthetic access to alka-

loid 1. Our new strategy was fueled by our previous findings in

the course of new approaches to benzylisoquinoline, oxoapor-

phine [7], and oxoisoaporphine alkaloids [8], where we could

demonstrate the power of regioselective direct ring metalations

of isoquinolines at C1 with sterically hindered amide bases like

TMPMgCl∙LiCl (Knochel–Hauser base) [6]. For our present

purpose, an appropriate 1-metalated isoquinoline species was to

be converted into the corresponding 1-methyl product. Since the

7-hydroxy group of target alkaloid 1 is not compatible with the

metalation reagent, the corresponding benzyl ether 3 was

selected as central building block.

Results and Discussion
In our previous work we prepared isoquinoline 3 in a three-step

procedure starting from commercially available O-benzyliso-

vanillin (2) in a modified Pomeranz–Fritsch reaction published

by Reimann and Renz [14]. In the present investigations, we

even optimized this procedure, ending up with a protocol that

does not afford purification of any of the intermediates, and

gives isoquinoline 3 in a straightforward operation in 65% iso-

lated yield. For this purpose, the starting aldehyde 2 was sub-

jected to a reductive amination with aminoacetaldehyde

dimethyl acetal and NaBH4, followed by N-tosylation and

hydrochloric acid-mediated cyclization under concomitant

N-detosylation and aromatization. Direct ring metalation of 3

with TMPMgCl∙LiCl was performed as described by us previ-

ously [7]. First attempts for a direct methylation at C1 with

iodomethane failed completely. Only upon addition of catalytic

amounts of CuCN∙2LiCl [15] significant methylation took

place. The crude reaction mixture contained almost equimolar

amounts of the desired 1-methylisoquinoline 4 and starting ma-

terial 3. Due to the very similar polarities of 3 and 4, chromato-

graphic separation was very tedious, and only 34% of methyl

compound 4 was isolated, accompanied by about 30% of

starting material 3 and mixed fractions. Debenzylation of 4 by

catalytic hydrogenation in methanol solution under palladium

catalysis gave the alkaloid 1 in almost quantitative yield

(Scheme 1).

So this new metalation/methylation protocol offered a new ap-

proach to alkaloid 1 with an overall yield (22% from commer-

cially available precursor 2) much higher than in the above

mentioned previously published methods [11,12]. However, the

unsatisfactory separation of 1-methylisoquinoline intermediate

4 from its unmethylated precursor 3 rendered this protocol unat-

tractive. This is a problem that is common to numerous methyl-

ation protocols, including methylation of metalated arenes [16],

methylation of arenes bearing directing groups with methyl-
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Scheme 1: Total synthesis of alkaloid 1 via direct ring metalation and methylation.

magnesium bromide [17], and direct methylation using radical

reactions [9,18,19].

Hence, we searched for a more viable method for the introduc-

tion of the methyl group. A prerequisite was that the organome-

tallic intermediate should be trapped by an electrophile which

could later be transformed into a methyl group, but the trapping

product should be easily separable from the starting material 3.

For this purpose we selected Eschenmoser’s salt (N,N-dimethyl-

methyleniminium iodide) as an electrophile. Trapping of the

metalated species was expected to give the N,N-dimethylamino-

methyl derivative 5 in reasonable yield. Later on, hydrogeno-

lytic cleavage of the generated benzylamine-type group at C1

should give the desired 1-methyl moiety. Related reductive

cleavage reactions have been published earlier by Möhrle [20]

for phenolic Mannich bases in the course of the total synthesis

of the naphthalene-derived natural product plumbagin.

In fact, trapping 1-metalated isoquinoline 3 with Eschenmoser’s

salt gave the aminomethyl derivative 5 in 37% yield. Chromato-

graphic separation from starting material 3 (recovered yield:

32%) was unproblematic.

Surprising results were obtained in our hydrogenolysis experi-

ments with 5, which were aimed at simultaneous O-debenzyla-

tion at the 7-position and conversion of the N,N-dimethylamino-

methyl group at C1 into a methyl group. Hydrogenation in pres-

ence of palladium as catalyst at 1 bar in the presence or absence

of small amounts of sulfuric acid gave the phenolic product 6 in

high yield with unchanged N,N-dimethylaminomethyl group.

The same result was obtained at high pressure (40 bar) and

upon addition of formic acid for accelerating hydrogenolysis

[21]. Obviously, and in contrast to earlier reports on related

naphthol Mannich bases [20], the benzylamine moiety of 5 is

resistant to hydrogenolysis, whereas the benzyl ether is readily

removed. This order of reactivity is known from previous work

[22]. Since it is further known that quaternary benzylammo-

nium compounds undergo hydrogenolysis easier than the corre-

sponding tertiary benzylamines [22], we converted amine 5 into

methoiodide 7 by treatment with iodomethane. This salt was ob-

tained in pure form in 78% yield by simply collecting the pre-

cipitate, and there was no indication of an undesired methyla-

tion of the ring nitrogen of the isoquinoline. High-pressure

hydrogenolysis of 7 gave only minor amounts (about 7%) of the

desired alkaloid 1, but 1-methyl compound 4 with intact

O-benzyl residue was isolated in 54% yield. The surprising

stability of the O-benzyl residue in this experiment might be

due to the iodide counterion, which is known to be a poison for

palladium catalysts. Cleavage of the highly reactive benzylam-

monium residue still takes place, but O-debenzylation is pre-

dominantly suppressed by this catalyst poison. Finally,

poisoning of the catalyst was prevented by simply passing a

solution of the methoiodide 7 through a chloride-loaded ion

exchanger prior to catalytic hydrogenation. In this manner alka-

loid 1 was obtained in 94% yield (18% overall yield from com-

mercially available precursor 2, Scheme 2).

Conclusion
In conclusion, we have worked out two novel protocols for the

introduction of a methyl group at C1 of isoquinolines. These

were applied to the total synthesis of the alkaloid 7-hydroxy-6-

methoxy-1-methylisoquinoline (1), but should also be of value

for the synthesis of other 1-methylisoquinolines. We could

demonstrate that the aminomethylation of metalated arenes with
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Scheme 2: Total synthesis of alkaloid 1 via the aminomethyl intermediate 5 and selectivity’s found in debenzylation experiments.

Eschenmoser’s salt followed by hydrogenolytic cleavage is a

highly attractive alternative to direct ring methylations. Further,

new insights into selectivity of O- and N-debenzylation reac-

tions should be useful for future natural product and drug syn-

theses.

Experimental
For experimental procedures and copies of 1H and 13C NMR

spectra of all compounds see Supporting Information File 1.

Supporting Information
Supporting Information File 1
Experimental part and NMR spectra.
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