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ABSTRACT: An efficient protocol for the asymmetric hydroarylation and
hydroalkenylation of benzo[b]thiophene 1,1-dioxides with organoboranes
has been developed. The combination of a rhodium(I) precatalyst and a
chiral diene ligand constitutes the catalytic system, which enables the facile
synthesis of 2,3-dihydrobenzo[b]thiophene 1,1-dioxides in good yields with
high enantioselectivities. The merging of this asymmetric hydroarylation
with the downstream alkylations delivers 2,3-dihydrobenzo[b]thiophene 1,1-
dioxides that contain two continuous quaternary stereocenters with high
enantioselectivities in a diastereodivergent manner.

Chiral heterocycles are of significant importance, being
frequently encountered in numerous medicines and

natural products and serving as useful and versatile building
blocks for drug discovery.1 Of such compounds, chiral 2,3-
dihydrobenzo[b]thiophene 1,1-dioxides constitute structurally
unique compounds with interesting biological activity.2

Accordingly, the development of efficient protocols for the
stereocontrolled synthesis of these frameworks has therefore
attracted a great deal of attention.
The transition-metal-catalyzed asymmetric hydrogenation of

prochiral heteroarenes has been widely explored in the last
several years and is deemed to be a versatile and
straightforward method for the construction of chiral hetero-
cycles.3 In this regard, asymmetric hydrogenation has been
developed as an important access to chiral 2,3-dihydrobenzo-
[b]thiophene 1,1-dioxides (Scheme 1a). In 2017, Pfaltz and
coworkers first achieved the enantioselective hydrogenation of
substituted benzo[b]thiophene 1,1-dioxides catalyzed by
iridium N,P-ligand complexes.4,5 Zhang, Dong, and coworkers
subsequently revealed a new catalytic system that involves a
combination of Rh(NBD)2BF4 and ZhaoPhos, which improves
the efficiency of this transformation and gives high yields and
excellent enantioselectivities.6 Recently, the groups of Hou7

and Glorius8 also reported the asymmetric hydrogenation of 2-
alkyl-substituted dihydrobenzo[b]thiophene 1,1-dioxides,
achieving good to excellent enantioselectivities with Rh-
(R,R)-f-spiroPhos and Ru(II)-NHC-diamine complex, respec-
tively. Whereas the asymmetric hydrogenation protocol
provides a powerful tool for the construction of chiral 2,3-
dihydrobenzo[b]thiophene 1,1-dioxides, its inherent limita-
tions, including the necessity of high-pressure hydrogen gas,
the incapability of introducing an all-carbon quaternary
stereocenter,9 and the incompatibility of olefin moiety, hamper

the access to such compounds with more diversity to some
extent. Therefore, the development of a new catalytic system to
address those issues is highly desirable.
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Scheme 1. Strategy for the Enantioselective Synthesis of 2,3-
Dihydrobenzo[b]thiophene 1,1-Dioxides
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Rhodium-catalyzed asymmetric hydroarylation of electron-
deficient double bonds (CC, CO, or CN) with
organoboronic acids or their derivatives represents one of
the most reliable and straightforward approaches to
enantioenriched compounds.10 Chiral diene ligands have
played a central role in the control of the enantioselectivity,
and Rh(I)/diene was discovered as a useful catalytic system in
these transformations.11,12 Recently, the hydroarylation of C
N bonds in N-containing arenes has been developed as an
important route to chiral N-containing heterocycles.13 Taking
advantage of the fact that benzo[b]thiophene 1,1-dioxides can
be regarded as containing a special type of electron-deficient
CC double bonds, we envisioned that chiral 2,3-
dihydrobenzo[b]thiophene 1,1-dioxides could be constructed
through the rhodium-catalyzed asymmetric hydroarylation/
hydroalkenylation of benzo[b]thiophene 1,1-dioxides with
organoboranes.14,15 Herein we describe that the Rh/diene
catalytic system is competent in the asymmetric hydro-
arylation/hydroalkenylation of benzo[b]thiophene 1,1-diox-
ides, and the merging with downstream diastereodivergent
alkylations enables the introduction of two continuous
quaternary stereocenters (Scheme 1b).
Our investigation started with the reaction between

benzo[b]thiophene 1,1-dioxides 1a and phenylboronic acid
2a using rhodium(I) precatalysts and chiral ligands (Table 1).
The chiral diphosphine ligands (R)-binap and (R)-segphos
were initially tested with 1,4-dioxane/H2O as the solvent at
120 °C, affording the desired product 3a in 66% yield with
36% ee and in 72% yield with 61% ee, respectively (entries 1
and 2). Although the reaction was sluggish with the simple C2-
symmetric chiral diene ligand (R,R)-Ph-bod, the enantiose-
lectivity was elevated to 83% (entry 3). Encouraged by this
result, a series of reported chiral diene ligands L1−L7, were
evaluated in this transformation (entries 4−10).16,17 As for the
enantioselectivity of the reaction, it was found that the amide
diene ligands were superior to the ester ligands (entries 4 and 5
vs entries 9 and 10). The bulkier diene ligands generally
expressed better enantioselectivity (entry 4 vs entry 5; entries
6−9 vs entry 10), providing the hydroarylation product in 68%
yield with 88% ee when using L7 as the ligand (entry 10).
Inspired by this observation, the sterically bulkier chiral diene
ligands L8−L10 were designed and synthesized according to a
similar procedure.17g Whereas L8 failed to improve the
enantioselectivity of this transformation (entry 10 vs entry
11), both L9 and L10 showed an improved ee value (entry 10
vs entries 12 and 13). In this stage, the desired product can be
obtained in 75% yield with 92% ee (entry 12). Further
optimization of the reaction temperature (entry 14), the ratio
of the solvent mixture (entries 15−17), and the concentration
(entries 18, 19) were conducted, and it was found that slightly
decreasing the reaction concentration was beneficial to the
efficiency, providing the product in 81% yield with 93% ee
(entry 18). The absolute configuration of 3a was determined
by referring to its optical rotation of the literature.6

With the optimized conditions, the scope of this trans-
formation was then investigated. A wide variety of benzo[b]-
thiophene 1,1-dioxides were readily arylated with high yields
and enantioselectivities, as depicted in Table 2. First, numerous
five-substituted benzo[b]thiophene 1,1-dioxides were tested.
Electron-donating or -withdrawing substrates with different
functional groups, including methyl (1b), methoxyl (1c), free
hydroxy (1d), halogen (1e, 1f), and phenyl (1g), were
tolerated in the reaction, which provided the hydroarylation

products (3b−3g) in yields of 64−76% with high enantiose-
lectivities (entries 2−7). Remarkably, the strained cyclo-
propane ring remained intact during the reaction (entry 8).
The catalytic system was competent for alkenyl substrates 1i
and 1j, affording the desired products in satisfactory yields with
satisfactory enantioselectivities (entries 9 and 10). Benzo[b]-
thiophene 1,1-dioxides bearing methyl (1k), methoxyl (1l),
and sulfonamide (1m) at the six-position exhibited similar
reactivities, yielding the corresponding products 3k−3m in
63−74% yield with 88−93% ee (entries 11−13). In addition, a
substrate bearing a seven-substituent was also tolerated under
the optimized reaction conditions (entry 14).
Applying an identical catalytic system, a series of arylboronic

acids were investigated in this reaction with benzo[b]-
thiophene 1,1-dioxide 1a (Table 3). As depicted in entries
1−8, a range of arylboronic acids with different para-
substituted functional groups, including alkyl (2b, 2c),
methoxyl (2d), halogen (2e, 2f), trifluoromethyl (2g), ester

Table 1. Optimization of the Reaction Conditionsa

entry ligand
1,4-dioxane (mL)/H2O

(mL) yield (%)b ee (%)c

1 (R)-binap 0.5/0.5 66 36
2 (R)-segphos 0.5/0.5 72 61
3 (R,R)-Ph-bod 0.5/0.5 34 83
4 L1 0.5/0.5 70 65
5 L2 0.5/0.5 80 76
6 L3 0.5/0.5 68 84
7 L4 0.5/0.5 58 82
8 L5 0.5/0.5 66 83
9 L6 0.5/0.5 62 84
10 L7 0.5/0.5 68 88
11 L8 0.5/0.5 77 51
12 L9 0.5/0.5 75 92
13 L10 0.5/0.5 65 90
14d L9 0.5/0.5 51 93
15 L9 0.66/0.33 73 93
16 L9 0.8/0.2 50 93
17 L9 0.3/0.3 63 92
18 L9 0.75/0.75 81 93
19 L9 1.0/1.0 77 93

aReaction conditions: 1a (0.10 mmol), 2a (0.15 mmol), Rh-
(C2H4)2acac (4 mol %), ligand (5 mol %) in 1,4-dioxane/H2O at
120 °C for 12 h. bIsolated yield. cee value was determined by HPLC
using a chiral stationary phase column. dReaction was run at 100 °C.
Ad = 1-adamantyl.
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(2h), and ketone (2i), smoothly afforded the expected product
in acceptable yields with high enantioselectivities. Never-
theless, 4-vinylphenylboronic acid delivered the desired
product 4j in low yield (entry 9), which was most likely
caused by the coordination effect of the terminal olefin moiety
to the rhodium center. As expected, arylboronic acids bearing a

meta-substituent were proved to be competent reaction
partners (entries 10−12). Electron-rich and electron-deficient
ortho-substituted substrates afforded the desired products in
comparable yields (entries 13 and 14), and an electron-
deficient substrate resulted in a higher ee value (entries 13).
Notably, 2-naphthaleneboronic acid 2p and 3-thiophenebor-
onic acid 2q could also be tolerated, affording 4p and 4q in
90% yield with 92% ee and in 65% yield with 93% ee,
respectively (entries 15 and 16).
In addition to arylboronic acids, alkenylboronic acid was

used in this reaction under slightly modified conditions, which
gave the hydroalkenylation product 6a in 64% yield with 91%
ee. A further screening of the reaction conditions revealed that
a higher yield and ee value were obtained with alkenylboro-
nates as the coupling partner. (See Tables S1−S3 in the
Supporting Information.) The scope of benzo[b]thiophene
1,1-dioxides and alkenylboronates was explored (Scheme 2).

Benzo[b]thiophene 1,1-dioxides bearing electron-donating
groups at different positions were successfully coupled to
alkenylboronates in good results (6b, 6d−g). The electron-
deficient substrate 1e was a suitable reactant, and a high ee
value was obtained in a moderate yield (6c). In addition, β-aryl
alkenylboronates with a para-substituent were similarly
reactive, furnishing 6h and 6i in 79% and 90% yield with the
same ee value. Moreover, the methodology could also be
extended to aliphatic alkenylboronates (6j), although in
moderate yield. It should be noted that this series of products
cannot be obtained by transition-metal-catalyzed asymmetric
hydrogenation,4−8 thus demonstrating the merits of our
protocol. The absolute configuration of the desired product
6a was unambiguously characterized by X-ray crystallography.

Table 2. Rh-Catalyzed Asymmetric Hydroarylation of
Various Substituted Benzo[b]thiophene 1,1-Dioxides with
Phenylboronic Acida

entry R product yield (%)b ee (%)c

1 H (1a) 3a 81 93
2 5-Me (1b) 3b 72 93
3 5-OMe (1c) 3c 70 92
4 5-OH (1d) 3d 76 93
5 5-F (1e) 3e 66 90
6 5-Cl (1f) 3f 64 90
7 5-Ph (1g) 3g 74 91
8 5-cyclopropyl (1h) 3h 71 91
9 5-isopropenyl (1i) 3i 73 92
10 5-styryl (1j) 3j 70 91
11 6-Me (1k) 3k 70 93
12 6-OMe (1l) 3l 63 91
13 6-NHTs (1m) 3m 74 88
14 7-Me (1n) 3n 70 93

aAll reactions were run on a 0.1 mmol scale under standard
conditions. bIsolated yield. cee value was determined by HPLC using
a chiral stationary phase column.

Table 3. Rh-Catalyzed Asymmetric Hydroarylation of
Benzo[b]thiophene 1,1-Dioxides with Various Arylboronic
Acidsa

entry Ar product yield (%)b ee (%)c

1 4-MeC6H4 (2b) 4b 74 92
2 4-tBuC6H4 (2c) 4c 78 90
3 4-OMeC6H4 (2d) 4d 80 89
4 4-FC6H4 (2e) 4e 79 90
5 4-ClC6H4 (2f) 4f 73 93
6 4-CF3C6H4 (2g) 4g 71 92
7 4-CO2MeC6H4 (2h) 4h 79 95
8 4-COMeC6H4 (2i) 4i 74 93
9 4-CH2CHC6H4 (2j) 4j 44 91
10 3-MeC6H4 (2k) 4k 82 93
11 3-OMeC6H4 (2l) 4l 82 92
12 3-ClC6H4 (2m) 4m 69 91
13 2-FC6H4 (2n) 4n 77 96
14 2-OMeC6H4 (2o) 4o 70 89
15 2-naphthyl (2p) 4p 90 92
16 3-thienyl (2q) 4q 65 93

aAll of the reactions were run on a 0.1 mmol scale under the standard
conditions. bIsolated yield. cee value was determined by HPLC using
a chiral stationary phase column.

Scheme 2. Rh-Catalyzed Asymmetric Hydroalkenylation of
Benzo[b]thiophene 1,1-Dioxides with Alkenylboronatesa

aReaction conditions: 1 (0.10 mmol), 5 (0.12 mmol), Rh(C2H4)2acac
(4 mol %), ligand (5 mol %) in 1,4-dioxane/H2O (0.5 mL, 9/1) at 90
°C for 24 h. bResult was obtained using the corresponding boronic
acid under the above conditions. c(E)-5,5-Dimethyl-2-(oct-1-en-1-yl)-
1,3,2-dioxaborinane 5d (0.20 mmol) was used. nep = neo-
pentylglycolato. ORTEP representation with 50% probability thermal
ellipsoids.
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The substrates scope was further expanded with 3-alkyl
benzo[b]thiophene 1,1-dioxides, which could result in the
formation of chiral quaternary centers. It is worth noting that
chiral all-carbon quaternary centers are challenging to
construct via rhodium-catalyzed asymmetric hydroarylations,
which generally require the use of specific aryl organometal
reagents rather than simple arylboronic acids.18 Because of the
low conversion of the substrates, further optimization of the
reaction conditions was conducted. (See Table S4 in the
Supporting Information.) The substrates installed with methyl
or chlorine at the five-position served as suitable reaction
partners, delivering products in moderate yields with high
enantioselectivities (8b, 8c). Ethyl and propyl substituents did
not hamper the reaction, which afforded the expected products
8d and 8e in 69% yield with 93% ee and in 48% yield with 90%
ee, respectively. The reactions can be successfully carried out
with several arylboronic acids containing different functional
groups (8f−8k). The electronic property had a marginal
influence on the enantioselectivities, whereas the electron-
deficient arylboronic acids (8h) gave lower conversion
compared with electron-rich ones (8f, 8g, 8i, 8j). In addition,
polyaromatic substrate 2p could be utilized as well, resulting in
an equally good yield and high enantioselectivity (8k). Note
that 3-aryl and 2-alkyl/aryl benzo[b]thiophene 1,1-dioxides
were unable to give the corresponding products under our
reaction conditions. As shown in Scheme 3, the absolute

configuration of 8a was ascertained by X-ray crystallography.
The stereochemical induction model as well as the deuterium-
labeling experiments are detailed in the Supporting Informa-
tion.
The synthetic potentials of this transformation are

demonstrated in Scheme 4. First, the reaction can be carried
out on a 10-fold scale with no significant influence on either
the yield or the ee value (Scheme 4a). Second, the product 8a

was treated with LiAlH4 in THF at reflux to afford 3-methyl-3-
phenyl-2,3-dihydrobenzo[b]thiophene 9a in 68% yield with no
erosion of the optical purity (Scheme 4b). Third, the product
8a was lithiated in the presence of nBuLi and subsequently
quenched with TMSCl to give the silylated product 10a in
77% isolated yield with 8.1:1 dr and 91% ee, in which the
structure of the major product was determined by X-ray
crystallography (Scheme 4c). Furthermore, the desired
product 8a could be sequentially alkylated with different
carbon electrophiles, which paved the way to constructing
vicinal quaternary stereocenters (Scheme 4d). For example,
the product 8a can be initially allylated with allyl bromide
(11a) and methylated with iodomethane (11b) successively.
Under similar conditions, the diastereoisomer (11d) of 11b
can be conveniently obtained when the reaction sequence is
exchanged with carbon electrophiles. The alkylation trans-
formations gave the products 11a−d with a moderate to good
diastereoselective ratio. As expected, the derivation had no
influence on the enantioselectivity. In particular, the absolute

Scheme 3. Rh-Catalyzed Asymmetric Hydroarylation of 3-
Alkyl Benzo[b]thiophene 1,1-Dioxides with Arylboronic
Acida

aReaction conditions: 7 (0.10 mmol), 2 (0.20 mmol), Rh(C2H4)2acac
(6 mol %), ligand (7 mol %) in 1,4-dioxane/H2O (0.25 mL, 4:1) at
120 °C for 12 h. b1,4-Dioxane/H2O (0.50 mL, 4/1) was used.
ORTEP representation with 50% probability thermal ellipsoids.

Scheme 4. Synthetic Applications

aNumber in parentheses is the total yield determined by 1H NMR
using 1,1,2,2-tetrachloroethane as an internal standard. bee value
referred to the major product. ORTEP representation with 50%
probability thermal ellipsoids.
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configuration of the major products (11a−c) was unambigu-
ously confirmed by X-ray crystallography. Note that the newly
installed alkyl moieties were all cis to the methyl group in the
major products. The observed regioselectivity may be
attributed to the diastereotopic oxygen atoms of the sulfonyl
group, which may coordinate to the organolithium with a
preference for the methyl face of the substrate, leading to a
configurationally stable carbanion that gives the observed syn
stereochemistry in the products.
In summary, we have developed a rhodium-catalyzed

hydroarylation or hydroalkenylation of benzo[b]thiophene
1,1-dioxides with arylboronic acids or alkenylboronates, in
which a modified chiral diene ligand enables the reaction
occurring with high efficiency and enantioselectivity. This
synthetic method is complementary to the established
asymmetric hydrogenation, which has been demonstrated by
the facile introduction of an olefin moiety and an all-carbon
quaternary stereocenter. It is particularly noteworthy that the
downstream bis-alkylation can be used to prepare heterocycles
that contain two continuous quaternary stereocenters with
high enantioselectivities in a diastereodivergent manner. We
expect that this strategy can be utilized as a general protocol
for the synthesis of chiral heterocycles.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04114.

Detailed experimental procedures, characterization data,
copies of 1H and 13C NMR spectra, HPLC spectra, and
X-ray crystal structures of 6a, 8a, 10a, 11a, 11b, and 11c
(PDF)

Accession Codes

CCDC 2039125−2039130 contain the supplementary crys-
tallographic data for this paper. These data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by
emailing data_request@ccdc.cam.ac.uk, or by contacting The
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION
Corresponding Author

Ying Xia − West China School of Public Health and West
China Fourth Hospital and State Key Laboratory of
Biotherapy, Sichuan University, Chengdu 610041, China;
orcid.org/0000-0002-4803-8599; Email: xiayingscu@

scu.edu.cn

Authors

Fangdong Hu − West China School of Public Health and
West China Fourth Hospital and State Key Laboratory of
Biotherapy, Sichuan University, Chengdu 610041, China;
School of Chemistry and Chemical Engineering, Linyi
University, Linyi 276005, China

Jie Jia − West China School of Public Health and West China
Fourth Hospital and State Key Laboratory of Biotherapy,
Sichuan University, Chengdu 610041, China

Ximing Li − West China School of Public Health and West
China Fourth Hospital and State Key Laboratory of
Biotherapy, Sichuan University, Chengdu 610041, China

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.orglett.0c04114

Author Contributions
§F.H. and J.J. contributed equally.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the “Thousand Youth Talents Plan”
and the start-up funding from Sichuan University. The Public
Health and Preventive Medicine Provincial Experiment
Teaching Center at Sichuan University and Food Safety
Monitoring and Risk Assessment Key Laboratory of Sichuan
Province are acknowledged for the support. F.H. acknowledges
the National Natural Science Foundation (grant 21801109),
the Natural Science Foundation of Shandong Province (grant
ZR2018BB019), and the Higher Educational Science and
Technology Program of Shandong Province (grant J17KA099)
for their financial support.

■ REFERENCES
(1) (a) Corey, E. J.; Czako,́ B.; Kürti, L. Molecules and Medicine;
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