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Easy access to orthogonally protected �-alkyl aspartic acid and
�-alkyl asparagine derivatives by controlled opening of �-lactams
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Abstract—The controlled opening of the N1�C2 bond in 1-carbamate-substituted 2-azetidinones derived from amino acids by O-
and N-nucleophiles provided a straightforward access to orthogonally protected �-alkyl aspartic acid and asparagine derivatives.
The use of DBU or sodium azide as additive is essential for expedient cleavage by amino acids to the corresponding �-aspartic
acid dipeptides.
© 2003 Elsevier Ltd. All rights reserved.

The discovery of C�,�-disubstituted �-amino acids in
natural bioactive compounds and their propensity to
induce secondary structures when incorporated into
peptides has resulted in an increased interest in novel
methods for their synthesis.1 In this respect, aspartic
acid derivatives are especially interesting subjects for
study because of their relevant role in physiological
events and in the stabilization of reverse turns through
interactions between backbone NH and side chain C�O
bonds.2 Moreover, the Asp residue possesses multiple
functional groups appropriate for structural diversifica-
tion using parallel synthesis or combinatorial chemistry
methodologies.3 Several methods have been reported
that describe the enantioselective synthesis of �-alkyl-
ated aspartic acid derivatives. These include alkylation
of enolates derived from chiral imidazolidinones,4 oxa-
zolidinones,5 oxazolones,6 oxazinones,7 and pyrazi-
nones,8 double alkylation of aldimine Schiff base of Gly
esters under chiral phase-transfer catalysis,9 and alkyla-
tion of Asn derivatives with ‘self-regeneration’ of the
stereogenic center.10 Other procedures comprise the
asymmetric allylic alkylation with chiral palladium cat-
alysts,11 and the cycloaddition reaction to pyrazolines
followed by alkaline fragmentation.12 However, most of
these methods required a final acid hydrolysis affording
the corresponding �-alkyl aspartic acid derivative in
fully deprotected form.

By other hand, �-lactams have long been recognized as
useful synthetic intermediates for the preparation of a
variety of compounds through selective bond cleavage

of the 2-azetidinone ring.13 In this sense, the opening of
the N1�C2 bond by nucleophiles has been widely used
for the preparation of �-amino acids and �-amino
ketones.14,15 The intramolecular version of this cleavage
has served for the generation of different heterocyclic
systems like bis-�-lactams, indolizidines and pyrrolizidi-
nes.16–18 In a similar way, the macrocyclization process
based on the 2-azetidinone amide bond opening has
been successfully used for the synthesis of several natu-
ral products and some internal �-turn mimetics.19–21

In connection with our current concern in conforma-
tionally constrained amino acids, we recently reported
the first synthesis of 4-alkyl-4-carboxy-2-azetidinone
derivatives 1 from commercially available amino acid
alkyl esters.22–24

These �-lactams have the appropriate substitution pat-
tern to be considered as convenient precursors in the
synthesis of �-alkyl Asp (X=O) and Asn (X=NH)
derivatives 2, by controlled aperture of the N1�C2
bond. Moreover, orthogonally protected Asp and Asn
derivatives could be prepared by suitable selection of
the R2, R3, and R4 groups.

To explore this possibility, �-lactams 4 and 5, derived
from L-Phe-OtBu, were selected as model substrates,
and then have been subjected to the action of different
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O- and N-nucleophiles. Compounds 4 and 5 were
prepared in 75 and 76% yield by the treatment of the
2-azetidinone derivative 3 with tert-butyldicarbonate
and benzyl chloroformate, respectively (Scheme 1). The
N-urethane substituent in 4 and 5 (Boc and Z, respec-
tively) has a double function, as an activating moiety

facilitating the ring cleavage and, after the ring open-
ing, as a protector of the resulting amino group.

Activated �-lactams 4 and 5 underwent regioselective
alcoholysis, by treatment with alkoxides, to the
expected fully protected �-benzyl Asp derivatives 6

Scheme 1. Reagents and conditions : (a) (tBuO)2CO/DMAP/CH2Cl2; (b) ZCl/DBU/CH2Cl2; (c) R1ONa/R1OH; (d) R1OH/DBU/
THF; (e) 2N NaOH/THF; (f) satd NH3/MeOH; (g) dilute NH3/MeOH; (h) H-Ala-OMe/additive/solvent (see Table 1).

Table 1. Results of the controlled cleavage of N-carbamate-substituted 2-azetidinones by O- and N-nucleophiles

Final compd (yield %)aTimeCleavage conditionsStarting compdEntry

24 h 6 (75)1 4 MeONa/MeOH
24 h 7 (90)2 5 EtONa/EtOH

MeONa/MeOH 24 h3 5 8 (89)
MeOH/DBU 10 min 8 (96)54
NaOH/THF 24 h5 4 9 (71)

10 (92)24 hNaOH/THF56
NH3/MeOH (satd) 5 min7 4 11 (89)
NH3/MeOH (dilute) 10 min8 4 11 (30)b

13ab (53)c6 daysH-L-Ala-OMe/MeOH49
6 days 13ab (49)e10 4d H-L-Ala-OMe/MeOH

H-L-Ala-OMe/DBU/THF 25 days11 5 14ab (93)
15 daysfH-L-Ala-OMe/DBU/THF 14ab (85)512

H-L-Ala-OMe/KCN/DMF 24 hf13 5 14ab (40)g

11 days 14ab (77)14b 5 H-L-Ala-OMe/NaN3/DMF

a Yield of isolated compound.
b 12 (37%) was also obtained.
c Compound 6 (23%) was also isolated.
d 6 equiv. of the amino acid were used in this assay.
e Estimated by HPLC. Compound 6 (18%) was detected.
f Reaction at 60°C.
g The carboxylic acid 10 (40%) was also obtained.
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14). Since starting �-lactams 4 and 5 were 2:1 S/R
mixtures of enantiomers, compounds 13 and 14 were
obtained as diastereoisomeric mixtures in approxi-
mately the same ratio.

The feasibility of the Phe-derived �-lactams opening to
produce orthogonally protected �-benzyl Asp and Asn
derivatives could be extended to other �-alkyl ana-
logues, just by using 2-azetidinones derived from other
amino acids as starting materials. Moreover, taking
into account that we have reported a general method
for the asymmetric synthesis of our amino acid-derived
�-lactams,28 the procedures described here could have a
widespread application to the generation of �-alkyl
Asp/Asn derivatives in enantiomerically pure form.
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