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ABSTRACT 

A transition-metal-free protocol for the one-pot synthesis of 2-benzyl/2-allyl 

substituted thiobenzoazoles in water was developed. The cyclization of 

2-aminothiophenols, 2-aminophenols, and 1,2-phenylenediamines with 

tetramethylthiuram disulfide (TMTD) gave mercapto benzoheterocycles, the 

subsequent C-S coupling with benzyl or allyl halides furnished the desired products in 

good to excellent yields. This method features transition-metal free, water as solvent, 

easy performance, mild reaction conditions, wide substrate scope, and good to 

excellent yields, thus paves an efficient and useful way to establish the library of 

potentially active drug molecules. 
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INTRODUCTION 

Phenyl heterocycles are key blocks in active drug molecules due to their 

pharmaceutical activity in medicinal chemistry studies.
1-4

 Among these, 

2-benzyl substituted thiobenzoazoles compounds are the skeleton of natural 

macromolecular compounds such as compound 1 (multidrug resistance in 

cancer chemtherapy), compounds 2 (proton-pump inhibitor which reduces 

stomach acid), compound 3 (antagonizing the activity of CCR3 receptors), and 

compound 4 (potential antifungal agent) (Fig.1).
5-10

 These compounds exhibit 

excellent physiological activity, high bioselectivity and low physiological 

toxicity in the fungal growth inhibition test.
11

 Thus, 2-benzyl substituted 

thiobenzoazoles have been paid extensive attention by the synthetic and 

medicinal chemists.
12-16

  

 

Figure 1. Representative drugs containing 2-allyl and 2-benzyl substituted 

thiobenzoazoles skeletons. 

 

So far, there are numbers of ways to synthesize 2-benzyl substituted 

thiobenzoazoles,
17-20

 while most of them use 2-mercaptobenzoic heterocycles as 

starting materials, which greatly limits the suitability of the substrates. Furthermore, 
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these methods suffer from disadvantages such as using organic solvents, the 

requirement of stoichiometric metal catalysts and highly toxic reagents (Scheme 1). 

 

Scheme 1. Existing synthetic route and our strategy for the synthesis of 2-benzyl/2- 

allyl substituted thiobenzoazoles. 

 

In addition, tandem or one-pot synthetic strategies have received great attention 

from the organic chemistry community in recent decades, because there is no need to 

separate the intermediates, thus might increase the yields of the final products.
21-23

 

Recently, we found that thiuram disulfides were very useful starting materials from an 

environmental point of view,
24

 and also served as interesting vulcanization reagents 

for the development of new synthetic transformations.
25

 Hereby, we would like to 

report an efficient and useful method for the one-pot synthesis of 2-benzyl/2-allyl 

substituted thiobenzoazoles using metal-free condition in water. The cyclization of 

2-aminothiophenols, 2-aminophenols, and 1,2-phenylenediamines with 

tetramethylthiuram disulfide (TMTD) give mercapto benzoheterocycles, and the 

subsequent C-S coupling with benzyl or allyl halides might furnish the desired 

products (Scheme 1). 
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RESULTS AND DISCUSSION 

By taking the strategy mentioned above, 2-aminothiophenol (1a), tetramethylthiuram 

disulfide (TMTD) and benzyl bromide (2a) were selected as substrates for the model 

reaction. 2-Aminothiophenol was firstly treated with TMTD in water at 120 
o
C for 2 h, 

base and benzyl bromide were then added before heating. The reaction conditions 

were examined, and the results are summarized in Table 1. Firstly, various bases such 

as KOH, NaOH, Na2CO3, K2CO3, Cs2CO3, NaHCO3, pyridine, triethylamine and 

diethylamine were evaluated (entries 1-10) and K2CO3 was found to be the most 

suitable base to give the product in 94% yield. Next, different reaction temperatures 

(for the second step) were screened (entries 4, 11-14) and 80 
o
C was found to be the 

most suitable temperature. The substrate ratio (1a : TMTD : 2a) was also explored 

(entries 4, 15-17) and it revealed that 1a : TMTD: 2a = 1 : 0.6 : 1 was the optimal 

substrate ratio. Furthermore, we studied the effects of solvents (entries 4, 18-22) and it 

was found that water was the best solvent. The optimal reaction conditions were 

summarized in entry 4. 

Table 1. Reaction condition screening for the tandem synthesis of 

2-arylthiobenzothiazole starting from 2-aminobenzenethiol, tetramethylthiuram 

disulfide (TMTD), and benzyl bromide 
a
 

 

Entry base T(
o
C)

b 
Ratio

c
 Solvent Yield(%)

d
 

1 KOH 80 1:0.6:1 H2O 89 

2 NaOH 80 1:0.6:1 H2O 86 
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3 Na2CO3 80 1:0.6:1 H2O 76 

4 K2CO3 80 1:0.6:1 H2O 94, 88
e
 

5 Cs2CO3 80 1:0.6:1 H2O 84 

6 NaHCO3 80 1:0.6:1 H2O 63 

7 Pyridine 80 1:0.6:1 H2O 56 

8 Triethylamine 80 1:0.6:1 H2O 73 

9 Diethylamine 80 1:0.6:1 H2O 76 

10 -- 80 1:0.6:1 H2O 80 

11 K2CO3 110 1:0.6:1 H2O 93 

12 K2CO3 100 1:0.6:1 H2O 91 

13 K2CO3 60 1:0.6:1 H2O 73 

14 K2CO3 40 1:0.6:1 H2O 51 

15 K2CO3 80 1:0.6:0.6 H2O 43 

16 K2CO3 80 1:0.6:0.8 H2O 75 

17 K2CO3 80 1:0.6:1.1 H2O 95 

18 K2CO3 80 1:0.6:1 DMF 90 

19 K2CO3 80 1:0.6:1 DMSO 60 

20 K2CO3 80 1:0.6:1 EtOH 18 

21 K2CO3 80 1:0.6:1 MeOH 13 

22 K2CO3 80 1:0.6:1 DMAc 73 

a Reaction conditions: 1a (1.0 mmol), TMTD (0.6 mmol) and 2a (1.0 mmol) in 2 mL of H2O, the mixture of 1a 

and TMTD was stirred for 2-3 h before the base and 2a were added. b The temperature for the second step. c Mole 

ratio of 1a : TMTD: 2a. d Isolated yield based on 1a. e A scaled-up reaction (10 mmol) was performed. 

 

Having the optimized reaction conditions in hand, the substrates scope was 

Page 5 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



surveyed. Firstly, we examined the reactivity of benzyl or allyl halides in the presence 

of o-aminothiophenol (Table 2). In general, the desired tandem reaction (cyclization 

then C-S coupling) products could be obtained in good to excellent yields. Benzyl 

halides bearing with electron-donating groups, such as -OMe or –Me furnished the 

products 3d and 3e in 90% and 92% yield, respectively. While electron-withdrawing 

groups on benzyl ring gave the products (3b, 3c, 3f, 3g, 3h, 3l) in slightly lower yields. 

Sensitive ester group on the aryl ring could be tolerated well (3g). Ethyl chloroacetate 

(allyl-like structure) was also suitable for the C-S coupling to give the product 3k in 

83 % yield. We were also pleased to find that the non-aromatic ring substrate could be 

transformed to 3l in good yield (80%). 

 

Table 2. One-pot synthesis of 2-(benzylthio)benzo[d]thiazoles starting from 

o-aminothiophenol and tetramethylthiuram disulfide (TMTD) 
a
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a Reaction conditions: A mixture of 1 (1.0 mmol) and tetramethylthiuram disulfide (0.6 mmol) in H2O (2.0 mL) 

was stirred at 120 oC for 2-3 h, then K2CO3 (2.0 mmol) and 2 (1.0 mmol) were added and the mixture was stirred 

at 80 oC for 1h.  

 

Next, we investigated the reactivity of a set of benzyl halides in the presence of 

o-aminophenols (Table 3). Similarly, the desired tandem reaction occurred smoothly 

and gave the desired products in good to excellent yields. The ester group could be 

also tolerated in the base condition (3t, 3u). 

 

Table 3. One-pot synthesis of 2-(benzylthio)benzo[d]oxazoles starting from 

o-aminophenols and tetramethylthiuram disulfide (TMTD) 
a
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a Reaction conditions: A mixture of 1 (1.0 mmol) and tetramethylthiuram disulfide (0.6 mmol) in H2O (2.0 mL) 

was stirred at 80 oC for 2-3 h, then K2CO3 (2.0 mmol) and 2 (1.0 mmol) were added and the mixture was stirred at 

80 oC for 1h. 

 

Furthermore, the reactivity of a set of benzyl/allyl halides in the presence of 

o-phenylenediamine was investigated (Table 4). The results showed that the desired 

products were furnished successfully under the standard reaction conditions. Ethyl 

chloroacetate was also submitted for the C-S coupling, but no product was obtained. 

Table 4. One-pot synthesis of 2-(benzylthio)-1H-benzo[d]imidazole starting from 

o-phenylenediamine and tetramethylthiuram disulfide (TMTD) 
a
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a Reaction conditions: A mixture of 1 (1.0 mmol) and tetramethylthiuram disulfide (0.6 mmol) in H2O (2.0 mL) 

was stirred at 110 oC for 2-3 h, then K2CO3 (2.0 mmol) and 2 (1.0 mmol) were added and the mixture was stirred 

at 80 oC for 1h. 

 

Moreover, halogenated alkanes were also submitted for the tandem reactions. 

Gratifyingly, the target products could be achieved in 50-70% yield (Table 5), 

showing its broad substrate compatibility. 

 

Table 5. One-pot synthesis of 2-(alkylthio)benzo[d]thiazole by using alkyl halides as 

starting materials 
a
 

 

 

a Reaction conditions: A mixture of 1 (1.0 mmol) and tetramethylthiuram disulfide (0.6 mmol) in H2O (2.0 mL) 

was stirred at 120 oC (X=S) or 80 oC (X=O) for 2-3 h, then K2CO3 (2.0 mmol) and 2 (1.0 mmol) were added and 

the mixture was stirred at 80 oC for 1h. 
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The results obtained form Table 2-Table 5 showed that this protocol had good 

substrate adaptability, which might provide an easy and convenient access to the 

establishment of drug molecule library for the pharmaceutical industry. 

Based on the experimental results and our previous effort on the organosulfur 

chemistry,
24 

a plausible reaction pathway is outlined in Scheme 2. Tetramethylthiuram 

disulfide (TMTD) A reacts with aniline B to give intermediate thiourea C, and the XH 

(X = O, S, NH) group of C undergoes intramolecular nucleophilic addition forming 

intermediate D. D undergoes intramolecular elimination by removing dimethylamine 

gas, forming mercapto benzoheterocycle E. The subsequent SN2 process with 

benzyl/allyl bromide allow E to give the final C-S coupling product F smoothly. 

 

Scheme 2. Plausible mechanism of the reaction. 

 

CONCLUSION 

In summary, we have developed a convenient, highly efficient and one-pot green 

synthetic method for the synthesis of 2-benzyl/2-allyl substituted thiobenzoazoles in 

water. The cyclization of 2-aminothiophenols, 2-aminophenols, and 
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1,2-phenylenediamines with tetramethylthiuram disulfide (TMTD) gave mercapto 

benzoheterocycles, and the subsequent C-S coupling with benzyl or allyl halides 

furnished the desired products in good to excellent yields. This method features 

transition-metal free, water as solvent, easy performance, mild reaction conditions, 

wide substrate scope, and good to excellent yields, illustrating its practical synthetic 

value in some potentially biologically active compounds, especially for the 

establishment of molecule library. Further details and the development of related 

applications for this protocol are under research in our laboratory. 

 

EXPERIMENTAL SECTION 

General Procedures 

All starting materials were purchased from commercial suppliers and used without 

further purification unless otherwise stated. Yields refer to isolated compounds 

estimated to be >95% pure as determined by 
1
H NMR and capillary GC analysis. 

NMR spectra were recorded on a Bruker AM400 NMR instrument in CDCl3 or 

DMSO-d6 using TMS as an internal standard. Chemical shifts are given in ppm and 

coupling constants (J) are given in Hz. All melting points were determined on a 

RY-1G melting point instrument without correction. High-resolution mass spectra 

(HRMS) were recorded on a Finnigan MAT 95Q or Finnigan 90 mass instrument 

(ESI). TLC was performed using aluminum plates coated with SiO2 (Merck 60, F-254) 

and visualized with UV light at 254 nm. Column chromatography was performed on 

silica gel (200-300 mesh) with PE (petroleum ether)-EtOAc as eluent. 

Typical Procedure (TP) for Synthesis of 2-(benzylthio)benzothiazole (3a). A 

mixture of 2-aminobenzenethiol (1a, 1.0 mmol) and tetramethylthiuram disulfide 

(TMTD, 0.6 mmol) in H2O (2.0 mL) was stirred at 120 
o
C for 2-3 h before K2CO3 
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(2.0 mmol) and benzyl bromide (2a, 1.0 mmol) were added. The resultant mixture 

was heated at 80 
o
C and checked by TLC until the starting material was finished 

(about 1h). The reaction was cooled down to room temperature, quenched with sat. 

NH4Cl solution (5 mL) and then extracted with ethyl acetate. The crude solution was 

dried over anhydrous Na2SO4 and evaporated under vacuum. The residue was purified 

by flash column chromatography to afford the desired product 3a. 

Analytical data of products 

2-(Benzylthio)benzo[d]thiazole (3a).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3a as a colorless 

oil (242 mg, 94%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.82 (d, J= 8.0 Hz, 

1H), 7.67-7.64 (m, 1H), 7.38-7.31 (m, 3H), 7.28-7.16 (m, 4H), 4.52 (s, 2H). 
13

C NMR 

(100 MHz, CDCl3, TMS): δ (ppm) 165.3, 152.1, 135.1, 134.3, 128.0, 127.6, 126.7, 

125.0, 123.2, 120.5, 119.9, 36.7. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H12NS2 

(258.0406), found: 258.0403. 

2-((4-Bromobenzyl)thio)benzo[d]thiazole (3b).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3b as a white solid 

(278 mg 83%). Mp: (76-79 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.73(d, 

1H, J= 8.0 Hz), 7.51 (d, J= 8.0 Hz, 1H), 7.24-7.20 (m, 3H), 7.11-7.06 (m, 3H), 7.42 

(m, 2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 165.84, 153.14, 135.59, 135.46, 

131.83, 130.89, 126.21, 124.49, 121.80, 121.68, 121.15, 36.97. HRMS (ESI) m/z 

[M+H]
+
 Calcd for C14H11BrNS2 (335.9511), found: 335.9514. 

2-((4-Nitrobenzyl)thio)benzo[d]thiazole (3c).  

According to TP, the residue was purified by flash chromatography on silica gel 
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(petroleum ether/ethyl acetate = 15:1) to give the target compound 3c as a white solid 

(242 mg, 80%). Mp: (89-91 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 8.01 (d, 

J= 12.0 Hz, 2H), 7.77 (d, J= 8.0 Hz, 1H), 7.61 (d, J= 8.0 Hz, 1H), 7.49 (d, J= 8.0 Hz, 

2H), 7.31 (t, J= 8.0 Hz, 1H), 7.20-7.14 (m, 1H), 4.52 (s, 2H). 
13

C NMR (100 MHz, 

CDCl3, TMS): δ (ppm) 163.7, 151.8, 146.2, 143.4, 134.3, 128.9, 125.1, 123.5, 122.7, 

120.5, 120.0, 35.3. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H11N2O2S2 (303.0256), 

found: 303.0251. 

2-((3-Methoxybenzyl)thio)benzo[d]thiazole (3d).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 50:1) to give the target compound 3d as a yellow oil 

(259 mg, 90%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.81 (d, J= 8.0 Hz, 1H), 

7.65 (d, J= 8.0 Hz, 1H), 7.35-7.31 (m, 1H), 7.22-7.13 (m, 2H), 6.94 (d, J= 8.0 Hz, 

2H), 6.74-6.71 (m, 1H), 4.48 (s, 2H), 3.69 (s, 3H). 
13

C NMR (100 MHz, CDCl3, 

TMS): δ (ppm) 166.4, 159.7, 153.1, 137.6, 135.3, 129.7, 126.1, 124.3, 121.5, 121.4, 

121.0, 114.6, 113.4, 55.2, 37.7. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H14NOS2 

(288.0511), found: 288.0516. 

2-((2-Methylbenzyl)thio)benzo[d]thiazole (3e).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3e as a colorless 

oil (250 mg, 92%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.89 (d, J= 8.0 Hz, 

1H), 7.58 (d, J= 12.0 Hz, 1H), 7.30-7.23 (m, 2H), 7.14 (t, J= 8.0 Hz, 1H), 7.07-7.00 

(m, 3H), 4.50 (s, 2H), 2.31 (s, 3H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 

166.6, 153.2, 137.2, 135.3, 133.7, 130.7, 130.2, 128.2, 126.3, 126.1, 124.3, 121.6, 

121.0, 36.0, 19.3. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H14NS2 (272.0562), found: 

272.0560. 
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4-((Benzo[d]thiazol-2-ylthio)methyl)benzonitrile (3f).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3f as a yellow 

solid (249 mg, 88%). Mp: (63-65 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 

7.71 (d, J= 8.0 Hz, 1H), 7.52 (d, J= 8.0 Hz, 1H), 7.33 (s, 4H), 7.23 (t, J= 8.0 Hz, 1H), 

7.19 (t, J= 8.0 Hz, 1H), 4.38 (s, 2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 

165.0, 152.9, 142.3, 135.4, 132.3, 129.8, 126.2, 124.6, 121.6, 121.1, 118.6, 111.4, 

36.8. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H11N2S2 (283.0358), found: 283.0351. 

Methyl 4-((benzo[d]thiazol-2-ylthio)methyl)benzoate (3g).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3g as a colorless 

solid (271 mg, 86%). Mp: (105-106 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 

7.86 (d, J= 8.0 Hz, 2H), 7.77 (d, J= 8.0 Hz, 1H), 7.60 (d, J= 8.0 Hz, 1H), 7.39 (d, J= 

8.0 Hz, 2H), 7.29 (t, J= 8.0 Hz, 1H), 7.16 (t, J= 8.0 Hz, 1H), 4.49 (s, 2H), 3.77 (s, 3H). 

13
C NMR (100 MHz, CDCl3, TMS): δ (ppm) 166.6, 165.5, 153.0, 141.7, 135.4, 129.9, 

129.5, 129.1, 126.1, 124.4, 121.6, 121.0, 52.1, 37.1. HRMS (ESI) m/z [M+H]
+
 Calcd 

for C16H14NO2S2 (316.0460), found: 316.0466. 

2-((4-Fluorobenzyl)thio)benzo[d]thiazole (3h).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3h as a yellow 

solid (246 mg, 89%). Mp: (47-49 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 

7.81 (d, J= 8.0 Hz, 1H), 7.64 (d, J= 8.0 Hz, 1H), 7.35-7.30 (m, 3H), 7.22-7.15 (m, 

1H), 6.94-6.88 (m, 2H), 4.47 (s, 2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 

164.9, 162.4, 159.9, 152.0, 134.2, 131.0 (d, J = 3.2 Hz), 129.7 (d, J = 8.2 Hz), 125.0, 

123.3, 120.4, 119.9, 114.5 (d, J = 21.6 Hz), 35.7. HRMS m/z [M+H]
+
 (ESI) Calcd for 
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C14H11FNS2 (276.0311), found: 276.0308. 

2-((Naphthalen-1-ylmethyl)thio)benzo[d]thiazole (3i).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3i as a yellow oil 

(256 mg, 83%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 8.01 (d, J= 8.0 Hz, 1H), 

7.83 (d, J= 8.0 Hz, 1H), 7.72 (d, J= 8.0 Hz, 1H), 7.65 (d, J= 8.0 Hz, 1H), 7.58 (d, J= 

8.0 Hz, 1H), 7.48 (d, J= 8.0 Hz, 1H), 7.42-7.23 (m, 4H), 7.16-7.08 (m, 1H), 4.96 (s, 

2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 166.6, 153.2, 135.4, 134.0, 131.6, 

131.5, 129.0, 128.1, 126.6, 126.1, 126.1, 125.4, 124.4, 123.7, 121.6, 121.1, 35.7. 

HRMS (ESI) m/z [M+H]
+
 Calcd for C18H14NS2 (308.0562), found: 308.0560. 

2-(Allylthio)benzo[d]thiazole (3j).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3j as a yellow oil 

(183 mg, 88%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.75 (d, J= 8.0 Hz, 1H), 

7.69 (d, J= 8.0 Hz, 1H), 7.27 (t, J= 8.0 Hz, 1H), 7.14 (t, J= 8.0 Hz, 1H), 5.92-5.85 (m, 

1H), 5.27-5.22 (m, 1H), 5.06 (d, J= 8.0 Hz, 1H), 3.85 (d, J= 8.0 Hz, 1H). 
13

C NMR 

(100 MHz, CDCl3, TMS): δ (ppm) 165.1, 152.0, 134.2, 131.2, 124.9, 123.1, 120.4, 

119.8, 118.1, 35.1. HRMS (ESI) m/z [M+H]
+
 Calcd for C10H10NS2 (208.0249), found: 

208.0244. 

Ethyl 2-(benzo[d]thiazol-2-ylthio)acetate (3k).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3k as a yellow oil 

(211 mg, 83%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.77 (d, J= 8.0 Hz, 1H), 

7.67 (d, J= 8.0 Hz, 1H), 7.33 (t, J= 8.0 Hz, 1H), 7.24-7.18 (m, 1H), 4.19-4.14 (m, 2H), 

4.09 (s, 2H), 1.21 (t, J= 8.0 Hz, 3H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 
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167.2, 163.7, 151.8, 134.4, 125.0, 123.4, 120.6, 120.0, 61.0, 34.1, 13.0. HRMS m/z 

[M+H]
+
 (ESI) Calcd for C11H12NO2S2 (254.0304), found: 254.0309. 

2-((4-Fluorobenzyl)thio)-4,5-dihydrothiazole (3l).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3l as a yellow oil 

(182 mg, 80%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.25-7.22 (m, 2H), 6.89 

(t, J= 8.0 Hz, 2H), 4.23 (s, 2H), 4.12 (t, J= 8.0 Hz, 1H), 3.29 (t, J= 8.0 Hz, 1H). 
13

C 

NMR (100 MHz, CDCl3, TMS): δ (ppm) 163.8, 162.2, 159.8, 131.5 (d, J = 3.3 Hz), 

129.6 (d, J = 8.2 Hz), 114.3 (d, J = 21.5 Hz), 63.1, 34.8 (d, J = 39.2 Hz). HRMS (ESI) 

m/z [M+H]
+
 Calcd for C10H11FNS2 (228.0311), found: 228.0312. 

2-((Pyridin-2-ylmethyl)thio)benzo[d]thiazole (3m).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 15:1) to give the target compound 3m as a yellow oil 

(188 mg, 73%). 
1
H NMR (400 MHz, CDCl3, TMS): 8.45 (d, J = 4.0 Hz, 1H), 7.78 (d, 

J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 

1H), 7.30 (t, J = 8.0 Hz, 1H), 7.16 (t, J = 8.0 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 4.64 (s, 

2H). δ (ppm). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 165.0, 155.3, 151.9, 148.4, 

135.7, 134.3, 124.9, 123.2, 122.3, 121.4, 120.4, 119.9, 38.0. HRMS (ESI) m/z [M+H]
+
 

Calcd for C13H11N2S2 (259.0358), found: 259.0359. 

2-(Benzylthio)benzo[d]oxazole (3n).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3n as a yellow oil 

(218 mg, 90%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.50 (d, J= 8.0 Hz, 1H), 

7.33-7.27 (m, 3H), 7.21-7.06 (m, 5H), 4.42 (s, 2H). 
13

C NMR (100 MHz, CDCl3, 

TMS): δ (ppm) 164.6, 151.9, 141.9, 135.9, 129.1, 128.8, 128.0, 124.39 124.0, 118.5, 
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109.9, 36.6. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H12NOS (242.0634), found: 

242.0637. 

2-((4-Bromobenzyl)thio)benzo[d]oxazole (3o).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 15:1) to give the target compound 3o as a yellow oil 

(256 mg, 80%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.45 (d, J= 4.0 Hz, 1H), 

7.22 (t, J= 8.0 Hz, 3H), 7.13-7.01 (m, 4H), 4.28 (s, 2H). 
13

C NMR (100 MHz, CDCl3, 

TMS): 164.1, 151.9, 141.8, 135.2, 131.8, 130.7, 124.4, 124.1, 121.9, 118.6, 110.0, 

35.9. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H11BrNOS (319.9739), found: 319.9731. 

2-((4-Nitrobenzyl)thio)benzo[d]oxazole (3p).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3p as a white solid 

(250 mg, 87%). Mp: (113-115 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 8.09 

(d, J= 8.0 Hz, 1H), 7.58-7.51 (m, 3H), 7.36-7.33 (m, 1H), 7.23-7.15 (m, 2H), 4.51 (s, 

2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 162.2, 150.9, 146.3, 142.9, 140.5, 

128.9, 123.4, 123.2, 122.8, 117.5, 108.9, 34.4. HRMS (ESI) m/z [M+H]
+
 Calcd for 

C14H11N2O3S (287.0485), found: 287.0480. 

2-((3-Methoxybenzyl)thio)benzo[d]oxazole (3q).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3q as a colorless 

oil (242 mg, 89%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.68-7.65 (m,1H), 

7.50-7.46 (m, 1H), 7.34-7.27 (m, 3H), 7.10-7.06 (m, 2H), 6.90-6.86 (m, 1H), 4.59 (d, 

J= 4.0 Hz, 2H), 3.84 (d, J= 4.0 Hz, 3H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 

163.4, 158.7, 150.8, 140.8, 136.2, 128.7, 123.2, 122.9, 120.2, 117.3, 113.5, 112.4, 

108.8, 54.1, 35.5. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H14NO2S (272.0740), found: 
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272.0747. 

2-((2-Methylbenzyl)thio)benzo[d]oxazole (3r).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3r as a yellow oil 

(233 mg, 91%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.50 (d, J= 8.0 Hz, 1H), 

7.29-7.26 (m, 2H), 7.16-7.00 (m, 5H), 4.45 (s, 2H), 2.30 (s, 3H). 
13

C NMR (100 MHz, 

CDCl3, TMS): δ (ppm) 163.5, 150.7, 140.8, 136.0, 132.1, 129.5, 129.1, 127.2, 125.2, 

123.2, 122.8, 117.3, 108.7, 33.8, 18.1. HRMS (ESI) m/z [M+H]
+
 Calcd for 

C15H14NOS (256.0791), found: 256.0795. 

2-((4-Fluorobenzyl)thio)benzo[d]thiazole (3s).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3s as a yellow oil 

(205 mg, 79%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.37 (d, J= 8.0 Hz, 1H), 

7.17-7.14 (m, 3H), 7.04-6.94 (m, 2H), 6.76-6.72 (m, 2H), 4.25 (s, 2H). 
13

C NMR (100 

MHz, CDCl3, TMS): δ (ppm) 164.3, 163.6, 161.1, 151.9, 141.8, 131.8 (d, J = 3.3 Hz), 

130.8 (d, J = 8.1 Hz), 124.2 (d, J = 34.7 Hz), 118.5, 115.6 (d, J = 21.6 Hz), 109.9 , 

35.7. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H11FNOS (260.0540), found: 260.0549. 

2-((2-Chlorobenzyl)thio)benzo[d]oxazole (3t).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3t as a yellow oil 

(237 mg, 86%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.45-7.41 (m, 2H), 

7.22-7.17 (m, 2H), 7.10-6.98 (m, 4H) 4.47 (s, 2H). 
13

C NMR (100 MHz, CDCl3, 

TMS): δ (ppm) 164.4, 152.0, 141.9, 134.4, 134.0, 131.3, 129.7, 129.4, 127.1, 124.3, 

124.0, 118.5, 109.9, 34.3. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H11ClNOS 

(276.0244), found: 276.0240. 
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Methyl 4-((benzo[d]oxazol-2-ylthio)methyl)benzoate (3u).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3u as a white solid 

(252 mg, 84%). Mp: (83-85 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.85 (d, 

J= 12.0 Hz, 2H), 7.48 (d, J= 4.0 Hz, 1H), 7.39 (d, J= 8.0 Hz, 2H), 7.27 (d, J= 8.0 Hz, 

1H), 7.15-7.06 (m, 2H), 4.42 (s, 2H), 3.75 (s, 3H). 
13

C NMR (100 MHz, CDCl3, 

TMS): δ (ppm) 166.5, 163.9, 151.9, 141.8, 141.3, 129.9, 129.6, 129.0, 124.3, 124.0, 

118.5, 109.9, 52.1, 36.0. HRMS (ESI) m/z [M+H]
+
 Calcd for C16H14NO3S (300.0689), 

found: 300.0681. 

Methyl 4-(((6-methylbenzo[d]oxazol-2-yl)thio)methyl)benzoate (3v).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3v as a brown 

solid (280 mg, 89%). Mp: (105-106 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 

7.87-7.84 (m, 2H), 7.40-7.37 (m, 2H), 7.26 (s, 1H), 7.16-7.12 (m, 1H), 6.91-6.87 (m, 

1H), 4.41 (d, J= 4.0 Hz, 2H), 3.76 (d, J= 4.0 Hz, 3H), 2.29 (d, J= 8.0 Hz, 3H). 
13

C 

NMR (100 MHz, CDCl3, TMS): δ (ppm) 165.4, 162.6, 149.0, 140.8, 140.3, 133.0, 

128.8, 128.8, 128.4, 127.9, 123.9, 117.4, 108.1, 51.0, 34.9, 20.3. HRMS (ESI) m/z 

[M+H]
+
 Calcd for C17H16NO3S (314.0845), found: 314.0849 

2-((4-Bromobenzyl)thio)-6-(t-butyl)benzo[d]oxazole (3w).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3w as a white soild 

(331 mg, 88%). Mp: (79-80 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.53 (s, 

1H), 7.28 (d, J= 8.0 Hz, 2H), 7.21-7.14 (m, 4H), 4.33 (s, 2H), 1.23 (s, 9H). 
13

C NMR 

(100 MHz, CDCl3, TMS): δ (ppm) 164.0, 149.9, 147.9, 141.7, 135.3, 131.8, 130.7, 

121.9, 121.6, 115.2, 109.1, 35.8, 34.9, 31.8. HRMS (ESI): m/z [M+H]
+
 calcd for 
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C18H19BrNOS (376.0365), found: 376.0361. 

2-((Pyridin-2-ylmethyl)thio)benzo[d]oxazole (3x).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3x as a white solid 

(184 mg, 76%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 8.48 (d, J= 4.0 Hz, 1H), 

7.56-7.49 (m, 2H), 7.43 (d, J= 8.0 Hz, 1H), 7.32 (d, J= 8.0 Hz, 1H), 7.20-7.07 (m, 

3H), 4.61 (s, 2H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 163.4, 154.8, 150.9, 

148.5, 140.7, 135.8, 123.2, 122.8, 122.2, 121.5, 117.3, 108.8, 37.1. HRMS (ESI) m/z 

[M+H]
+
 Calcd for C13H11N2OS (243.0857), found: 243.0851. 

2-(Benzylthio)-1H-benzo[d]imidazole (3y).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 5:1) to give the target compound 3y as a white solid 

(215 mg, 89%). Mp: (184-185 
o
C). 

1
H NMR (400 MHz, DMSO-d6, TMS): δ (ppm) 

12.54 (s, 1H), 7.45 (d, J= 8.0 Hz, 4H), 7.33-7.25 (m, 3H), 7.15-7.12 (m, 2H), 4.58 (s, 

2H). 
13

C NMR (100 MHz, DMSO-d6, TMS): δ (ppm) δ 150.1, 138.1, 129.3, 128.9, 

127.7, 121.8, 35.6. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H13N2S (241.0794), found: 

241.0790. 

2-((4-Bromobenzyl)thio)-1H-benzo[d]imidazole (3z).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 5:1) to give the target compound 3z as a white solid 

(258 mg, 81%). Mp: (187-188 
o
C). 

1
H NMR (400 MHz, DMSO-d6, TMS): δ (ppm) 

12.53 (s, 1H), 7.51-7.40 (m, 6H), 7.14-7.12 (m, 2H), 4.55 (s, 2H). 
13

C NMR (100 

MHz, DMSO-d6, TMS): δ (ppm) 149.8, 137.9, 131.7, 131.4, 129.3, 128.9, 121.9, 

120.8, 34.8. HRMS (ESI) m/z [M+H]
+
 Calcd for C14H12BrN2S (318.9899), found: 

318.9902. 
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2-((2-Methylbenzyl)thio)-1H-benzo[d]imidazole (3za).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 5:1) to give the target compound 3za as a white solid 

(227 mg, 89%). Mp: (161-163 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 9.43 

(s, 1H), 7.74 (s, 1H), 7.34-7.12 (m, 6H), 4.60 (s, 2H), 2.44 (s, 3H). 
13

C NMR (100 

MHz, CDCl3, TMS): δ (ppm) 148.8, 136.0, 133.2, 129.5, 129.0, 127.0, 125.2, 34.5, 

18.1. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H15N2S (255.0950), found: 255.0956. 

2-((4-Methylbenzyl)thio)-1H-benzo[d]imidazole (3zb).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 5:1) to give the target compound 3zb as a white solid 

(227 mg, 89%). Mp: (164-167 
o
C). 

1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 11.36 

(s, 1H), 7.45-7.42 (m, 2H), 7.18-7.11 (m, 4H), 7.00 (d, J= 8.0 Hz, 2H), 4.42 (s, 2H), 

2.22 (s, 3H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 148.9, 136.4, 132.4, 128.3, 

127.8, 121.3, 36.1, 20.1. HRMS (ESI) m/z [M+H]
+
 Calcd for C15H15N2S (255.0950), 

found: 255.0951. 

2-(Allylthio)-1H-benzo[d]imidazole (3zc).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 10:1) to give the target compound 3zc as a white 

solid (167 mg, 88%). Mp: (140-141 
o
C). 

1
H NMR (400 MHz, DMSO-d6, TMS): δ 

(ppm) 12.54 (s, 1H), 7.43 (s, 2H), 7.14-7.10 (m, 2H), 6.06-5.95 (m, 1H), 5.31 (d, J= 

16.0 Hz, 1H), 5.11 (d, J= 8.0 Hz, 1H), 3.96 (d, J= 8.0 Hz, 2H). 
13

C NMR (100 MHz, 

DMSO-d6, TMS): δ (ppm) 149.8, 134.2, 121.8, 121.8, 118.5, 34.3. HRMS (ESI) m/z 

[M+H]
+
 Calcd for C10H10N2S (190.0565), found: 190.0566. 

2-(sec-Butylthio)benzo[d]thiazole (3zd).  

According to TP, the residue was purified by flash chromatography on silica gel 
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(petroleum ether/ethyl acetate = 15:1) to give the target compound 3zd as a yellow oil 

(156 mg, 70%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.79 (d, J= 8.0 Hz, 1H), 

7.66 (d, J= 8.0 Hz, 1H), 7.32 (t, J= 8.0 Hz, 1H), 7.20 (t, J= 8.0 Hz, 1H), 3.88-3.83 (m, 

1H), 1.79-1.64 (m, 2H), 1.42 (d, J= 4.0 Hz, 3H), 0.98 (d, J= 8.0 Hz, 3H). 
13

C NMR 

(100 MHz, CDCl3, TMS): δ (ppm) 166.7, 153.4, 135.3, 125.9, 124.2, 121.5, 120.9, 

45.9, 29.7, 20.9, 11.4. HRMS (ESI) m/z [M+H]
+
 Calcd for C11H14NS2 (224.0562), 

found: 224.0567. 

2-(Butylthio)benzo[d]thiazole (3ze).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 15:1) to give the target compound 3ze as a yellow oil 

(129 mg, 58%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.76 (d, J= 8.0 Hz, 1H), 

7.62 (d, J= 8.0 Hz, 1H), 7.31-7.27 (m, 1H), 7.18-7.14 (m, 1H), 3.23 (t, J= 8.0 Hz, 2H). 

1.73-1.65 (m, 2H), 1.44-1.34 (m, 2H), 0.85 (t, J= 8.0 Hz, 3H). 
13

C NMR (100 MHz, 

CDCl3, TMS): δ (ppm) 166.3, 152.2, 134.0, 124.9, 123.0, 120.3, 119.84, 32.2, 30.1, 

20.8, 12.5. HRMS (ESI) m/z [M+H]
+
 Calcd for C11H14NS2 (224.0562), found: 

224.0567. 

2-(tert-Butylthio)benzo[d]oxazole (3zf).  

According to TP, the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate = 15:1) to give the target compound 3zf as a yellow oil 

(103 mg, 50%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.30-7.28 (m, 1H), 

7.23-7.14 (m, 3H), 2.12 (s, 9H). 
13

C NMR (100 MHz, CDCl3, TMS): δ (ppm) 170.7, 

147.7, 124.1, 123.2, 109.4, 109.1, 50.6, 29.9. HRMS (ESI) m/z [M+H]
+
 Calcd for 

C11H14NOS (208.0791), found: 208.0799. 

2-(Butylthio)benzo[d]oxazole (3zg).  

According to TP, the residue was purified by flash chromatography on silica gel 
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(petroleum ether/ethyl acetate = 15:1) to give the target compound 3zg as a yellow oil 

(118 mg, 57%). 
1
H NMR (400 MHz, CDCl3, TMS): δ (ppm) 7.49 (d, J= 8.0 Hz, 1H), 

7.31 (d, J= 8.0 Hz, 1H), 7.18-7.08 (m, 2H), 3.20 (t, J= 8.0 Hz, 1H), 1.74-1.66 (m, 2H), 

1.44-1.34 (m, 2H), 0.85 (t, J= 8.0 Hz, 1H). 
13

C NMR (100 MHz, CDCl3, TMS): δ 

(ppm) 164.1, 150.6, 140.9, 123.1, 122.6, 117.2, 108.7, 30.9, 30.1, 20.7, 12.5. HRMS 

(ESI) m/z [M+H]
+
 Calcd for C11H14NOS (208.0791), found: 208.0794. 
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