Synthesis of 3-HCF₂S-Chromones through Tandem Oxa-Michael Addition and Oxidative Difluoromethylthiolation

Pingshun Zhang,[†] Wanzhi Chen,^{*,†}[©] Miaochang Liu,[‡][©] and Huayue Wu^{*,‡}[©]

[†]Department of Chemistry, Zhejiang University, Hangzhou 310027, China

[‡]College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China

S Supporting Information

ABSTRACT: A simple protocol for the synthesis of difluoromethylthiolated chromen-4-ones using elemental sulfur and ClCF₂CO₂Na as the difluoromethylthiolating agent is described. Three-component reactions of 2'-hydroxychalcones, ClCF₂CO₂Na, and sulfur under basic conditions using TEMPO as the oxidant afforded HCF₂S-containing 4H-chromen-4-one and 9H-thieno [3,2-b] chromen-9-one derivatives in good yield. The protocol is practical and efficient, and the starting materials are cheap and readily available.

hromones occur naturally in many plants, 1 and the chroman-4-one scaffold is a privileged structure in drug discovery and development.² Chromone derivatives exhibit a wide range of pharmacological activities such as antiinflammatory,³ anticancer,⁴ anti-HIV,⁵ antifungal,⁶ and antibacterial.7 A number of versatile methodologies have been reported for the synthesis of chromone derivatives. Traditionally, 4H-chromen-4-ones can be constructed through Claisen condensation,⁸ Baker–Venkataraman rearrangement,⁹ and the Kostanecki-Robinson reaction.¹⁰ Although palladium- and iridium-catalyzed tandem Sonogashira reaction and carbonvlation¹¹ and other annulation reactions of alkynes¹² were reported in recent years, the oxa-Michael-oxidative annulation of 2'-chalcone derivatives still represents the best synthetic approach due to its mild conditions and cheap and readily available starting materials. The related progress in the preparation of chromones has recently been summarized.^{2a,13}

In recent years, the incorporation of a HCF₂S- moiety into a biologically active compounds has attracted much attention because of its significance in the modification of physical and biological properties.¹⁴ Basically, the synthesis of difluoromethyl thioethers can be accomplished through S-difluoromethylation of sulfur-containing compounds with a nucleophilic, electrophilic, or a radical CF₂ reagent (Scheme 1a). Various fluoro-containing compounds have been employed as the difluoromethylating reagents, including ClCF₂SO₂Ph, $BrCF_2PO(OEt)_2$, $ClCF_2CO_2Na$, $PhSO(NTs)CF_2H$, Ph₃P⁺CF₂CO₂⁻, TMSCF₂H, and so on.¹⁵ Alternatively, difluoromethylthiolated compounds were obtained via Cdifluoromethylthiolation with a SCF₂H reagent such as nucleophilic Ag(SIPr)(SCF₂H), electrophilic PhSO₂SCF₂H, N-difluoromethylthiophthalimide, hypervalent difluoroethanesulfonyl iodonium, HCF₂SO₂Na, HCF₂SO₂Cl, and so on.

Scheme 1. Synthetic Routes of HCF₂S-Containing Compounds⁴

^{*a*}(a) X = H, SR, CN, Cl, SO₂Ph; (b) X = halogen, OTf, $N_2^+BF_{4}$ $B(OH)_2$.

(Scheme 1b).¹⁶ The introduction of a HCF₂S group to chromones would diversify their structures and bioactivities and thus is of interest for the discovery of novel chromonebased drugs and agrochemicals. Despite these approaches to HCF_2S -containing compounds,^{15,16} the direct use of commodity chemicals to introduce a HCF₂S group is a goal that remains to be accomplished. We wished to develop an in-situgenerated difluoromethylthiolating reagent using cheap and commercially available materials. We herein demonstrate the rapid and selective formation of a wide range of difluoromethylthiolated chromones through the tandem oxa-Michael addition and oxidative difluoromethylthiolation of 2'-hydroxychalcones using elemental sulfur and ClCF2CO2Na as the difluoromethylthiolating agent. A variety of HCF₂S-containing chromones were obtained in good yield.

Oxidative cyclization of 2-hydroxychalcone to flavone derivatives have been well studied using various oxidants.¹ Reaction conditions were surveyed using 1a as the test

```
Received: September 25, 2019
```

substrate. The three-component reaction of 1a, sodium 2chloro-2,2-difluoroacetate, and sulfur was initially performed in DMF in the presence of ^tBuONa, and 3a was afforded in 28% yield (Table 1, entry 1). The structure of 3a was undoubtedly determined by X-ray diffraction analysis.

Table 1. Optimization of Reaction Conditions

entry	base	oxidant	solvent	yield (%)
1	^t BuONa		DMF	28
2	^t BuOK		DMF	22
3	Cs ₂ CO ₃		DMF	20
4	KOCH ₃		DMF	34
5	DBU		DMF	20
6	Et ₃ N		DMF	
7	pyridine		DMF	<10
8	KOCH ₃	FeCl ₃	DMF	trace
9	KOCH ₃	NaIO ₄	DMF	<5
10	KOCH ₃	$K_2S_2O_8$	DMF	13
11	KOCH ₃	MnO ₂	DMF	18
12	KOCH ₃	$PhI(OAc)_2$	DMF	13
13	KOCH ₃	1,4-BQ	DMF	54
14	KOCH ₃	1,4-BQ	HMPA	
15	KOCH ₃	1,4-BQ	NMP	36
16	KOCH ₃	1,4-BQ	DMA	32
17	KOCH ₃	DDQ	DMF	
18	KOCH ₃	naphthalene-1,4-dione	DMF	<10
19	KOCH ₃	phenanthrene-9,10-dione	DMF	trace
20	KOCH ₃	pyridine-N-oxide	DMF	20
21	KOCH ₃	TEMPO	DMF	76
22	KOCH ₃	BPO	DMF	
23	KOCH ₃	DTBP	DMF	60

^aReaction conditions: chalcone 1a (0.2 mmol), ClCF₂CO₂Na 2a (0.6 mmol), S₈ (1.2 mmol), base (0.6 mmol) oxidant (0.4 mmol), 3 Å molecular sieve (100 mg), and solvent (1.5 mL) at 70 °C under N₂ for 30 h. Isolated yield. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy; BPO = benzoic peroxyanhydride; DDQ = 2,3-dicyano-5,6-dichlorobenzoquinone; DTBP = 2-(*tert*-butylperoxy)-2-methylpropane.

We envisioned that the tandem cyclization/difluoromethylthiolation reaction is initiated by oxa-Michael addition, and thus bases would be crucial. We thus examined the effect of various inorganic and organic bases, and the results showed that the yield of **3a** was not improved by a variation of the bases (Table 1, entries 1–7). The formation of 4*H*-chromen-4one would involve oxidative dehydrogenation; therefore, additional oxidants would promote the reaction. Inorganic oxidants such as FeCl₃, NaIO₄, K₂S₂O₈, PhI(OAc)₂, and MnO₂ are not effective (Table 1, entries 8–12). Compound **3a** was isolated in 54% yield when the reaction was performed in DMF using benzoquinone as the oxidant (entry 13). Other quinones were less efficient (Table 1, entries 17–19). Finally, we found that TEMPO is a more promising oxidant; with it, **3a** was obtained in 76% yield (entry 21). After optimization of the conditions, the substrate scope of the present protocol was explored (Scheme 2). The cyclization

Scheme 2. Scope of 2'-Hydroxychalcone^a

^aReaction conditions: chalcone 1 (0.20 mmol), ClCF₂CO₂Na 2a (0.60 mmol), S₈ (1.20 mmol), KOCH₃ (0.60 mmol), 3 Å molecular sieve (100 mg), and TEMPO (0.40 mmol) in DMF (1.5 mL) at 70 $^{\circ}$ C under N₂ for 30 h.

and difluoromethylthiolation of the substrates bearing electron-donating substituents such as alkyl, phenyl, and alkoxy groups occurred under the mild conditions, furnishing 3a-f in good yield (56-76%). Unexpectedly, 2'-hydroxy-4dimethylaminochalcone did not provide the corresponding product 3g. In this case, an unidentified mixture was yielded, which was probably ascribed to the oxidation of electron-rich aniline. Halo-containing 2'-hydroxychalcones are also applicable, and 3h and 3i were produced in moderate yield. However, both reactions of 2-chloro/bromo-2'-hydroxychalcone gave unexpected disulfide 3j in excellent yield. We speculate that 3j was formed via sequential oxa-Michael addition, thiolation, intramolecular nucleophilic substitution, and oxidative dehydrogenation. Electron-deficient chalcone bearing a cyano and CF₃ group also afforded the desired 3k-m in comparable yield. 2'-Hydroxychalcone bearing a naphthalene-2-yl group was successfully transformed to 3n. Unfortunately, the reactions of 2'-hydroxy-2-methoxychalcone and naphthalene-1-yl derivative failed to yield the desired products due to steric hindrance. Cyclization and difluoromethylthiolation of 2'-hydroxychalcone analogues containing a furyl or thiophenyl group proceeded smoothly, furnishing flavones 3q-s in 73-84% yield. Unexpectedly, the pyridine derivative was totally unreactive. Finally, 2'-hydroxychalcones containing methoxy, chloro, and bromo groups at the 3'- and 4'-positions also gave the desired flavones 3u-w in moderate yield. However, the protocol is not suitable for the synthesis of 2-tertbutylchromones and 2-dimethylaminochromone. To illustrate the practicality, a reaction of 1a on a 1.2 mmol scale was performed. The expected product 3a was isolated in 66% yield.

We next examined the reactivity of penta-2,4-dien-1-one derivatives with $ClCF_2CO_2Na$ and sulfur under the optimized conditions, and the results are summarized in Scheme 3. When

Scheme 3. Scope of 2'-Hydroxychalcone^a

^aReaction conditions: chalcone 1 (0.20 mmol), ClCF₂CO₂Na 2a (0.60 mmol), S₈ (1.20 mmol), KOCH₃ (0.60 mmol), 3 Å molecular sieve (100 mg), and TEMPO (0.40 mmol) in DMF (1.5 mL) at 70 $^{\circ}$ C under N₂ for 30 h.

1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one was treated with ClCF₂CO₂Na and sulfur in the presence of MeOK, tandem double cyclization and difluoromethylthiolation reaction occurred, and the fused compound 3-((difluoromethyl)thio)-2-phenyl-9H-thieno[3,2-b]chromen-9one 4a was isolated as a brown solid in 65% yield. The structure of 4a was confirmed by X-ray diffraction analysis (Scheme 3). The substituted penta-2,4-dien-1-ones having an electron-donating group were well tolerated and gave 4b-e in good yield. Again, the reaction of the dimethylaminocontaining substrate resulted in a complicated mixture. The strong electron-donating group of 2'-hydroxychalcone probably reduced the tendency for nucleophilic addition. In addition, the electron-rich 2'-hydroxychalcone is more easily oxidized (cf. 3g and 4f) and thus inhibits oxa-Michael addition. Moreover, reactions of halo-containing substrates proceeded well, affording 4g-i in 63-82% yield. These halo-containing chromone-fused thiophene compounds offer more opportunities for further functionalization through cross-coupling reactions with nucleophilic reagents. The electron-deficient penta-2,4-dien-1-one containing a CF3 was also well compatible to deliver 4j in 49% yield. 2'-Hydroxychalcones containing a chloro group at the 4'-position gave the desired flavones 4k-m in moderate yield.

The cyclization and diffuoromethylthiolation of the dienone derivatives to chromone-fused thiophene compounds is remarkable, which involves the selective formation of four C-S bonds and one C-O bond in one pot.

To gain some mechanistic insights into the present protocol, a few control experiments were performed (Scheme 4). It has Scheme 4. Control Experiments

been known that the thermal decomposition of ClCF₂CO₂Na would generate F_2C : species.^{15c,e,18} Without ClCF₂CO₂Na, the reaction of 1a with sulfur resulted in 3-mercapto-2-(p-tolyl)-4H-chromen-4-one 5a and 2-(p-tolyl)-4H-chromen-4-one 5b in 51 and 19% yield, respectively. The reaction of 5a and ClCF₂CO₂Na in DMF in the presence of KOCH₃ afforded 3a in 89% yield. In contrast, the reaction of 5b, S_8 , and ClCF₂CO₂Na under the same conditions did not afford 3a, and 5b was not consumed. On the basis of the above observations, a possible mechanism is proposed. The oxa-Michael addition of 1 gave carbanion A, which readily reacts with sulfur to form 4-oxochromane-3-thiolate B. The subsequent oxidation of B and the abstraction of a proton afforded 3-thioxochroman-4-one C. Both TEMPO and S₈ might serve as the oxidants. The enolization of C in the presence of a base afforded intermediate D. The nucleophilic addition of D toward a F2C: molecule would finally form 3 after protonation (Scheme 5a). Similarly, F would be formed

Scheme 5. Plausible Mechanisms for (a) 3 and (b) 4

via cyclization in the presence of a base. Further intramolecular nucleophilic addition would generate intermediate **G**. The reaction with sulfur and the subsequent oxidation gave thioketone **I**. In the presence of the base, the reaction of **J** with in-situ-generated F_2C : would finally yield 4 (Scheme 5b).

In summary, the combination of elemental sulfur and $ClCF_2CO_2Na$ has been utilized for the first time as a difluoromethylthiolating agent. The three-component reaction of 2'-hydroxychalcones, sulfur, and $ClCF_2CO_2Na$ under basic

conditions using TEMPO as the oxidant selectively afforded HCF₂S-containing 4*H*-chromen-4-ones and thiophene-fused chromones in good yield. The protocol provides a novel practical approach to introduce HCF₂S functionality to organic compounds using cheap and commercially available reagents.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b03396.

Experimental details and spectral characterization (PDF)

Accession Codes

CCDC 1955549–1955550 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: chenwzz@zju.edu.cn (W.C.).

*E-mail: huayuewu@wzu.edu.cn (H.W.).

ORCID [©]

Wanzhi Chen: 0000-0002-7076-1521 Miaochang Liu: 0000-0002-4603-3022 Huayue Wu: 0000-0003-3431-561X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation (NSF) of China (21572203 and 21472140) and the NSF of Zhejiang Province (LZ16B020001) for financial support.

REFERENCES

(1) (a) Khadem, S.; Marles, R. J. *Molecules* **2012**, *17*, 191. (b) Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.; Lin, W.; Wu, J.; Proksch, P. J. Nat. Prod. **2009**, *72*, 662.

(2) (a) Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F. Chem. Rev. 2014, 114, 4960. (b) Gaspar, A.; Silva, T.; Yáñez, M.; Vina, D.; Orallo, F.; Ortuso, F.; Uriarte, E.; Alcaro, S.; Borges, F. J. Med. Chem. 2011, 54, 5165. (c) Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F. J. Med. Chem. 2017, 60, 7941. (d) Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Eur, J. Med. Chem. 2014, 78, 340.

(3) (a) Silva, C. F. M.; Pinto, D. C. G. A.; Silva, A. M. S. ChemMedChem 2016, 11, 2252. (b) Shaveta; Singh, A.; Kaur, M.; Sharma, S.; Bhatti, R.; Singh, P. Eur. J. Med. Chem. 2014, 77, 185.
(c) Huo, H.; Gu, Y.; Sun, H.; Zhang, Y.; Liu, W.; Zhu, Z.; Shi, S.; Song, Y.; Jin, H.; Zhao, Y.; Tu, P.; Li, J. Fitoterapia 2017, 118, 49.
(4) Mohana Kumara, P.; Srimany, A.; Ravikanth, G.; Uma Shaanker,

R.; Pradeep, T. *Phytochemistry* 2015, *116*, 104.
(5) Yu, D.; Chen, C.; Brossi, A.; Lee, K. H. *J. Med. Chem.* 2004, *47*, 4072.
(b) Yu, D.; Brossi, A.; Kilgore, N.; Wild, C.; Allaway, G.; Lee, K. H. *Bioorg. Med. Chem. Lett.* 2003, *13*, 1575.

(6) Prakash, O.; Kumar, R.; Parkash, V. *Eur. J. Med. Chem.* **2008**, 43, 435.

(7) Nawrot-Modranka, J. N.; Nawrot, E.; Graczyk, J. Eur. J. Med. Chem. 2006, 41, 1301. (b) Haveliwala, D. D.; Kamdar, N. R.; Mistry, P. T.; Patel, S. K. Nucleosides, Nucleotides Nucleic Acids 2014, 33, 80.
(8) (a) Irgashev, R. A.; Sosnovskikh, V. Y.; Kalinovich, N.; Kazakova,

O.; Röschenthaler, G. V. Tetrahedron Lett. 2009, 50, 4903.

(9) (a) Wen, S.; Wang, J.; Luo, Y.; Yang, H. *Tetrahedron* 2014, 70, 9314. (b) Mahal, H. S.; Venkataraman, K. J. Chem. Soc. 1934, 1767.
(c) Müller, E.; Kálai, T.; Jekö, J.; Hideg, K. Synthesis 2000, 2000, 1415.

(10) (a) Looker, J. H.; McMechan, J. H.; Mader, J. W. J. Org. Chem. 1978, 43, 2344. (b) Allan, J.; Robinson, R. J. Chem. Soc., Trans. 1924, 125, 2192.

(11) (a) Wu, X.; Neumann, H.; Beller, M. Chem. - Eur. J. 2012, 18, 12595. (b) Shen, C.; Li, W.; Yin, H.; Spannenberg, A.; Skrydstrup, T.; Wu, X. Adv. Synth. Catal. 2016, 358, 466. (c) Zhu, F.; Wang, Z.; Li, Y.; Wu, X. Chem. - Eur. J. 2017, 23, 3276.

(12) (a) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210. (b) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765. (c) Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948.

(13) Emami, S.; Ghanbarimasir, Z. Eur. J. Med. Chem. 2015, 93, 539.
(14) (a) Xiong, H.; Pannecoucke, X.; Besset, T. Chem. - Eur. J. 2016, 22, 16734. (b) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.

(15) (a) Wang, F.; Zhang, L.; Zheng, J.; Hu, J. J. Fluorine Chem.
2011, 132, 521. (b) Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Tetrahedron 2009, 65, 5278. (c) Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036. (d) Ando, M.; Wada, T.; Sato, N. Org. Lett.
2006, 8, 3805. (e) Li, Z.; Dong, J.; Yuan, Z.; Yang, D.; Weng, Z. Org. Lett. 2018, 20, 6407. (f) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109. (g) Deng, X.; Lin, J.; Zheng, J.; Xiao, J. Chem. Commun. 2015, 51, 8805. (h) Wu, J.; Gu, Y.; Leng, X.; Shen, Q. Angew. Chem., Int. Ed. 2015, 54, 7648. (i) Wang, F.; Huang, W.; Hu, J. Chin. J. Chem. 2011, 29, 2717. (j) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem., Int. Ed. 2015, 54, 5753. (k) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390.

(16) (a) Wu, J.; Liu, Y.; Lu, C.; Shen, Q. Chem. Sci. 2016, 7, 3757.
(b) Wu, J.; Lu, C.; Lu, L.; Shen, Q. Chin. J. Chem. 2018, 36, 1031.
(c) Wu, J.; Gu, Y.; Leng, X.; Shen, Q. Angew. Chem., Int. Ed. 2015, 54, 7648. (d) Zhu, D.; Shao, X.; Hong, X.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 15807. (e) Li, J.; Zhu, D.; Lv, L.; Li, C. Chem. Sci. 2018, 9, 5781. (f) Zhu, D.; Gu, Y.; Lu, L.; Shen, Q. J. Am. Chem. Soc. 2015, 137, 10547. (g) Arimori, S.; Matsubara, O.; Takada, M.; Shiro, M.; Shibata, N. R. R. Soc. Open Sci. 2016, 3, 160102. (h) Yan, Q.; Jiang, L.; Yi, W.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471. (i) Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934. (j) Zhao, X.; Wei, A.; Li, T.; Su, Z.; Chen, J.; Lu, K. Org. Chem. Front. 2017, 4, 232. (k) Ismalaj, E.; Le Bars, D.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 4790.

(17) (a) Akama, T.; Shida, Y.; Sugaya, T.; Ishida, H.; Gomi, K.; Kasai, M. J. Med. Chem. 1996, 39, 3461. (b) Donnelly, J. A.; Farrell, D. F. J. Org. Chem. 1990, 55, 1757. (c) Alam, S.; Sarkar, Z.; Islam, A. Proc. - Indian Acad. Sci., Chem. Sci. 2004, 116, 29. (d) Liu, R.; Wang, X.; Cheng, F.; Li, F.; Xu, K.; Tan, G. Youji Huaxue 2016, 36, 2677. (e) Liu, R.; Zhang, Y.; Xu, K.; Tan, G. Synth. Commun. 2017, 47, 1. (f) Du, Z.; Ng, H.; Zhang, K.; Zeng, H.; Wang, J. Org. Biomol. Chem. 2011, 9, 6930.

(18) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585.