Demethylation (n-PrSLi, DMF, 20 °C, 2 h)³⁸ and desilylation (acidic workup) finally furnished (±)-gibberellin A₁, mp 251-254 °C, then 271-274 °C (>80% overall yield from 23), with IR, ¹H NMR, and mass spectra indistinguishable from those of the (+) enantiomer (2).⁸

The elaboration of the gibberellic acid (A_3) structure (1), however, poses a rather more formidable challenge. The allylic lactone moiety is labile toward weak bases³⁹ and acids (even autocatalysis),40 while Wagner-Meerwein rearrangement of the C/D-ring system is readily initiated by electrophiles.⁴¹ Consequently, assembly of the complete A_3 structure requires delicate timing, as well as a judicious selection of reagents and conditions.

It appeared that Δ^1 -3 β -ol functionality of A₃ could most readily be introduced from a Δ^2 -olefin,⁴² so 25 was converted into phenylsulfonate 26, mp 212-214 °C (PhSO₂Cl, C₅H₅N, 25 °C, 4 h, 95%), and thence (\pm) -29, mp 244-248 °C, by treatment with a mixture of tetra-n-butylammonium bromide (5 equiv) and 1,5diazabicyclo[4.3.0]non-5-ene (DBN)(5 equiv) in dimethylformamide (DMF) at 90 °C for 21 h (82% yield).⁴³ An optical resolution of (\pm) -29 was effected through chromatographic separation of the derived diastereomeric urethanes 30 [phosgene, pyridine, DMAP, 25 °C, 6 h; (-)- α -phenylethylamine].^{44,45} Reaction of the more polar urethane with tetrachlorosilane (10 equiv) and triethylamine (20 equiv) in dichloromethane (25 °C, 48 h)⁴⁶ afforded (-)-29, identical in all respects (mp, TLC ¹H NMR, IR and mass spectra) with an authentic sample [mp 263-264 °C, $[\alpha]^{27}_{D}$ -88° (c 0.56, CHCl₃)] prepared from the 3α -phenylsulfonate, mp 186-188 °C, of (-)-ketal 25, which had been obtained from natural A₃.³³

Hydroxylation⁴⁷ [OsO₄, N-methylmorpholine N-oxide, acetone/H₂O (3:1), 5 °C, 90 h] of 29 furnished triol 27 [mp 256-258 °C, $[\alpha]^{27}_{D}$ + 17° (c 0.54, EtOH)] in 98% yield, and the derived benzylidene acetal (diastereomeric mixture) [PhCHO, (CH₂Cl)₂, *p*-toluenesulfonic acid, 4 A sieves, reflux 16 h] was treated with N-bromosuccinimide [CCl₄, reflux 1 min; 250-W tungsten lamp, 0.9 m, 35 °C, 1.25 h]. Stereoelectronically controlled fission of the 1,3-dioxolan-2-ylium cation⁴⁸ generated in this way ensured specific formation of the 2α -bromide 28, mp 186–189 °C (95% yield), which was converted [DBN (5 equiv), THF/DMF (1:1), 65 °C, 1 h, 90% yield] into allylic benzoate 31 [mp 243-246 °C, $[\alpha]^{28}_{D} + 190^{\circ} (c \ 0.79, \text{CHCl}_{3})]$ and then ketol 32 [mp 231-234] °C, $[\alpha]^{30}_{D}$ +197° (c 0.8, CHCl₃)] by treatment with dilute acid [3 M HCl/THF (1:2), 30 °C, 6 h, ~100% yield]. The A_3

(38) Bartlett, P. A.; Johnson, W. S. Tetrahedron Lett. 1970, 4459-4462. The rate of the present reaction is similar to that in the carcinogenic solvent hexamethylphosphoric triamide.

ford, 1968; pp 41-59.

(42) Approaches based on a 3-oxo derivative are unattractive since hydride reduction at C(3) favors the formation of 3α -alcohols: Voigt, B.; Adam, G.; Kobrina, N. S.; Serebrayakov, E. P. Z. Chem. **1977**, 17, 372–374. Gurvich, I. A.; Kobrina, N. S.; Kucherov, V. F. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1969, 1668-1671.

(43) Lower concentrations of bromide ion or DBN resulted in an accumulation of the 3α -bromide (double inversion), which does not undergo elimination at this temperature. The excess of bromide ion increases the rate of formation of 3β -bromide, which is then eliminated by the nitrogen base. The 3β -epimer of 26 afforded olefin 29 in 90% yield after only 4.5 h under equivalent conditions

(44) Pirkle, W. H.; Hauske, J. R. J. Org. Chem. 1977, 42, 1839-1844. Cf. ref 3b.

(45) Three 15-min developments in ether/pentane (3:2) on Merck DC-Alufolien Kieselgel 60 (0.2 mm) cleanly separated the two diastereomers (R_f 0.53 and 0.58). The more polar isomer, $[\alpha]^{25}_{D} - 48^{\circ}$ (c 0.22, CHCl₃), was spectroscopically (¹H NMR, IR) and chromatographically identical with an authentic sample, $[\alpha]^{25}_{D} - 48.7^{\circ}$ (derived from natural A₃). The less polar isomer was chromatographically and spectroscopically (¹H NMR, IR) in dictinguisheble from the approximated particular form the sample particular sectors of the sample of the sample particular sectors of the sample form the sample form the sample particular sectors of the sample form the sample form the sample particular sectors of the sample particular sectors of the sample form the sample particular sectors of the sample form the sample particular sectors of the sample particular sectors of the samp distinguishable from the enantiomeric urethane derived from (-)-29 and (+)- α -phenylethylamine

 (46) Cf.: Pirkle, W.H.; Hauske, J. R. J. Org. Chem. 1977, 42, 2781–2782.
 (47) Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973-1976.

(48) Pittman, C. U.; McManus, S. P.; Larson, J. W. Chem. Rev. 1972, 357-438.

structure was then completed in \sim 75% overall yield in essentially the same manner as in the A_1 synthesis, i.e., silylation, Wittig methylenation,⁴⁹ and desilylation to give 33; mp 169-170 °C, $[\alpha]^{25}_{D} + 214^{\circ}$ (c 1.0, CHCl₃). Finally, hydrolysis at pH 10 [K₂CO₃/KHCO₃, MeOH/THF/H₂O (4:1:1), 25 °C, 1 h] furnished methyl gibberellate, which was demethylated, as reported,⁵⁰ to gibberellic acid 1. Spectra (¹H NMR, IR, mass spectra), mp, and TLC mobility of 1 and its methyl ester were indistinguishable from those of authentic samples.⁵¹

While the focus of this work has been the preparation of A_3 (1), it is clear that all the most common C_{19} gibberellins are accessible through applications of the present strategy.52 Moreover, many of the procedures are highly suited to the manipulation of natural gibberellins and the preparation of analogues for biological investigations.

(49) Greater care was required than in the A1 preparation. The KO-t-Bu was prepared from potassium metal; traces of moisture or the use of com-mercially obtained KO-t-Bu, even after resublimation, led to cleavage of the benzoate group with a consequent retroaldol reaction and methylenation of the seco aldehyde.

(31) We are indepice to A. Cossey for technical assistance and to G. ... Elson, I.C.I. Plant Protection, for gifts of gibberellins. (52) The obvious conversions of 27 and 29 into gibberellins A_8 and A_5 , respectively, have been completed. The adoption of the general strategy to the preparation of 13-deoxy C_{19} gibberellins, culminating in the synthesis of (\pm) -A₄ (3), mp 220–222 °C, has also been carried out. Applications to further gibberellins, including C₂₀ derivatives, are well advanced.

Luciano Lombardo, Lewis N. Mander,* John V. Turner

Research School of Chemistry Australian National University Canberra, ACT 2600, Australia Received April 23, 1980

Total Synthesis of Gibberellic Acid. The Hydrofluorene Route

Sir:

A recurring theme in a broad spectrum of proposals¹ for the synthesis of the C_{19} gibberellin phytohormones² has been the utilization of a benzenoid synthon as a precursor to the Aring/lactone moiety in these compounds. The pioneering studies undertaken by Loewenthal,³ in particular, appeared to hold considerable promise for this strategy,⁴ which dovetails efficiently with the construction of the remainder of the molecule through the application of our diazo ketone based methodology.⁵ We now report the application of these concepts to the transformation of fluorenone 16 into the tetracyclic lactone 2, an advanced intermediate in our recently completed total synthesis of gibberellic acid.7

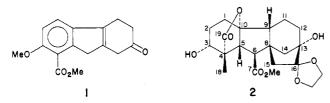
Our first objective was the development of an efficient preparation of tetracyclic ketone 8. This was achieved through the use of reported procedures,^{5c} but with several important refine-

(1) For reviews, see: Fujita, E.; Node, M. Heterocycles 1977, 7, 709-752. Danheiser, R. L. Ph.D. Dissertation, Harvard University, 1978.

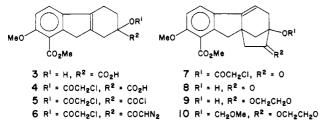
(6) Hook, J. M.; Mander, L. N. J. Org. Chem. 1980, 45, 1722-1724. (7) Lombardo, L.; Mander, L. N.; Turner, J. V. J. Am. Chem. Soc. 1980, 102, 6626.

⁽³⁹⁾ Cross, B. E.; Grove, J. F.; Morrison, A. J. Chem. Soc. 1961, 2498-2515.

^{(40) (}a) Cross, J. J. Chem. Soc. 1954, 4670-4676.
(b) Pryce, R. J. Phytochemistry 1973, 12, 507-514, and references cited therein.
(41) Hanson, J. R. "The Tetracyclic Diterpenes", Pergamon Press: Ox-

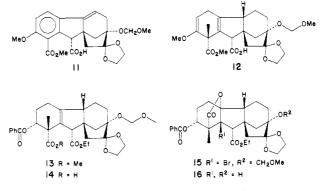

⁽⁵⁰⁾ Corey, E. J.; Brennan, T. M.; Carney, R. L. J. Am. Chem. Soc. 1971, 93, 7316-7317.

⁽⁵¹⁾ We are indebted to A. Cossey for technical assistance and to G. W.


⁽²⁾ Hanson, J. R. "The Tetracyclic Diterpenes"; Pergamon Press: Oxford, (3) (a) Bachi, M. D.; Epstein, J. W.; Herzberg-Minzly, Y.; Loewenthal,

 ⁽a) Dacin, W. D., Dischi, S. W., Herzong, Winzly, Y., Downhal, H. J. E., Schatzmiller, S. J. Chem. 1969, 34, 126-135. (b) Locwenthal, H. J. E.;
 Schatzmiller, S. J. Chem. Soc., Perkin Trans. 1 1976, 944-950.
 (4) See also: (a) House, H. O.; Strickland, R. C.; Zaiko, E. J. J. Org. Chem. 1976, 41, 2401-2408. (b) House, H. O.; Zaiko, E. J. Ibid. 1977, 42, 3780-3783. (c) Baker, A. J.; Goudie, A. C. J. Chem. Soc., Chem. Commun. 1972. 1972. 951

^{(5) (}a) Beames, D. J.; Klose, T. R.; Mander, L. N. J. Chem. Soc., Chem. Commun. 1971, 773-774. (b) Klose, T. R.; Mander, L. N. Aust. J. Chem. 1974, 27, 1287-1294. (c) Beames, D. J.; Turner, J. V.; Mander, L. N. Ibid. 1974, 27, 1977-1984.



ments. Thus, the cyanohydrin, mp 165–169 °C,⁸ derived from $1^{6,9}$ was subjected to methanolysis¹⁰ (HCl, MeOH, saturated, 0 °C then 25 °C, 16 h; H₂O), and the resulting dimethyl ester, mp 118–120 °C, was selectively hydrolyzed by KOH (2 equiv, 25 °C, 2 h) to acid 3, mp 230–232 °C (60% overall yield from 1). The

derived chloro acetate 4, mp 183–185 °C [ClCH₂(CO)₂O, (CH₂Cl)₂, reflux, 3 h, 90% yield], was transformed to diazo ketone 6, mp 147–150 °C (71% yield), in the usual way by treatment of acyl chloride 5 with an excess of ethereal diazomethane at -20 °C,¹¹ but a satisfactory procedure for the formation of 5 [4 + oxalyl chloride (3 equiv), CH₂Cl₂ (10 mL/mmol), 0 °C, 2 h then 25 °C, 3 h; addition of DMF (1.5 μ L/mmol 4) at 2-h intervals] was obtained only after extensive experimentation. Cyclization of 6 [trifluoroacetic acid/CH₂Cl₂ (2:1), -20 °C, 10 min] proceeded smoothly, however, to give 7, mp 133–135 °C, which was readily hydrolyzed [K₂CO₃, MeOH/THF/H₂O (8:1), 24 °C, 1.5 h] to the target ketol 8, mp 150–152 °C, in 89% overall yield from 6.

In the next phase of the synthesis, substituents were introduced at C(4) and C(6) and the correct stereochemistry established at C(4) and C(9) relative to C(8). Ketal 9, mp 162–165 °C, was prepared $[(CH_2OH)_2 (10 \text{ equiv}), p$ -toluenesulfonic acid, $(CH_2Cl)_2$, reflux, 16 h, 95% yield], protected further as the methoxymethyl ether 10, mp 122-125 °C [ClCH₂OMe (20 equiv), *i*-Pr₂NEt/ CH₂Cl₂ (3:1), 25 °C, 16 h, 98% yield], and carboxylated at C(6) [lithium N-tert-butyl-N-cyclohexylamide (1.5 equiv), THF, HMPA (1.1 equiv), -20 °C, 5 min; excess CO₂, $-78 \rightarrow 25$ °C] to give acid 11, mp 173-175 °C, in 89% yield The close correspondence between the ¹H NMR data obtained for the dimethyl ester from 11 and those reported for the 13-deoxy analogue^{3b} provided confirmation of the expected 6α stereochemistry, which was so vital for the subsequent development of the correct chirality at C(9)^{3b} and C(4).^{4a} Thus, hydrogenation of 11 over a minimal quantity of catalyst [10% Pd-C (1% w/w), MeOH/EtOAc (1:1), 25 °C, 16 h, 91% yield], followed by reductive methylation¹² [t-BuOK (1 equiv), ¹³ THF, 24 °C, 15 min; K (2.5 equiv), liquid NH_3/THF (10:1), -78 °C, 20 min; MeI (10 equiv), -78 \rightarrow -33

°C; excess NH₄Cl], furnished 12, mp 170–172 °C, with complete stereoselectivity in 84% yield.

Finally, the conversion of acid 12 to lactone 2 was essentially a matter of refunctionalization. Although direct lactonization of model compounds analogous to 12 has been achieved, ^{3a,4b} this appeared to be impractical on a substrate as complex as 12. It was accordingly modified to 14 before attempting such a transformation. Selective acid-catalyzed hydrolysis of the enol ether function of 12 could not be achieved,¹² but with mercury(II) nitrate catalysis¹⁴ [0.33 equiv, MeCN/H₂O (5:1), 24 °C, 18 h] the corresponding ketone, mp 129-131 °C (77% yield), was obtained and reduced (NaBH₄, EtOH, 0 °C, 1.5 h) to the 3α -alcohol,¹⁵ mp 129-132 °C (90%), followed by ethylation (MeCH=N₂) and benzoylation to give 13, mp 133-135 °C (79%). Protection of the 6α -carboxyl function as the ethyl ester allowed the 4α -carboxyl function to be liberated selectively,¹⁶ furnishing acid 14, mp 178-182 °C (77%), which was then converted (KHCO₃, KBr₃, 0 °C, 1.5 h) into the unstable bromo lactone 15 [IR (CH_2Cl_2)] 1790, 1740, 1720 cm⁻¹]. Removal of the bromine substituent with *n*-Bu₃SnH^{4b} gave a complex mixture of products, but treatment with a large excess of chromium(II) diacetate in the presence of n-PrSH¹⁷ removed both the halogen and the methoxymethyl protecting group to give lactone 16, mp 209-212 °C (50% from 14). Finally, the C(6) ester group was isomerized [DBU (5 equiv), DMF, 90 °C, 17 h] to the more stable β configuration and the resulting product, mp 215-218 °C (86%) hydrolyzed [0.25 M NaOH, MeOH/H₂O (4:1), 28 °C, 40 h] and methylated (CH₂N₂) to give 2, mp 272–274 °C, which was chromatographically and spectroscopically indistinguishable (¹H NMR, IR, mass spectrum) from an authentic sample.⁷

This preparation of $\hat{\mathbf{z}}$ translates into a ~34-step sequence to gibberellic acid.^{18,19} Although somewhat more lengthy than our earlier approach,⁷ the present synthesis is completely stereoselective, and the scope for refinements to more efficient routes is considerable.

(19) We are indebted to A. L. Cossey for technical assistance and to Dr. A. J. Baker for helpful correspondence.

James M. Hook, Lewis N. Mander,* Rudolf Urech

Research School of Chemistry Australian National University Canberra, ACT 2600, Australia Received May 14, 1980

⁽⁸⁾ All compounds gave ¹H NMR, IR, and mass spectral data as well as C and H microanalyses ($\pm < 0.4\%$) which were consistent with structural assignments. Reactions were carried out, where appropriate, under an atmosphere of purified nitrogen, and yields are given for homogeneous, crystalline products. Numbering of structures 2 and 11-16 is according to; Rowe, J. R., (Ed. "The Common and Systematic Nomenclature of Cyclic Diterpenes", 3rd Rev.; Forest Product Laboratory, U.S. Department of Agriculture: Wisconsin, 1968. Structural formulas 2-16 represent racemic compounds. (9) Fluorenone 1 was obtained⁶ as a 4:1 mixture with its $\Delta^{1(9a)}$ isomer.

⁽⁹⁾ Fluorenone 1 was obtained⁶ as a 4:1 mixture with its $\Delta^{1(9a)}$ isomer. Since considerable losses were incurred during chromatography of these airsensitive compounds, the mixture was used directly in the hydrocyanation process. The α,β -unsaturated ketone does not add HCN but isomerized slowly to 1 during the course of the reaction.

⁽¹⁰⁾ Birch, A. J.; Macdonald, P. L.; Powell, V. H. J. Chem. Soc. C 1970, 1469-1476.

⁽¹¹⁾ Blair, I. A.; Ellis A.; Johnson, D. W.; Mander, L. N. Aust. J. Chem. 1978, 31, 405-409.

⁽¹²⁾ Loewenthal, H. J. E. "Guide for the Perplexed Organic Experimentalist"; Heyden: London, 1978; pp 133-138. We are grateful to Professor Loewenthal for helpful correspondence on this procedure.

Professor Loewenthal for helpful correspondence on this procedure. (13) Brown, J. M.; Cresp, T. M.; Mander, L. N. J. Org. Chem. 1977, 42, 3984–3986.

⁽¹⁴⁾ de Oliveira Baptista, M. J. V.; Barrett, A. G. M.; Barton, D. H. R.; Girijavallabhan, M.; Jennings, R. C.; Kelly, J.; Papadimitriou, V. J.; Turner, J. V.; Usher, N. A. J. Chem. Soc., Perkin Trans. 1 1977, 1477-1550. We are grateful to Dr. J. V. Turner for drawing our attention to the use of mercury(II) nitrate; the acetate was unsatisfactory.

⁽¹⁵⁾ The stereochemistry at C(3) was assumed on the basis of ref 3a and confirmed subsequently by the observation of deshielding of the C(3) proton in the ¹H NMR spectra when bromine was introduced at C(5) to give lactone **15**.

⁽¹⁶⁾ Bartlett, P. A.; Johnson, W. S. Tetrahedron Lett. 1970, 4459-4462.
(17) Barton, D. H. R.; Basu, N. K.; Hesse, R. H.; Morehouse, F. S.;
Pechet, M. M. J. Am. Chem. Soc. 1966, 88, 3016-3021.

⁽¹⁸⁾ Cf.: Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret, P.; Keck, G. E.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100, 8031-8034. Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Keck, G. E.; Gopalan, B.; Larsen, S. D.; Siret, P.; Gras, J.-L. Ibid. 1978, 100, 8034-8036.