

Subscriber access provided by University of Winnipeg Library

Reaction of Aromatic Carbonyl Compounds with Silylborane Catalyzed by Au Nanoparticles: Silylative Pinacol-Type Reductive Dimerization via a Radical Pathway

Marios Kidonakis, Anisa Mullaj, and Manolis Stratakis

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02675 • Publication Date (Web): 30 Nov 2018 Downloaded from http://pubs.acs.org on December 1, 2018

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

catalyzed by supported Au nanoparticles on TiO_2 . It is proposed that after initial activation of silylborane by Au nanoparticles and addition to the carbonyl functionality of an aromatic aldehyde or ketone, an aryl silyloxy radical is generated from the collapse of the intermediate adduct, which then dimerizes through a chain process. The silyloxy radical was almost quantitatively trapped, in the presence of TEMPO.

Silvlboranes is a class of compounds whose chemistry has attracted a considerable interest in recent years. The Si-B bond can be readily activated by a series of catalysts, primarily transition metals, and undergoes addition to unsaturated compounds.¹ The activation of silvlborane pinB-SiMe₂Ph (pin: pinacolato) by supported Au nanoparticles (Au_n), and the subsequent addition of the Au-nanoparticle bonded boron and silvl moieties (pinB-Au_n-SiMe₂Ph) on alkynes,² allenes³ or strained cyclic ethers⁴ has been recently documented by our group. As a continuation of our studies in this field we examined the possible reaction between pinB-SiMe₂Ph and carbonyl compounds in the presence of Au nanoparticles. It is well known that silvlboranes are unreactive against carbonyl compounds,⁵ as also proved in our hands. In the presence of a NHC-Cu complex, however, a catalytic C-Si bond forming reaction is taking place (Scheme 1). Thus, nucleophilic addition of the silicon moiety from pinB-SiMe₂Ph occurs to aldehydes or imines forming α -silyl alcohols⁶ or α -silyl amines,⁷ respectively, and to CO₂ which undergoes reduction.⁸ Also, a metal-free catalytic enantioselective 1,2-silylation of aromatic aldehydes with pinB-SiMe₂Ph was latter reported.⁹ Analogous catalytic reactions between silvlborane and α , β -unsaturated carbonyl compounds occur

Scheme 1. Catalyzed Reactions Between Aldehydes and Silylborane pinB-SiMe₂Ph.

The Journal of Organic Chemistry

via a 1,4-silyl addition.^{1a} A common characteristic of these reactions, is that the silyl part of pinB-SiMe₂Ph behaves as a nucleophile, through the formation of a metal-SiMe₂Ph complex as a key intermediate in the proposed catalytic cycles.

In this manuscript, we present our studies regarding the reaction of silvlborane pinB-SiMe₂Ph with carbonyl compounds catalyzed by supported Au nanoparticles. In the presence of 1.0 mol% Au/TiO₂, a series of para- and meta-substituted aromatic aldehydes or acetophenones (1 equiv) and pinB-SiMe₂Ph (1.5 equiv) react smoothly in dry benzene at 70 °C forming after 3 h silvlated pinacol-type dimerization products in good isolated yields (Scheme 1 and Table 1). The dimeric products appear as an approximately equimolar mixture of meso and dl diastereomers. The assignment of unknown compounds as meso or dl was done by deprotection and characterization of the resulting known diols. Typically, no side products derived from the carbonyl compounds are seen. In case of using non-dried solvent, additional excess of silvlborane is required (2-3 equiv) to compensate its destruction, and at the same time minor amounts of hydrosilylation products of the carbonyl compounds¹⁰ can be seen due to the in situ formed HSiMe₂Ph, which is essentially an intermediate product from the Aucatalyzed hydrolysis of pinB-SiMe₂Ph.^{2a} Apart from dry benzene, 1,2-dichloroethane is also a suitable solvent providing similar yields under the same reaction conditions. In other solvents such as hexane, acetonitrile, ethyl acetate or tetrahydrofuran the yields are below 20%, while several unidentified side products are also formed (Table S1). Ortho-substituted benzaldehydes and bulky ketones such as benzophenone are unreactive. The involvement of Au nanoparticles in this catalytic transformation is without any doubt, as TiO₂ itself (rutile or anatase forms) does not promote any reaction between pinB-SiMe₂Ph and the carbonyl compounds. In contrast to the aromatic

pinB-SiMe₂Ph Catalyzed by Au/TiO₂.^a

^aThe reactions were performed at ~ 0.15 mmol scale of carbonyl compound. ^bAt 0.5 mmol scale the isolated yield was 68%.

 carbonyl compounds, typical aliphatic aldehydes or ketones are completely unreactive. Notably, no reaction between aldehydes or ketones (aromatic or aliphatic) and bis(pinacolato)diboron (pinB-Bpin) is taking place in the presence of Au/TiO₂. Such anticipated addition reaction is well established in the presence of other catalytic systems, primarily Cu(I), and yields α -hydroxy boronates.¹¹

To the best of our knowledge, this is the first example in the literature of such dimerization pathway involving reaction between carbonyl compounds and a silylborane. A silylative pinacol-type reductive dimerization of aromatic aldehydes has been reported as a major pathway in their reaction with hydrosilanes catalyzed by a dinuclear ruthenium complex,¹² by Au/Al₂O₃,¹³ or by N-doped carbon-encapsulated Ni/Co nanoparticles,¹⁴ and in the presence of a σ disilane catalyzed by Pt₂(dba)₃ (as a minor pathway).¹⁵ A specific example of a pinacol-type reductive dimerization of 2-pyridinecarboxaldehyde in the presence of pinB-Bpin and a Cu catalyst is also known.¹⁶ Commonly, silylated pinacols can be prepared from aldehydes and stoichiometric amounts of a metal (reductant), followed by silyl-protection of the resulting diols.¹⁷

The reductive dimerization apparently proceeds via a radical pathway as will be analyzed below. This postulation was established upon adding into the reaction mixture between pinB-SiMe₂Ph, *p*-tolualdehyde (**2**) and 1 mol% Au/TiO₂, 1.2 equivalents of the free radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Trapping adduct **2b** was formed in 95% relative yield (Scheme 2), with dimeric silylated pinacol products **2a** observed in merely 5% yield. No other TEMPO-trapping side products were seen. Product **2b** is a silylated hemiacetal and is chromatographically labile, as it undergoes during purification partial desilylation, collapsing eventually to *p*tolualdehyde. A very similar TEMPO-adduct had been isolated during the studies of the photoredox-catalyzed Brook rearrangement of α -silyl alcohols,¹⁸ as a proof for the involvement of α -silyloxy carbon radical intermediates.

Scheme 2. Au/TiO₂-Catalyzed Reaction of p-Tolualdehyde (2) with pinB-SiMe₂Ph in the Presence of TEMPO.

As a mechanistic explanation, we propose that the pinB-Au_n-SiMe₂Ph species³ generated from the activation of the σ bond of pinB-SiMe₂Ph on gold nanoparticle (Au_n) add to the carbonyl functionality, forming intermediate I (Scheme 3). Adduct I collapses into α -silvloxy radical II and Au_n-Bpin radical. Through propagations steps (intermediate III), the silvl bearing pinacol-type dimeric products IV are formed, while the fate of Bpin is also dimerization into pinB-Bpin (via pinB-Au_n-Bpin). Indeed, pinB-Bpin was detected by GC-MS during the progress of the reaction. The direct dimerization of radical II into the termination product IV is also a possible pathway. Another evidence for the participation of pinB-Au_n-Bpin species, was that when performing the Au-catalyzed reaction among benzaldehyde and pinB-SiMe₂Ph in the presence of 2-heptyne, apart from the anticipated dimeric products 1a, cis-diboration of the alkyne (product 13)^{2b} was also observed in a relative ratio 1a/13 = 60/40. Silyborane itself does not form a diboration adduct with 2-heptyne under identical reaction conditions, and is completely unreactive as also observed earlier^{2a} in the attempted silaboration of internal alkynes. Notably, the current radical-chain mechanism is completely different from a recently reported one,¹⁴ concerning the formation of

silylated pinacols from the reaction between aromatic aldehydes and hydrosilanes catalyzed by *N*-doped carbon-encapsulated Ni/Co nanoparticles. In this study, the chain process is initiated by a silyl radical, which is trappable by TEMPO. We also emphasize that our way of generating ketyl radicals does not require single electron reductants or irradiation.¹⁹

Scheme 3. Possible Mechanism for the Au/TiO₂-Catalyzed Reaction Between an Aromatic Aldehyde and pinB-SiMe₂Ph, and Evidence for the Formation of pinB-Au_n-

Bpin Species.

In conclusion, we have presented herein a novel catalytic property of supported Au nanoparticles in the reaction between aromatic aldehydes or acetophenones with silylborane pinB-SiMe₂Ph, which leads to silylative reductive pinacol-type dimerization products via a radical-chain pathway.²⁰ The fate of pinB moiety is its transformation into pinB-Au_n-Bpin species. Our protocol adds a new and unprecedented mode of reactivity of silylboranes with carbonyl compounds and a new potential application of supported Au nanoparticles in catalysis.²¹ Further work is in progress to exploit new synthetic applications based on the current findings.

EXPERIMENTAL SECTION

General: The reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (60F-254). Flash column chromatography was carried out on SiO₂ (silica gel 60, particle size 0.040–0.063 mm). The catalyst, Au/TiO₂ (1 wt% in Au), is commercially available and has an average gold crystallite size of ~2-3 nm. NMR spectra were recorded on 300 and 500 MHz instruments. High resolution mass spectra (HRMS) were recorded on a Bruker® Maxis Impact QTOF and on a Thermo Scientific LTQ Orbitrap XL spectrometers.

Typical procedure for the Au/TiO₂-catalyzed reaction between aromatic carbonyl compounds and silylborane pinB-SiMe₂Ph: To a vial containing *p*-tolylaldehyde, **2** (18 μ L, 0.15 mmol) and (dimethylphenylsilyl)boronic acid pinacol ester, pinB-SiMe₂Ph (0.06 mL, 0.225 mmol) dissolved in dry benzene (0.5 mL) were added Au/TiO₂ (29 mg, 1 wt% in Au, ~0.0015 mmol). The mixture was heated in an oil bath to 70 °C until the aldehyde was consumed (2-3 h). The slurry was filtered with the aid of dichloromethane (3 mL) through a short pad of silica gel. The filtrate was evaporated under vacuum and the residue was chromatographed with hexane/ethyl acetate = 80/1 as eluent to afford **2a** (26.8 mg, 72% yield). The reaction between aldehyde **2** and pinB-SiMe₂Ph was also performed at the scale of 0.5 mmol, with dimers **2a** isolated in 68% yield.

Spectroscopic data of products

Page 9 of 18

2,7-Dimethyl-2,4,5,7-tetraphenyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 1a).²² Colorless oil (19.7 mg, 61% yield); ¹H NMR (500 MHz, CDCl₃): 7.43-7.00 (m, 20H meso + 20H dl), 4.71 (s, 2H, meso), 4.54 (s, 2H, dl), 0.19 (s, 6H, meso), 0.14 (s, 6H, meso), 0.00 (s, 6H, dl), -0.07 (s, 6H, dl); ¹³C{¹H} NMR (125 MHz, CDCl₃): 142.5, 141.2, 137.9, 137.5, 133.6, 133.5, 129.3, 129.2, 127.7, 127.6 (two overlapping peaks), 127.5, 127.4, 127.3, 127.2 and 127.0 (aromatic resonances, meso+dl), 79.83 and 79.81 (meso+dl), -1.0, -1.4, -1.5 and -1.8 (meso+dl).

2,7-Dimethyl-2,7-diphenyl-4,5-di*p***-tolyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 2a).**²³ Colorless oil (26.8 mg, 72% yield); ¹H NMR (500 MHz, CDCl₃): 7.44-6.88 (m, 18H meso + 18H dl), 4.67 (s, 2H, meso), 4.52 (s, 2H, dl), 2.37 (s, 6H, dl), 2.29 (s, 6H, meso), 0.19 (s, 6H, meso), 0.14 (s, 6H, meso), 0.03 (s, 6H, dl), -0.05 (s, 6H, dl); ¹³C{¹H} NMR (125 MHz, CDCl₃): 139.6, 138.3, 138.1, 137.8, 136.6, 136.3, 133.7, 133.5, 129.2, 129.1, 128.2, 127.9, 127.6, 127.5 and 127.4 (two overlapping peaks) (aromatic resonances, meso+dl), 79.68 and 79.66 (meso+dl), 21.22 and 21.16 (meso+dl), -0.9, -1.3 (two overlapping peaks) and -1.7 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₃₈O₂Si₂Na 533.2302; Found 533.2280.

4,5-bis(4-Isopropylphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 3a).²³ Colorless oil (24.4 mg, 66% yield); ¹H NMR (500 MHz, CDCl₃): 7.37-7.95 (m, 18H meso + 18H dl), 4.65 (s, 2H, meso), 4.48 (s, 2H, dl), 2.94 (heptet, *J* = 7.0 Hz, 2H, dl), 2.85 (heptet, *J* = 7.0 Hz, 2H, meso), 1.29 (d, *J* = 7.0 Hz, 12H, dl), 1.22 (d, *J* = 7.0 Hz, 12H, meso), 0.15 (s, 6H, meso), 0.10 (s, 6H, meso), -0.03 (s, 6H, dl), -0.11 (s, 6H, dl); ¹³C{¹H} NMR (125 MHz, CDCl₃): 147.8, 147.4, 140.2, 138.9, 138.1, 137.8, 133.7, 133.5, 129.2, 129.1, 127.6, 127.4, 127.4, 127.2, 125.5, 125.2 (aromatic resonances, meso+dl), 79.9 and 79.7 (meso+dl), 33.9 and 33.7 (meso+dl), 24.2 and 24.1

(meso+dl), -1.1, -1.3, -1.5 and -1.8 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₄₆O₂Si₂Na 589.2928; Found 589.2903.

4,5-bis(4-Methoxyphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 4a).²⁴ Colorless oil (29.1 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃): 7.46-6.65 (m, 18H meso + 18H dl), 4.64 (s, 2H, meso), 4.48 (s, 2H, dl), 3.83 (s, 6H, dl), 3.76 (s, 6H, meso), 0.40 (s, 6H, meso), 0.20 (s, 6H, meso), 0.03 (s, 6H, dl), -0.04 (s, 6H, dl); ¹³C{¹H} NMR (125 MHz, CDCl₃): 158.8, 158.5, 138.1, 137.8, 134.8, 133.6, 133.5, 133.4, 129.3, 129.2, 128.7, 128.6, 127.5, 127.4, 112.9 and 112.6 (aromatic resonances, meso+dl), 79.4 (two overlapping meso+dl), 55.2 and 55.1 (meso+dl), -0.9, -1.3, -1.3 and -1.7 (meso+dl).

4,5-bis(4-Fluorophenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 5a).²³ Colorless oil (22.2 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃): 7.41-6.79 (m, 18H meso + 18H dl), 4.64 (s, 2H, meso), 4.44 (s, 2H, dl), 0.21 (s, 6H, meso), 0.15 (s, 6H, meso), 0.02 (s, 6H, dl), -0.04 (s, 6H, dl); ¹³C {¹H} NMR (125 MHz, CDCl₃): 162.2 (d, $J_{C-F} = 243.5$ Hz), 162.0 (d, $J_{C-F} = 243.5$ Hz), 138.1 (d, $J_{C-F} = 3.0$ Hz), 137.5, 137.1, 136.5 (d, $J_{C-F} = 3.0$ Hz), 133.5, 133.4, 129.5, 129.4, 129.0 (d, $J_{C-F} = 8.0$ Hz), 128.9 (d, $J_{C-F} = 8.0$ Hz), 127.7, 127.5, 114.4 (d, $J_{C-F} = 21.5$ Hz) and 114.1 (d, $J_{C-F} =$ 21.5 Hz) (aromatic resonances, meso+dl), 79.1 and 78.8 (meso+dl), -1.2, -1.5, -1.6 and -1.8 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₃₂F₂O₂Si₂Na 541.1801; Found 541.1793.

2,7-Dimethyl-4,5-di(naphthalen-2-yl)-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 6a).²³ White solid (19.8 mg, 55% yield); ¹H NMR (300 MHz, CDCl₃): 7.89-6.94 (m, 24H meso + 24H dl), 4.96 (s, 2H, meso), 4.78 (s, 2H, dl), 0.17 (s, 6H, meso), 0.11 (s, 6H, meso), -0.03 (s, 6H, dl), -0.12 (s, 6H, dl); ¹³C {¹H} NMR (75 MHz, CDCl₃): 140.1, 138.8, 137.5, 137.1, 134.1, 133.6, 133.4, 133.1, 133.1, 132.9, 132.8, 129.3,

129.2, 128.0, 127.9, 127.6, 127.5, 127.5, 127.3, 127.3, 126.8, 126.7, 126.3, 125.8, 125.7, 125.7, 125.5 and 125.4 (aromatic resonances, meso+dl), 79.9 and 79.7 (meso+dl), -1.0, -1.4, -1.4 and -1.8 (meso+dl); HRMS (ESI-Orbit trap) m/z: $[M + H]^+$ Calcd for C₃₈H₃₉O₂Si₂ 583.2489; Found 583.2495.

4,5-di([1,1'-Biphenyl]-4-yl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 7a).²³ White solid (26.8 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃): 7.69-7.12 (m, 28H meso + 28H dl), 4.79 (s, 2H, meso), 4.62 (s, 2H, dl), 0.24 (s, 6H, meso), 0.19 (s, 6H, meso), 0.07 (s, 6H, dl), -0.00 (s, 6H, dl); ¹³C {¹H} NMR (125 MHz, CDCl₃): 141.7, 141.2, 141.0, 140.3, 139.6, 137.8, 137.4, 133.6, 133.5, 129.3, 129.3, 128.7, 128.7, 128.1, 127.9, 127.6, 127.5, 127.1, 127.0, 127.0, 126.9, 126.3 and 126.0 (aromatic resonances, meso+dl), 79.6 and 79.5 (meso+dl), -1.0, -1.3, -1.4 and -1.7 (meso+dl); HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₄₂H₄₂O₂Si₂Na 657.2615; Found 657.2627.

4,5-bis(3-Methoxyphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 8a).²³ Colorless oil (20.3 mg, 59% yield); ¹H NMR (500 MHz, CDCl₃): 7.41-6.58 (m, 18H meso + 18H dl), 4.67 (s, 2H, meso), 4.51 (s, 2H, dl), 3.72 (s, 6H, dl), 3.63 (s, 6H, meso), 0.19 (s, 6H, meso), 0.15 (s, 6H, meso), 0.04 (s, 6H, dl), -0.03 (s, 6H, dl); ¹³C {¹H} NMR (125 MHz, CDCl₃): 159.1, 158.8, 144.1, 142.9, 137.8, 137.5, 133.6, 133.5, 129.3, 129.3, 128.4, 128.2, 127.5, 127.5, 120.3, 119.8, 113.5, 113.2, 112.5 and 112.5 (aromatic resonances, meso+dl), 79.7 and 79.7 (meso+dl), 55.2 and 55.1 (meso+dl), -1.1, -1.4, -1.5 and -1.7 (meso+dl); HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₂H₃₈O₄Si₂Na 565.2201; Found 565.2186.

2,4,5,7-Tetramethyl-2,4,5,7-tetraphenyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 9a).²³ Colorless oil (22.3 mg, 58% yield); ¹H NMR (500 MHz, CDCl₃): 7.57-6.99 (m, 20H meso + 20H dl), 1.71 (s, 6H, meso), 1.47 (s, 6H, dl), 0.25 (s, 6H, meso), 0.20 (s, 6H,

meso), 0.10 (s, 6H, dl), 0.00 (s, 6H, dl); ${}^{13}C{}^{1}H}$ NMR (125 MHz, CDCl₃): 145.6, 144.8, 139.9, 139.8, 133.4, 133.2, 129.1, 129.0, 128.3, 128.2, 127.6 (two overlapping peaks), 126.8, 126.4, 126.2 and 126.0 (aromatic resonances, meso+dl), 82.7 and 81.9 (meso+dl), 24.6 and 24.1 (meso+dl), 1.1, 1.0, 0.9 and 0.9 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₃₈O₂Si₂Na 533.2302; Found 533.2280.

2,4,5,7-Tetramethyl-2,7-diphenyl-4,5-di-*p*-tolyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 10a).²³ Colorless oil (25.8 mg, 66% yield); ¹H NMR (500 MHz, CDCl₃): 7.56-6.87 (m, 18H meso + 18H dl), 2.36 (s, 6H, meso), 2.30 (s, 6H, dl), 1.66 (s, 6H, meso), 1.44 (s, 6H, dl), 0.23 (s, 6H, meso), 0.19 (s, 6H, meso), 0.11 (s, 6H, dl), -0.01 (s, 6H, dl); ¹³C{¹H} NMR (125 MHz, CDCl₃): 142.7, 141.9, 140.1, 140.0, 135.7, 135.5, 133.4, 133.3, 129.0, 128.9, 128.2, 128.2, 127.5, 127.5, 127.4 and 126.8 (aromatic resonances, meso+dl), 82.7 and 81.9 (meso+dl), 24.7 and 24.2 (meso+dl), 21.01 and 21.00 (meso+dl), 1.2, 1.1, 1.0 and 0.9 (meso+dl); HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₄H₄₂O₂Si₂Na 561.2615; Found 561.2608.

2,4,5,7-Tetramethyl-2,7-diphenyl-4,5-di-m-tolyl-3,6-dioxa-2,7-disilaoctane

(meso+dl, 11a).²³ Colorless oil (21.7 mg, 58% yield). ¹H NMR (500 MHz, CDCl₃): 7.58-6.75 (m, 18H meso + 18H dl), 2.31 (s, 6H, dl), 2.17 (s, 6H, meso), 1.72 (s, 6H, meso), 1.44 (s, 6H, dl), 0.27 (s, 6H), 0.19 (s, 6H), 0.12 (s, 6H) and 0.01 (s, 6H) (meso+dl); ¹³C {¹H} NMR (125 MHz, CDCl₃): 145.6, 144.6, 140.0, 139.9, 135.8, 135.0, 133.4, 133.2, 129.3, 129.2, 129.0, 129.0, 127.6, 127.5, 127.0, 126.8, 126.6, 125.7, 125.3 and 125.3 (aromatic resonances, meso+dl), 82.7 and 82.0 (meso+dl), 24.7 and 24.1 (meso+dl), 21.6 and 21.4 (meso+dl), 1.2, 1.0, 0.9 and 0.8 (meso+dl); HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₄H₄₂O₂Si₂Na 561.2615; Found 561.2608.

4,5-bis(4-Methoxyphenyl)-2,4,5,7-tetramethyl-2,7-diphenyl-3,6-dioxa-2,7-

disilaoctane (meso+dl, 12a).²³ Colorless oil (26.6 mg, 65% yield). ¹H NMR (500 MHz,

CDCl₃): 7.56-6.60 (m, 18H meso + 18H dl), 3.82 (s, 6H, dl), 3.78 (s, 6H, meso), 1.67 (s, 6H, meso), 1.45 (s, 6H, dl), 0.25 (s, 6H), 0.18 (s, 6H), 0.11 (s, 6H), 0.02 (s, 6H) (meso+dl); $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃): 158.2, 158.0, 140.0, 139.9, 137.9, 137.2, 133.4, 133.3, 129.4, 129.3, 129.0, 129.0, 127.6 (two overlapping peaks), 112.0 and 111.3 (aromatic resonances, meso+dl), 82.5 and 81.9 (meso+dl), 55.2 and 55.1 (meso+dl), 24.7 and 24.2 (meso+dl), 1.2, 1.0 and 1.0 (two overlapping peaks) (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₄₂O₄Si₂Na 593.2514; Found 593.2515.

1-(((Dimethyl(phenyl)silyl)oxy)(p-tolyl)methoxy)-2,2,6,6-tetramethylpiperidine

(2b): ¹H NMR (500 MHz, CDCl₃): 7.58-7.30 (m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.85 (s, 1H), 2.34 (s, 3H), 1.61-1.27 (m, 6H), 1.35 (s, 3H), 1.12 (s, 3H), 1.03 (s, 3H), 0.96 (s, 3H), 0.31 (s, 3H), 0.21 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 138.8, 137.9, 137.5, 133.9, 129.3, 128.5, 127.5, 126.2, 102.0, 60.4, 59.2, 40.4, 40.0, 34.5, 33.5, 21.2, 20.7, 20.3, 17.3, -0.6, -0.9; HRMS (ESI-Orbit trap) m/z: $[M + H]^+$ Calcd for C₂₅H₃₈NO₂Si 412.2672; Found 412.2671.

Supporting Information Available: Copies of ¹H and ¹³C NMR of all products. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgments: The research work was partly supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship grant (GA No 31449) for M.K. We thank ProFI (ITE, Heraklion, Greece) and professor C. Kokotos (University of Athens) for obtaining the HRMS spectra of unknown compounds.

REFERENCES

- a) Oestreich, M.; Hartmann, E.; Mewald, M. Activation of the Si–B Interelement Bond: Mechanism, Catalysis, and Synthesis. *Chem. Rev.* 2013, *113*, 402–441. b) Ohmura, T.; Suginome, M. Silylboranes as New Tools in Organic Synthesis. *Bull. Chem. Soc. Jpn.* 2009, *82*, 29–49. c) Beletskaya, I.; Moberg, C. Element–Element Additions to Unsaturated Carbon–Carbon Bonds Catalyzed by Transition Metal Complexes. *Chem. Rev.* 2006, *106*, 2320–2354.
- (2) a) Gryparis, M.; Stratakis, M. Nanogold-Catalyzed *cis*-Silaboration of Alkynes with Abnormal Regioselectivity. *Org. Lett.* 2014, *16*, 1430–1433. b) Kidonakis, M.; Stratakis, M. Gold-Nanoparticle-Catalyzed Mild Diboration and Indirect Silaboration of Alkynes without the Use of Silylboranes. *Eur. J. Org. Chem.* 2017, 4265–4271.
- (3) Kidonakis, M.; Stratakis, M. Regioselective Diboration and Silaboration of Allenes Catalyzed by Au Nanoparticles. *ACS Catal.* 2018, *8*, 1227–1230.
- (4) Vasilikogiannaki, E.; Louka, A.; Stratakis, M. Gold-Nanoparticle-Catalyzed Silaboration of Oxetanes and Unactivated Epoxides. *Organometallics* 2016, *35*, 3895–3902.
- (5) Buynak, J. D.; Geng, B. Gold-Nanoparticle-Catalyzed Silaboration of Oxetanes and Unactivated Epoxides. *Organometallics* **1995**, *14*, 3112–3115.
- Kleeberg, C.; Feldmann, E.; Hartmann, E.; Vyas, D. J.; Oestreich, M. Copper-Catalyzed 1,2-Addition of Nucleophilic Silicon to Aldehydes: Mechanistic Insight and Catalytic Systems. *Chem. Eur. J.* 2011, *17*, 13538–13543.
- (7) a) Vyas, D. J.; Frohlich, R.; Oestreich, M. Activation of the Si-B Linkage:
 Copper-Catalyzed Addition of Nucleophilic Silicon to Imines. *Org. Lett.* 2011,

 13, 2094–2097. b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Enantioselective Addition of Silicon Nucleophiles to Aldimines Using a Preformed NHC–Copper(I) Complex as the Catalyst. *Angew. Chem. Int. Ed.* **2014**, *53*, 4964–4967. c) Mita, T.; Sugawara, M.; Saito, K.; Sato, K. Catalytic Enantioselective Silylation of *N*-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO₂ via Stereospecific Carboxylation of α-Amino Silanes. *Org. Lett.* **2014**, *16*, 3028–3031. d) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. [2.2]Paracyclophane-Based *N*-Heterocyclic Carbene as Efficient Catalyst or as Ligand for Copper Catalyst for Asymmetric α-Silylation of N-Tosylaldimines. *Org. Chem. Front.* **2016**, *3*, 1725–1737.

- (8) Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder, T. B. Copper-Mediated Reduction of CO₂ with pinB-SiMe₂Ph via CO₂ Insertion into a Copper-Silicon Bond. J. Am. Chem. Soc. 2011, 133, 19060–19063.
- (9) An, P.; Huo, Y.; Chen, Z.; Song, C.; Ma, Y. Metal-Free Enantioselective Addition of Nucleophilic Silicon to Aromatic Aldehydes Catalyzed by a [2.2]Paracyclophane-Based N-Heterocyclic Carbene Catalyst. Org. Biomol. Chem. 2017, 15, 3202–3206.
- (10) a) Vasilikogiannaki, E.; Titilas, I.; Gryparis, C.; Louka, A.; Lykakis, I. N.; Stratakis, M. Efficient Hydrosilylation of Carbonyl Compounds by 1,1,3,3-Tetramethyldisiloxane Catalyzed by Au/TiO₂. *Tetrahedron* 2014, 70, 6106–6113. b) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Gold Nanoparticles and Gold(III) Complexes as General and Selective Hydrosilylation Catalysts. *Angew. Chem. Int. Ed.* 2007, 46, 7820–7822.
- (11) a) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. DFT Studies on the Mechanism of the Diboration of Aldehydes Catalyzed by Copper(I) Boryl Complexes. J. Am.

Chem. Soc. **2008**, *130*, 5586–5594. b) McIntosh, M. L.; Moore, C. M.; Clark, T. B. Copper-Catalyzed Diboration of Ketones: Facile Synthesis of Tertiary α-Hydroxyboronate Esters. *Org. Lett.* **2010**, *12*, 1996–1999.

- (12) Shimada, H.; Qu, J.-P.; Matsuzaka, H.; Ishii, Y.; Hidai, M. Silylative Dimerization of Aromatic Aldehydes Catalyzed by a Thiolate-Bridged Diruthenium Complex. *Chem. Lett.* 1995, 671–672.
- (13) Raffa, P.; Evangelisti, C.; Vitulli, G.; Salvadori, P. First Examples of Gold Nanoparticles Catalyzed Silane Alcoholysis and Silylative Pinacol Coupling of Carbonyl Compounds. *Tetrahedron Lett.* 2008, 49, 3221–3224.
- (14) Kramer, S.; Hejjo, F.; Rasmussen, K. H.; Kegnæs, S. Silylative Pinacol Coupling Catalyzed by Nitrogen-Doped Carbon-Encapsulated Nickel/Cobalt Nanoparticles: Evidence for a Silyl Radical Pathway. ACS Catal. 2018, 8, 754–759.
- (15) Williams, N. A.; Uchimaru, Y.; Tanaka, M. Palladium or Platinum Complex Catalysed Reactions of Carbonyl and Imine Compounds with Disilanes. *Dalton Trans.* 2003, 236–243.
- (16) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Catalytic Diboration of Aldehydes via Insertion into the Copper–Boron Bond. J. Am. Chem. Soc. 2006, 128, 11036–11037.
- (17) a) Lipski, T. A.; Hilfiker, M. A.; Nelson, S. G. Ligand-Modified Catalysts for the McMurry Pinacol Reaction. J. Org. Chem. 1997, 62, 4566-4567. b) Groth, U.; Jeske, M. Diastereoselective Ce(OiPr)₃-Catalyzed Pinacol Couplings of Aldehydes. Angew. Chem. Int. Ed. 2000, 39, 574-576. c) Gansauer, A.; Bluhm, H. Reagent-Controlled Transition-Metal-Catalyzed Radical Reactions. Chem. Rev. 2000, 100, 2771-2788. d) Ogoshi, S.; Kamada, H.; Kurosawa, H. Reaction

of (η^2 -Arylaldehyde)nickel(0) Complexes With Me₃SiX (X=OTf, Cl). Application to Catalytic Reductive Homocoupling Reaction of Arylaldehyde. *Tetrahedron* **2006**, *62*, 7583–7588. e) Streuff, J. The Electron-Way: Metal-Catalyzed Reductive Umpolung Reactions of Saturated and α , β -Unsaturated Carbonyl Derivatives. *Synthesis* **2013**, *45*, 281–307.

- (18) Deng, Y.; Liu, Q.; Smith, A. B. III. Oxidative [1,2]-Brook Rearrangements Exploiting Single-Electron Transfer: Photoredox-Catalyzed Alkylations and Arylations. J. Am. Chem. Soc. 2017, 139, 9487–9490.
- Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Ketyl Radical Reactivity via Atom Transfer Catalysis. *Science* 2018, *362*, 225–229.
- (20) A similar non-radical chain mechanism involving nucleophilic addition of the silyl group to the carbonyl functionality followed by Brook-rearrangement is known: Baati, R.; Mioskowski, C.; Barma, D.; Kache, R.; Falck, J. R. Reductive Olefination of Aldehydes via Chromium Brook Rearrangement. *Org. Lett.* 2006, *8*, 2949–2951.
- (21) Selected review articles: a) Stratakis, M.; Garcia, H. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. *Chem. Rev.* 2012, *112*, 4469–4506. b) Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis. *Chem. Rev.* 2012, *112*, 2467–2505. c) Corma, A.; Garcia, H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. *Chem. Soc. Rev.* 2008, *37*, 2096–2126.
- (22) Skjel, M. K.; Houghton, A. Y.; Kirby, A. E.; Harrison, D. J.; McDonald, R.; Rosenberg, L. Silane-Controlled Diastereoselectivity in the Tris(pentafluorophenyl)borane-Catalyzed Reduction of α-Diketones to Silyl-Protected 1,2-Diol. Org. Lett. 2010, 12, 376–379.

- (23) The products were assigned as meso/dl by deprotecting them with TBAF and characterizing the resulting known diols: a) Okamoto, S.; Kojiyama, K.; Tsujioka, H.; Sudo, A. Metal-Free Reductive Coupling of CO and CN Bonds Driven by Visible Light: Use of Perylene as a Simple Photoredox Catalyst. *Chem. Commun.* 2016, *52*, 11339–11342. b) Wang, C.; Pan, Y.; Wu, A. InCl₃/Al Mediated Pinacol Coupling Reactions of Aldehydes and Ketones in Aqueous Media. *Tetrahedron* 2007, *63*, 429–434. c) Li, J.-T.; Bian, Y.-J.; Zang, H.-J.; Li, T.-S. Pinacol Coupling of Aromatic Aldehydes and Ketones Using Magnesium in Aqueous Ammonium Chloride Under Ultrasound. *Synth. Commun.* 2002, *32*, 547–551.
- (24) Vargas, R. M.; Hossain, M. M. Photochemical Reactions of $(\eta$ -C₅H₅)Fe(CO)₂SiMe₂R (R = Me, Ph) With ArCHO (Ar = C₆H₅, *p*-OCH₃C₆H₄). *Inorg. Chim. Acta* **1993**, 204, 139–140.