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ABSTRACT: Aromatic aldehydes and acetophenones undergo silylative pinacol-type 

reductive dimerization in their reaction with silylborane pinB-SiMe2Ph (pin: pinacolato) 

catalyzed by supported Au nanoparticles on TiO2. It is proposed that after initial 

activation of silylborane by Au nanoparticles and addition to the carbonyl functionality 

of an aromatic aldehyde or ketone, an aryl silyloxy radical is generated from the 

collapse of the intermediate adduct, which then dimerizes through a chain process. The 

silyloxy radical was almost quantitatively trapped, in the presence of TEMPO.
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Silylboranes is a class of compounds whose chemistry has attracted a 

considerable interest in recent years. The Si-B bond can be readily activated by a series 

of catalysts, primarily transition metals, and undergoes addition to unsaturated 

compounds.1 The activation of silylborane pinB-SiMe2Ph (pin: pinacolato) by supported 

Au nanoparticles (Aun), and the subsequent addition of the Au-nanoparticle bonded 

boron and silyl moieties (pinB-Aun-SiMe2Ph) on alkynes,2 allenes3 or strained cyclic 

ethers4 has been recently documented by our group. As a continuation of our studies in 

this field we examined the possible reaction between pinB-SiMe2Ph and carbonyl 

compounds in the presence of Au nanoparticles. It is well known that silylboranes are 

unreactive against carbonyl compounds,5 as also proved in our hands. In the presence of 

a NHC-Cu complex, however, a catalytic C-Si bond forming reaction is taking place 

(Scheme 1). Thus, nucleophilic addition of the silicon moiety from pinB-SiMe2Ph 

occurs to aldehydes or imines forming -silyl alcohols6 or -silyl amines,7 respectively, 

and to CO2 which undergoes reduction.8 Also, a metal-free catalytic enantioselective 

1,2-silylation of aromatic aldehydes with pinB-SiMe2Ph was latter reported.9 Analogous 

catalytic reactions between silylborane and -unsaturated carbonyl compounds occur 

R H

O PhMe2Si-Bpin

NHC-Cu catalyst R SiMe2Ph

OH

(after hydrolysis)

Ar H

O PhMe2Si-Bpin

Au/TiO2 (catalyst)

OSiMe2Ph

Ar Ar

PhMe2SiO

(meso+dl)

HH

Known in literature

Our work

Scheme 1. Catalyzed Reactions Between Aldehydes and Silylborane pinB-SiMe2Ph.
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3

via a 1,4-silyl addition.1a A common characteristic of these reactions, is that the silyl 

part of pinB-SiMe2Ph behaves as a nucleophile, through the formation of a metal-

SiMe2Ph complex as a key intermediate in the proposed catalytic cycles.

In this manuscript, we present our studies regarding the reaction of silylborane 

pinB-SiMe2Ph with carbonyl compounds catalyzed by supported Au nanoparticles. In 

the presence of 1.0 mol% Au/TiO2, a series of para- and meta-substituted aromatic 

aldehydes or acetophenones (1 equiv) and pinB-SiMe2Ph (1.5 equiv) react smoothly in 

dry benzene at 70 oC forming after 3 h silylated pinacol-type dimerization products in 

good isolated yields (Scheme 1 and Table 1). The dimeric products appear as an 

approximately equimolar mixture of meso and dl diastereomers. The assignment of 

unknown compounds as meso or dl was done by deprotection and characterization of 

the resulting known diols. Typically, no side products derived from the carbonyl 

compounds are seen. In case of using non-dried solvent, additional excess of silylborane 

is required (2-3 equiv) to compensate its destruction, and at the same time minor 

amounts of hydrosilylation products of the carbonyl compounds10 can be seen due to the 

in situ formed HSiMe2Ph, which is essentially an intermediate product from the Au-

catalyzed hydrolysis of pinB-SiMe2Ph.2a Apart from dry benzene, 1,2-dichloroethane is 

also a suitable solvent providing similar yields under the same reaction conditions. In 

other solvents such as hexane, acetonitrile, ethyl acetate or tetrahydrofuran the yields 

are below 20%, while several unidentified side products are also formed (Table S1). 

Ortho-substituted benzaldehydes and bulky ketones such as benzophenone are 

unreactive. The involvement of Au nanoparticles in this catalytic transformation is 

without any doubt, as TiO2 itself (rutile or anatase forms) does not promote any reaction 

between pinB-SiMe2Ph and the carbonyl compounds. In contrast to the aromatic 
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4

Table 1: Reaction Between Aromatic Aldehydes and Acetophenones with

pinB-SiMe2Ph Catalyzed by Au/TiO2.a

Ar R

O
PhMe2Si-Bpin (1.5 eq)

Au/TiO2 (1 mol%)

dry benzene, 70 oC, 3 h

OSiMe2Ph

Ar Ar

PhMe2SiOOSiMe2Ph

Ar Ar

PhMe2SiO

(racemic, dl)(meso)

RR RR

R = H or Me

OSiMe2Ph

Ph Ph

PhMe2SiO
HH

1a (61%, dl/meso=53/47)

OSiMe2PhPhMe2SiO
HH

2a (72%, dl/meso=52/48)b
Me Me

OSiMe2PhPhMe2SiO
HH

3a (66%, dl/meso=54/46)

OSiMe2PhPhMe2SiO
HH

4a (75%, dl/meso=54/46)
MeO OMe

OSiMe2PhPhMe2SiO
HH

5a (62%, dl/meso=51/49)
F F

OSiMe2Ph

Ph Ph

PhMe2SiO
MeMe

9a (58%, dl/meso=53/47)

OSiMe2PhPhMe2SiO
MeMe

12a (65%, dl/meso=44/56)
MeO OMe

OSiMe2PhPhMe2SiO
HH

OSiMe2PhPhMe2SiO
MeMe

10a (66%, dl/meso=52/48)
Me Me

OSiMe2PhPhMe2SiO
MeMe

11a (58%, dl/meso=51/49)

Me Me

6a (50%, dl/meso=55/45)

CHO

Me

O

Ph Ph
Unreactive

OSiMe2PhPhMe2SiO
HH

8a (59%, dl/meso=43/57)

MeO OMe

OSiMe2PhPhMe2SiO
HH

7a (54%, dl/meso=53/47)
Ph Ph

aThe reactions were performed at ~0.15 mmol scale of carbonyl compound.   bAt 0.5 mmol scale the 

isolated yield was 68%.
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carbonyl compounds, typical aliphatic aldehydes or ketones are completely unreactive. 

Notably, no reaction between aldehydes or ketones (aromatic or aliphatic) and 

bis(pinacolato)diboron (pinB-Bpin) is taking place in the presence of Au/TiO2. Such 

anticipated addition reaction is well established in the presence of other catalytic 

systems, primarily Cu(I), and yields -hydroxy boronates.11

To the best of our knowledge, this is the first example in the literature of such 

dimerization pathway involving reaction between carbonyl compounds and a 

silylborane. A silylative pinacol-type reductive dimerization of aromatic aldehydes has 

been reported as a major pathway in their reaction with hydrosilanes catalyzed by a 

dinuclear ruthenium complex,12 by Au/Al2O3,13 or by N-doped carbon-encapsulated 

Ni/Co nanoparticles,14 and in the presence of a  disilane catalyzed by Pt2(dba)3 (as a 

minor pathway).15 A specific example of a pinacol-type reductive dimerization of 2-

pyridinecarboxaldehyde in the presence of pinΒ-Bpin and a Cu catalyst is also known.16 

Commonly, silylated pinacols can be prepared from aldehydes and stoichiometric 

amounts of a metal (reductant), followed by silyl-protection of the resulting diols.17

The reductive dimerization apparently proceeds via a radical pathway as will be 

analyzed below. This postulation was established upon adding into the reaction mixture 

between pinB-SiMe2Ph, p-tolualdehyde (2) and 1 mol% Au/TiO2, 1.2 equivalents of the 

free radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Trapping adduct 

2b was formed in 95% relative yield (Scheme 2), with dimeric silylated pinacol 

products 2a observed in merely 5% yield. No other TEMPO-trapping side products 

were seen. Product 2b is a silylated hemiacetal and is chromatographically labile, as it 

undergoes during purification partial desilylation, collapsing eventually to p-

tolualdehyde. A very similar TEMPO-adduct had been isolated during the studies of the 
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6

photoredox-catalyzed Brook rearrangement of -silyl alcohols,18 as a proof for the 

involvement of -silyloxy carbon radical intermediates.

H

O PhMe2Si-Bpin (1.5 equiv)
Au/TiO2 (1 mol%)

dry benzene, 70 oC, 3 h
TEMPO (1.2 equiv)

O

PhMe2SiO

N

2b (relative yield 95%)
2

Scheme 2. Au/TiO2-Catalyzed Reaction of p-Tolualdehyde (2) with pinB-SiMe2Ph in 

the Presence of TEMPO.

As a mechanistic explanation, we propose that the pinB-Aun-SiMe2Ph species3 

generated from the activation of the  bond of pinB-SiMe2Ph on gold nanoparticle 

(Aun) add to the carbonyl functionality, forming intermediate I (Scheme 3). Adduct I 

collapses into -silyloxy radical II and Aun-Bpin radical. Through propagations steps 

(intermediate III), the silyl bearing pinacol-type dimeric products IV are formed, while 

the fate of Bpin is also dimerization into pinB-Bpin (via pinB-Aun-Bpin). Indeed, pinB-

Bpin was detected by GC-MS during the progress of the reaction. The direct 

dimerization of radical II into the termination product IV is also a possible pathway. 

Another evidence for the participation of pinB-Aun-Bpin species, was that when 

performing the Au-catalyzed reaction among benzaldehyde and pinB-SiMe2Ph in the 

presence of 2-heptyne, apart from the anticipated dimeric products 1a, cis-diboration of 

the alkyne (product 13)2b was also observed in a relative ratio 1a/13 = 60/40. Silyborane 

itself does not form a diboration adduct with 2-heptyne under identical reaction 

conditions, and is completely unreactive as also observed earlier2a in the attempted 

silaboration of internal alkynes. Notably, the current radical-chain mechanism is 

completely different from a recently reported one,14 concerning the formation of 
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7

silylated pinacols from the reaction between aromatic aldehydes and hydrosilanes 

catalyzed by N-doped carbon-encapsulated Ni/Co nanoparticles. In this study, the chain 

process is initiated by a silyl radical, which is trappable by TEMPO. We also emphasize 

that our way of generating ketyl radicals does not require single electron reductants or 

irradiation.19

pinBAun
I

pinB
Aun SiR3

O

Ar H

OSiR3

Ar AunBpin

OSiR3

Ar

O

Ar H
O

Ar Ar

R3SiO
HH

R3Si Bpin OSiR3

Ar Ar

R3SiO
HH

pinB
Aun Bpin

pinB

pinBAun

reacts with alkynes

Ph H

O
PhMe2Si-Bpin (1.5 equiv)

Au/TiO2 (1 mol%)

dry benzene, 70 oC, 3 h

OSiMe2Ph

Ph Ph

PhMe2SiO

1a (meso+dl)

HH

MeR
(R = n-Bu, 2 equiv)

+
MeR

BpinpinB

relative ratio 1a/13~60/40
13

Aun:
Au nanoparticle

II

x 2
III IV

IV

direct
coupling

propagation

Scheme 3. Possible Mechanism for the Au/TiO2-Catalyzed Reaction Between an 

Aromatic Aldehyde and pinB-SiMe2Ph, and Evidence for the Formation of pinB-Aun-

Bpin Species.

In conclusion, we have presented herein a novel catalytic property of supported 

Au nanoparticles in the reaction between aromatic aldehydes or acetophenones with 

silylborane pinB-SiMe2Ph, which leads to silylative reductive pinacol-type dimerization 

products via a radical-chain pathway.20 The fate of pinB moiety is its transformation 
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8

into pinB-Aun-Bpin species. Our protocol adds a new and unprecedented mode of 

reactivity of silylboranes with carbonyl compounds and a new potential application of 

supported Au nanoparticles in catalysis.21 Further work is in progress to exploit new 

synthetic applications based on the current findings.

EXPERIMENTAL SECTION

General: The reactions were monitored by thin-layer chromatography (TLC) carried 

out on silica gel plates (60F-254). Flash column chromatography was carried out on 

SiO2 (silica gel 60, particle size 0.040–0.063 mm). The catalyst, Au/TiO2 (1 wt% in 

Au), is commercially available and has an average gold crystallite size of ~2-3 nm. 

NMR spectra were recorded on 300 and 500 MHz instruments. High resolution mass 

spectra (HRMS) were recorded on a Bruker® Maxis Impact QTOF and on a Thermo 

Scientific LTQ Orbitrap XL spectrometers.

Typical procedure for the Au/TiO2-catalyzed reaction between aromatic carbonyl 

compounds and silylborane pinB-SiMe2Ph: To a vial containing p-tolylaldehyde, 2 

(18 L, 0.15 mmol) and (dimethylphenylsilyl)boronic acid pinacol ester, pinB-SiMe2Ph 

(0.06 mL, 0.225 mmol) dissolved in dry benzene (0.5 mL) were added Au/TiO2 (29 mg, 

1 wt% in Au, ~0.0015 mmol). The mixture was heated in an oil bath to 70 oC until the 

aldehyde was consumed (2-3 h). The slurry was filtered with the aid of dichloromethane 

(3 mL) through a short pad of silica gel. The filtrate was evaporated under vacuum and 

the residue was chromatographed with hexane/ethyl acetate = 80/1 as eluent to afford 2a 

(26.8 mg, 72% yield). The reaction between aldehyde 2 and pinB-SiMe2Ph was also 

performed at the scale of 0.5 mmol, with dimers 2a isolated in 68% yield.

Spectroscopic data of products
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9

2,7-Dimethyl-2,4,5,7-tetraphenyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 1a).22 

Colorless oil (19.7 mg, 61% yield); 1H NMR (500 MHz, CDCl3): 7.43-7.00 (m, 20H 

meso + 20H dl), 4.71 (s, 2H, meso), 4.54 (s, 2H, dl), 0.19 (s, 6H, meso), 0.14 (s, 6H, 

meso), 0.00 (s, 6H, dl), -0.07 (s, 6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 142.5, 

141.2, 137.9, 137.5, 133.6, 133.5, 129.3, 129.2, 127.7, 127.6 (two overlapping peaks), 

127.5, 127.4, 127.3, 127.2 and 127.0 (aromatic resonances, meso+dl), 79.83 and 79.81 

(meso+dl), -1.0, -1.4, -1.5 and -1.8 (meso+dl).

2,7-Dimethyl-2,7-diphenyl-4,5-di-p-tolyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 2a).23 

Colorless oil (26.8 mg, 72% yield); 1H NMR (500 MHz, CDCl3): 7.44-6.88 (m, 18H 

meso + 18H dl), 4.67 (s, 2H, meso), 4.52 (s, 2H, dl), 2.37 (s, 6H, dl), 2.29 (s, 6H, meso), 

0.19 (s, 6H, meso), 0.14 (s, 6H, meso), 0.03 (s, 6H, dl), -0.05 (s, 6H, dl); 13C{1H} NMR 

(125 MHz, CDCl3): 139.6, 138.3, 138.1, 137.8, 136.6, 136.3, 133.7, 133.5, 129.2, 129.1, 

128.2, 127.9, 127.6, 127.5 and 127.4 (two overlapping peaks) (aromatic resonances, 

meso+dl), 79.68 and 79.66 (meso+dl), 21.22 and 21.16 (meso+dl), -0.9, -1.3 (two 

overlapping peaks) and -1.7 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 

C32H38O2Si2Na 533.2302; Found 533.2280.

4,5-bis(4-Isopropylphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 3a).23 Colorless oil (24.4 mg, 66% yield); 1H NMR (500 MHz, CDCl3): 7.37-

7.95 (m, 18H meso + 18H dl), 4.65 (s, 2H, meso), 4.48 (s, 2H, dl), 2.94 (heptet, J = 7.0 

Hz, 2H, dl), 2.85 (heptet, J = 7.0 Hz, 2H, meso), 1.29 (d, J = 7.0 Hz, 12H, dl), 1.22 (d, J 

= 7.0 Hz, 12H, meso), 0.15 (s, 6H, meso), 0.10 (s, 6H, meso), -0.03 (s, 6H, dl), -0.11 (s, 

6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 147.8, 147.4, 140.2, 138.9, 138.1, 137.8, 

133.7, 133.5, 129.2, 129.1, 127.6, 127.4, 127.4, 127.2, 125.5, 125.2 (aromatic 

resonances, meso+dl), 79.9 and 79.7 (meso+dl), 33.9 and 33.7 (meso+dl), 24.2 and 24.1 
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10

(meso+dl), -1.1, -1.3, -1.5 and -1.8 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 

for C36H46O2Si2Na 589.2928; Found 589.2903.

4,5-bis(4-Methoxyphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 4a).24 Colorless oil (29.1 mg, 75% yield); 1H NMR (500 MHz, CDCl3): 7.46-

6.65 (m, 18H meso + 18H dl), 4.64 (s, 2H, meso), 4.48 (s, 2H, dl), 3.83 (s, 6H, dl), 3.76 

(s, 6H, meso), 0.40 (s, 6H, meso), 0.20 (s, 6H, meso), 0.03 (s, 6H, dl), -0.04 (s, 6H, dl); 

13C{1H} NMR (125 MHz, CDCl3): 158.8, 158.5, 138.1, 137.8, 134.8, 133.6, 133.5, 

133.4, 129.3, 129.2, 128.7, 128.6, 127.5, 127.4, 112.9 and 112.6 (aromatic resonances, 

meso+dl), 79.4 (two overlapping meso+dl), 55.2 and 55.1 (meso+dl), -0.9, -1.3, -1.3 

and -1.7 (meso+dl).

4,5-bis(4-Fluorophenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 5a).23 Colorless oil (22.2 mg, 62% yield); 1H NMR (500 MHz, CDCl3): 7.41-

6.79 (m, 18H meso + 18H dl), 4.64 (s, 2H, meso), 4.44 (s, 2H, dl), 0.21 (s, 6H, meso), 

0.15 (s, 6H, meso), 0.02 (s, 6H, dl), -0.04 (s, 6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 

162.2 (d, JC-F = 243.5 Hz), 162.0 (d, JC-F = 243.5 Hz), 138.1 (d, JC-F = 3.0 Hz), 137.5, 

137.1, 136.5 (d, JC-F = 3.0 Hz), 133.5, 133.4, 129.5, 129.4, 129.0 (d, JC-F = 8.0 Hz), 

128.9 (d, JC-F = 8.0 Hz), 127.7, 127.5, 114.4 (d, JC-F = 21.5 Hz) and 114.1 (d, JC-F = 

21.5 Hz) (aromatic resonances, meso+dl), 79.1 and 78.8 (meso+dl), -1.2, -1.5, -1.6 and -

1.8 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C30H32F2O2Si2Na 

541.1801; Found 541.1793.

2,7-Dimethyl-4,5-di(naphthalen-2-yl)-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 6a).23 White solid (19.8 mg, 55% yield); 1H NMR (300 MHz, CDCl3): 7.89-

6.94 (m, 24H meso + 24H dl), 4.96 (s, 2H, meso), 4.78 (s, 2H, dl), 0.17 (s, 6H, meso), 

0.11 (s, 6H, meso), -0.03 (s, 6H, dl), -0.12 (s, 6H, dl); 13C{1H} NMR (75 MHz, CDCl3): 

140.1, 138.8, 137.5, 137.1, 134.1, 133.6, 133.4, 133.1, 133.1, 132.9, 132.8, 129.3, 
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129.2, 128.0, 127.9, 127.6, 127.5, 127.5, 127.3, 127.3, 126.8, 126.7, 126.3, 125.8, 

125.7, 125.7, 125.5 and 125.4 (aromatic resonances, meso+dl), 79.9 and 79.7 

(meso+dl), -1.0, -1.4, -1.4 and -1.8 (meso+dl); HRMS (ESI-Orbit trap) m/z: [M + H]+ 

Calcd for C38H39O2Si2 583.2489; Found 583.2495.

4,5-di([1,1'-Biphenyl]-4-yl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 7a).23 White solid (26.8 mg, 67% yield); 1H NMR (500 MHz, CDCl3): 7.69-

7.12 (m, 28H meso + 28H dl), 4.79 (s, 2H, meso), 4.62 (s, 2H, dl), 0.24 (s, 6H, meso), 

0.19 (s, 6H, meso), 0.07 (s, 6H, dl), -0.00 (s, 6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 

141.7, 141.2, 141.0, 140.3, 139.6, 137.8, 137.4, 133.6, 133.5, 129.3, 129.3, 128.7, 

128.7, 128.1, 127.9, 127.6, 127.5, 127.1, 127.0, 127.0, 126.9, 126.3 and 126.0 (aromatic 

resonances, meso+dl), 79.6 and 79.5 (meso+dl), -1.0, -1.3, -1.4 and -1.7 (meso+dl); 

HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C42H42O2Si2Na 657.2615; Found 

657.2627.

4,5-bis(3-Methoxyphenyl)-2,7-dimethyl-2,7-diphenyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 8a).23 Colorless oil (20.3 mg, 59% yield); 1H NMR (500 MHz, CDCl3): 7.41-

6.58 (m, 18H meso + 18H dl), 4.67 (s, 2H, meso), 4.51 (s, 2H, dl), 3.72 (s, 6H, dl), 3.63 

(s, 6H, meso), 0.19 (s, 6H, meso), 0.15 (s, 6H, meso), 0.04 (s, 6H, dl), -0.03 (s, 6H, dl); 

13C{1H} NMR (125 MHz, CDCl3): 159.1, 158.8, 144.1, 142.9, 137.8, 137.5, 133.6, 

133.5, 129.3, 129.3, 128.4, 128.2, 127.5, 127.5, 120.3, 119.8, 113.5, 113.2, 112.5 and 

112.5 (aromatic resonances, meso+dl), 79.7 and 79.7 (meso+dl), 55.2 and 55.1 

(meso+dl), -1.1, -1.4, -1.5 and -1.7 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 

for C32H38O4Si2Na 565.2201; Found 565.2186.

2,4,5,7-Tetramethyl-2,4,5,7-tetraphenyl-3,6-dioxa-2,7-disilaoctane (meso+dl, 9a).23 

Colorless oil (22.3 mg, 58% yield); 1H NMR (500 MHz, CDCl3): 7.57-6.99 (m, 20H 

meso + 20H dl), 1.71 (s, 6H, meso), 1.47 (s, 6H, dl), 0.25 (s, 6H, meso), 0.20 (s, 6H, 
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meso), 0.10 (s, 6H, dl), 0.00 (s, 6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 145.6, 

144.8, 139.9, 139.8, 133.4, 133.2, 129.1, 129.0, 128.3, 128.2, 127.6 (two overlapping 

peaks), 126.8, 126.4, 126.2 and 126.0 (aromatic resonances, meso+dl), 82.7 and 81.9 

(meso+dl), 24.6 and 24.1 (meso+dl), 1.1, 1.0, 0.9 and 0.9 (meso+dl); HRMS (ESI-TOF) 

m/z: [M + Na]+ Calcd for C32H38O2Si2Na 533.2302; Found 533.2280.

2,4,5,7-Tetramethyl-2,7-diphenyl-4,5-di-p-tolyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 10a).23 Colorless oil (25.8 mg, 66% yield); 1H NMR (500 MHz, CDCl3): 

7.56-6.87 (m, 18H meso + 18H dl), 2.36 (s, 6H, meso), 2.30 (s, 6H, dl), 1.66 (s, 6H, 

meso), 1.44 (s, 6H, dl), 0.23 (s, 6H, meso), 0.19 (s, 6H, meso), 0.11 (s, 6H, dl), -0.01 (s, 

6H, dl); 13C{1H} NMR (125 MHz, CDCl3): 142.7, 141.9, 140.1, 140.0, 135.7, 135.5, 

133.4, 133.3, 129.0, 128.9, 128.2, 128.2, 127.5, 127.5, 127.4 and 126.8 (aromatic 

resonances, meso+dl), 82.7 and 81.9 (meso+dl), 24.7 and 24.2 (meso+dl), 21.01 and 

21.00 (meso+dl), 1.2, 1.1, 1.0 and 0.9 (meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ 

Calcd for C34H42O2Si2Na 561.2615; Found 561.2608.

2,4,5,7-Tetramethyl-2,7-diphenyl-4,5-di-m-tolyl-3,6-dioxa-2,7-disilaoctane 

(meso+dl, 11a).23 Colorless oil (21.7 mg, 58% yield). 1H NMR (500 MHz, CDCl3): 

7.58-6.75 (m, 18H meso + 18H dl), 2.31 (s, 6H, dl), 2.17 (s, 6H, meso), 1.72 (s, 6H, 

meso), 1.44 (s, 6H, dl), 0.27 (s, 6H), 0.19 (s, 6H), 0.12 (s, 6H) and 0.01 (s, 6H) 

(meso+dl); 13C{1H} NMR (125 MHz, CDCl3): 145.6, 144.6, 140.0, 139.9, 135.8, 135.0, 

133.4, 133.2, 129.3, 129.2, 129.0, 129.0, 127.6, 127.5, 127.0, 126.8, 126.6, 125.7, 125.3 

and 125.3 (aromatic resonances, meso+dl), 82.7 and 82.0 (meso+dl), 24.7 and 24.1 

(meso+dl), 21.6 and 21.4 (meso+dl), 1.2, 1.0, 0.9 and 0.8 (meso+dl); HRMS (ESI-TOF) 

m/z: [M + Na]+ Calcd for C34H42O2Si2Na 561.2615; Found 561.2608.

4,5-bis(4-Methoxyphenyl)-2,4,5,7-tetramethyl-2,7-diphenyl-3,6-dioxa-2,7-

disilaoctane (meso+dl, 12a).23 Colorless oil (26.6 mg, 65% yield). 1H NMR (500 MHz, 
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CDCl3): 7.56-6.60 (m, 18H meso + 18H dl), 3.82 (s, 6H, dl), 3.78 (s, 6H, meso), 1.67 (s, 

6H, meso), 1.45 (s, 6H, dl), 0.25 (s, 6H), 0.18 (s, 6H), 0.11 (s, 6H), 0.02 (s, 6H) 

(meso+dl); 13C{1H} NMR (125 MHz, CDCl3): 158.2, 158.0, 140.0, 139.9, 137.9, 137.2, 

133.4, 133.3, 129.4, 129.3, 129.0, 129.0, 127.6 (two overlapping peaks), 112.0 and 

111.3 (aromatic resonances, meso+dl), 82.5 and 81.9 (meso+dl), 55.2 and 55.1 

(meso+dl), 24.7 and 24.2 (meso+dl), 1.2, 1.0 and 1.0 (two overlapping peaks) 

(meso+dl); HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C34H42O4Si2Na 593.2514; 

Found 593.2515.

1-(((Dimethyl(phenyl)silyl)oxy)(p-tolyl)methoxy)-2,2,6,6-tetramethylpiperidine 

(2b): 1H NMR (500 MHz, CDCl3): 7.58-7.30 (m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 7.08 (d, 

J = 8.0 Hz, 2H), 5.85 (s, 1H), 2.34 (s, 3H), 1.61-1.27 (m, 6H), 1.35 (s, 3H), 1.12 (s, 3H), 

1.03 (s, 3H), 0.96 (s, 3H), 0.31 (s, 3H), 0.21 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): 

138.8, 137.9, 137.5, 133.9, 129.3, 128.5, 127.5, 126.2, 102.0, 60.4, 59.2, 40.4, 40.0, 

34.5, 33.5, 21.2, 20.7, 20.3, 17.3, -0.6, -0.9; HRMS (ESI-Orbit trap) m/z: [M + H]+ 

Calcd for C25H38NO2Si 412.2672; Found 412.2671.

Supporting Information Available: Copies of 1H and 13C NMR of all products. This 

material is available free of charge via the Internet at http://pubs.acs.org.
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