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18 ABSTRACT: A new and efficient strategy for enynes cyclization catalyzed by triflic
2 acid has been described. Various valuable carbocycle-fused and heterocycle-fused
23 ketones were easily accessed by the formation of new C-C and C-O bond under
26 benign reaction conditions. This protocol also provides another opportunity to
construct polycyclic single-nitrogen ketones via a cation-induced cascade cyclization
31 of polyenynes. Furthermore, antiviral bioassays revealed that a few compounds
34 exhibited good antiviral activity against tobacco mosaic virus (TMV) at a
36 concentration of 200 ug mL.
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52 INTRODUCTION
The carbocycle-fused and heterocycle-fused ketones are fundamental and ubiquitous
57 skeletons in biologically active molecules and synthetic pharmaceuticals.! Considerable

60 @ attentions have been devoted to the synthesis of such carbo- and azaheterocycles. Among
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these exquisite protocols, metal-n-acid catalyzed cyclization of enynes by the formation of
new C-C bond have exhibited powerful advantages in building functionalized cyclic
compounds quickly from relatively simple unsaturated substrate (Scheme 1a).2* Particularly,
Lewis acidic gold catalysts have been demonstrated to activate the alkyne unit by the manner
of coordination with electrophile-n and a myriad of transformations have been reported in this
approach.”> However, these methods usually need to use expensive even toxic noble metals,
and relative long reaction times. Thus, the development of metal-free strategy for efficient
and direct synthesis of functionalized carbo- and azaheterocycles from enynes is highly
desirable.

Bronsted acid catalysis has emerged as a powerful tool in modern organic
synthesis.® Its utilization was limited to the formation and cleavage of C—O bonds,
such as hydrolysis and formation of esters and acetals in the early stage.'? In order to
enrich the reaction types, super strong Brensted acid triflic acid (TfOH) was
developed, which is 100 times stronger than sulfuric acid.!! With the rapidly
development of various super strong acid, the application of Brensted acids as
catalysts to activate carbonyl, imine, alkene, alkyne, hydroxyl groups have appeared
in the past decades.'? Particularly, Bronsted acids catalysis proved their unique
privilege for the construction of carbo- and heterocycles framework by the formation
of new carbon-carbon bond. For example, the groups of Clark, Balamurugana,
Niggemann, Zhang, and Yamamoto reported acid-catalyzed cycloisomerization
reactions via the activation of isopropen moiety or enones.”!'* Although these seminal

works for the synthesis of cyclic molecules catalyzed by Brensted acid have been
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documented, it has not been successfully applied to the preparation of six members
carbocycle-fused and heterocycle-fused ketones as well as polycyclic single-nitrogen
ketones. As a continuation of our interest in the synthesis of heterocyclic
compounds,'* we report our discovery that enynes could be selectively activated and
converted to functionated carbo- and azaheterocycles in the presence of catalytic

amount of triflic acid (Scheme 1b).

Scheme 1. Cycloisomerization of Enynes for the Synthesis of Carbo- and

Azaheterocycles
a. Metal-Tt-acid catalyzed cycllzatlon of enynes Previous work
=R
X M (cat, ) X
g @Q
b. Triflic acid-catalyzed cyclmsomenzahon of 1,6-enynes: This work
=R %
X TfOH (cat) X TfOH (cat.), H,O_ x R
r C=C activation w , C=Cactivation 56 _R!
] R “p2
R = 2-thienyl R
Ar,
Me Me
M Me TfOH
e N
’ mult| C=C Ar
\ activation % /{\O Ts
RESULTS AND DISCUSSION

We began our study of cycloisomerization of enynes with compound 1a as the
model substrate. A variety of Lewis acids were first utilized for this cyclization
reaction. When 1a was treated with 10 mol% ZnCl, catalyst in wet dichloromethane,
none of the desired product was detected after 12 h (Table 1, entry 1). Catalytic
amount of AlCI; could not initiate the reaction in the same conditons (entry 2). Weak

Brensted acid acetic acid (AcOH) and trifluoroacetic acid (TFA) were useless to the
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transformation as well (entries 3-4). To our delight, carbocyclic molecule 2a was
formed in 55% yield when using BF;-OEt; as catalyst (entry 6). In order to increase
the yield, stronger acid trimethylsilyl trifluoromethanesulfonate (TMSOTY) and triflic
acid (TfOH) were tested for the reactions (entries 7 and 8). It was found that TfOH
were more effective leading to 88% yield of 2a, which indicate that the acidity of the
Brensted acid is vital to this transformation. In fact, the transformation was fast and
the enyne substrate could be nearly converted fully just in 2 h, affording the product
2a in 87% isolated yield (entry 9). Shortening the reaction time to 30 min led to a
slightly decreased yield (entry 10). We then investigated the effects of different
solvents to this cycloisomerization. It appeared that replacing solvent DCM with
CI(CH,),Cl delivered 85% yield of desired product (entry 11). And the reaction did
not work well in toluene, which may result from the low solubility of TfOH in toluene
(entry 12). Solvents such as CH;CN, THF, and MeOH gave bad results compared
with CH,Cl, and no desired cyclic product was observed (entries 13-15). Therefore, in

the presence of 10 mol% TfOH in wet DCM to react for 2 h at room temperature

could afford the product 2a in 87% yield, which were the optimal reaction conditions.

And it should be noted that the stoichiometric amount of H,O for cycloisomerization

reactions with the hydration of alkynes come from wet solvent.

Table 1. Optimization of Reaction Conditions”

——Ph O
EtO,C
2 cat. (10 mol %) Eotoéc o
EtO,C \ Solvent, r.t., Time Eto;
Me Me

Me Me
1a 2a
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entry cat. solvent time yield (%)P

1 ZnCl, CH,Cl, 12h nd

2 AlCl; CH,Cl, 12h nd

3 AcOH CH,Cl, 12h nd

4 TFA CH,Cl, 12h nd

5 MsOH CH,CI, 12h trace
6 BF;-OEt, CH,Cl, 12h 55

7 TMSOTf CH,Cl, 12h 80

8 TfOH CH,Cl, 12h 88

9 TfOH CH,Cl, 2h 88(87)
10 TfOH CH,Cl, 30 min 82
11 TfOH CI(CH,),Cl 2h 85
12 TfOH toluene 2h 22
13 TfOH CH;CN 2h nd
14 TfOH THF 2h nd
15 TfOH MeOH 2h nd

“Reaction condition: 1a (0.05 mmol, 1.0 equiv), catalyst (0.005 mmol, 10 mol %), solvent
(1.0 mL, 0.05M), r.t.. "Refers to NMR yield using benzyl benzoate as the internal standard.

Isolated yield is in the parenthesis in 0.1 mmol scale.

With the optimal conditions in hand, the scope of cycloisomerization of various
enynes catalyzed by triflic acid was evaluated (Scheme 2). Enynes substrates bearing
para- substituent on the phenyl ring could efficiently undergo cycloisomerization to
produce the cyclization products in good yields (e.g. 2b-2f, 76-88%). It proved that
even highly reactive groups such as aldehydes were found to interfere by no means
with the desired reaction approach. The substrate with a chlorine group at the ortho
position on the phenyl ring lead to a slightly drop yield, which may be attributed to
the steric hindrance of the aryl group (2g, 73%). The meta-chlorine group and
dimethyl substituent on the phenyl ring was well-tolerated under the optimized
conditions (2h, 80%; 2i, 85%). Electron-rich naphthyl-substituted enyne could also

proceed the cyclization and give the final product 2j in 68% yield. Substrates 1k-1n
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could convert to the correspounding cyclization products in good yield at the same
conditions. This triflic acid-catalyzed cycloisomerization of enynes not only provide a
direct method to synthesize functionated carbocyclic molecules, but also show a facile
access to azaheterocycles. For example, single-nitrogen enyne was subjected to the
cascade cyclization under the optimal condition, the corresponding azaheterocyclic
product 20 could be afforded in 62% yield. We were delighted to find that the
electron-rich 3-thiophenyl on the enyne was also tolerated under the strong acidity
conditions (2p, 62%). Furthermore, the effect of electron density of aryl group on
enyne was studied. It was found that trifluoromethyl and methoxy group installed at
the para positions of the phenyl ring could smoothly undergo the cyclization to
deliver the corresponding azaheterocyclic products (2q, 70%; 2r, 63%). Based on
these results, our method provides an efficient and direct pathway for the activate
double bonds and achieves the carbon-carbon bond and carbon-oxygen bond
formation in one step.

Scheme 2. Substrate Scope of Cycloisomerization®

—=R 0
X TfOH (10 mol %) )@LR
CH.Cly, rt.,2h
L\yMe 2L, T Me
Me Me
1 2

.
EtO,C, Zb,R =Me 85%  gi0,c
EtO,C 2¢,R'=F,88% Et0,C
2d,R"'=Cl, 83%

R' 2¢, R' = CHO, 76%

2f, R1 CO,Me, 80% 29 73%
EtO,C, EtO,C
EtO,C EtO,C
2h 80% 2. 85
EtO,C ‘ MeO AcO
EtO,C ‘ O Ph Ph
Me MeO Me AcO Me
Me Me Me
2j, 68% 2k, 93% 21, 87%
0
MeO,C PhO,S
MeO,C Ph  PhO,S Ph TsN Ph
Me Me Me
Me Me Me
2m, 89% 2n, 84% 20,62%
0 0 0o
Mel=
Me Me
Me Me OMe Me CFs
2p, 62% 29, 70% 2r, 63%
6
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aConditions: 1 (0.1 mmol, 1.0 equiv), TFOH (0.9 4L, 0.01 mmol, 10 mol %), CH,Cl, (2.0
mL, 0.05M), r.t., 2 h. Isolated yield.

In additon, the method could also be applied to prepare five members
azaheterocycle-fused ketones by adjusting to operate the enynes containing a
1,1-disubstituent alkene under the same conditons. We executed the cyclization using
enynes 3 as the substrate, five members azaheterocycle-fused ketones 4 could be
generated in good yields (Scheme 3). For example, desired product 4a was formed
in the presence of 10 mol% TfOH in 71% yield. When the electron-withdrawing
group such as —Cl and —Br was put on the phenyl ring of substrates (3b and 3¢), the
cyclization also proceeded to give the corresponding products with a slightly decrease
of isolated yield. Pleasingly, this method was also suitable for the alkene furnished an
aryl substitutent affording the desired product 4d in 61% yield. From the above
results, it was concluded that the catalytic system was applicable to both five and six

members azaheterocycle compounds.

Scheme 3. Cycloisomerization of 1,6-enynes®

——Ar
TsN TfOH (10 mol %) TN Ar
% CH,Cly, rt, 2 h s R
R Me
3 4
o) o) o)
cl
Me R1 Me Ph
Me Me Me
4a,R'=H, 71%; 4b, R' = F, 66% 4c, 64% 4d, 61%

@Conditions: 3 (0.1 mmol, 1.0 equiv), TfOH (0.9 uL, 0.01 mmol, 10 mol %), CH,Cl, (2.0 mL,

0.05M), r.t., 2 h. Isolated yield.
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As we all known that the noble metals could serve as m-acid and exhibit powerful
ability for carban-carban triple bonds activation, and a wide range of derived new
reaction has been discovered. In contrast, the Bronsted acid catalysis usually preferred
to activate carban-carban double bond in enynes to generate carbocation, which could
be attacked by various nucleophiles. Interestingly, when the enyne 5 with an
electron-rich 2-thiophenyl was employed to this transformation, a new cyclization
product 6 was obtained in 68% yield (eq. 1). Owing to the subtle difference of
electron property on unsaturated bonds between substrate 5 and 1p, different
cyclization products could be produced in the presence of catalytic amount of triflic
acid. The substrate 7 was also performed under the optimized conditons, lactonisation
product 8 was detected in 80% yield but no cycloisomerization product formed (eq.
2). To confirm reaction efficiency, we carried out gram-scale reaction using enyne 1a
as the substrate in the presence of 10 mol% catalyst TfOH. The carbocyclic product

could still be obtained in 83% yield (eq. 3).

s\:

\ TfOH 10 mol %)

L>7 CHZCIZ rt,2h
Me 5

6, 68% yleld
EtO,C =
EtO,C TfOH (10 mol %) o @
EtO,C CHZCIZ rt,2h 5
8,80% yield
EtO,C EtO,C
TfOH (10 mol ¢
EO,C _TfOH (10 mol %) _ EtO,C
N e CH20|2 rt,2h
1a, 1. 199 2a,1.05g, 83% yield

To extend this method to more challenging substrates, polyenynes was examined.

To our delight, numbers of polycyclic single-nitrogen ketones could be synthesized

via a cation-induced cascade cyclization of polyenynes in good yields (Scheme 4).
8
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Substrate 9a underwent cascade cyclization to afford product 10a in 66% yield. This

method has good functional tolerance as well. A variety of substituents, such as 4-Me,

oNOYTULT D WN =

9 4-CO,Me, and 4-F, on the phenyl ring of polyenyne were worked well under the same
12 acid-catalyzed conditions and gave the corresponding polycyclic single-nitrogen
ketones (10b-d, 63-68%). The structure of 10b was also confirmed by X-ray crystal

17 structure analysis (see the Supporting Information (SI)).

22 Scheme 4. Triflic Acid-Catalyzed Cascade Cyclization®

24 _ Me  Me

25 TsN TfOH (10 mol %) TsN
A CHyCly, rt., 2h
Me Me

O~ Ar
28 9 10

Me Me Me Me Me Me

30 Me Me
31 TsN TsN TsN
TsN
32 i) i) i
e e e
33 Me o) o) o)
34 07 "Ph
CHg CO,Me F

35 10a, 66% 10b, 68% 10c, 64% 10d, 63%

38 4Conditions: 9 (0.1 mmol, 1.0 equiv), TfOH (0.9 L, 0.01 mmol, 10 mol %), CH,Cl, (2.0 mL,

0.05M), r.t., 2 h. Isolated yield.

46 In order to test the antiviral activity of the compound synthesized by this method,
48 we conducted bioassays against tobacco mosaic virus (TMV) at a concentration of
51 200 ug mL-'. These data are summarized in Table 2 and Figure 1. The results
indicated that 10a showed a good therapeutic effect on TMV, the percentage
56 inhibition was 54.2%, which even exceeded that of ningnanmycin (48.5%). The above

59 biological activity study results demonstrate that the polycyclic single-nitrogen
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derivative has good biocontrol activity, though the detail effect on TMV of the
molecule structure need to be further studied.

Table 2. Antiviral activities of the target compounds against TMV¢

percentage toxic regression ECs
compound o ]
inhibition equation (ug mL)
Y=0.8122X +
10a 54.2% 0.9918  155.99
3.2188
Y=1.0717X +
2c 45.2% 0.9958  278.23
2.3804
Y=1.4216X +
2r 32.1% 0.9933  372.93
1.3442

Ningnanmycin 48.5% - - -

2Conditions: Tested and calculated at the drug test concentrations of 200 ug mL-!. The data
are average of three replicates. Agents ningnanmycin is commercial.

Figure 1. The test of antiviral activity against TMV

Right half leaves treated with the solution of 10a

A plausible mechanism that is consistent with the experimental results mentioned
above is proposed in Scheme 5. Protonation of the terminal trisubstituent alkene
moiety in the presence of triflic acid leads to the relative stable carbocation I. Active
carbocation I was attacked by another intramolecular nucleophilic group trisubstituent
alkene, meanwhile the cationic cascade process is terminated by intermolecular H,O
capture to afford the intermediate IIl. Then, enol intermediate IV was formed after a
proton loss. Subsquently, enol isomerisation of IV to give fanal product.

Scheme 5. Possible Mechanism.

10
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Ph

M% — LLV//LB — \ h

H+ Me OHZ
Ph

10a

In summary, we have developed an efficient and straightforward triflic acid
catalysis system to synthesize a variety of carbocycle-fused and heterocycle-fused
ketones under mild reaction conditions. This catalytic reaction proceeds in a broad
scope and good functional group tolerance, and can be easily scaled up. In addition,
this method was also successfully applied to construct polycyclic single-nitrogen
ketones via a cation-induced cascade cyclization of polyenynes. Antiviral bioassays
revealed that compound 10a exhibited good antiviral activity against TMV at a
concentration of 200 ug mL-!. A further investigation of potential bioactivity of these

carbons and azaheterocyclic molecules are ongoing in our laboratory.

EXPERIMENTAL SECTION

General Methods

Unless otherwise noted, commercial reagents were purchased from Macklin,
Energy, Aladdin, Adamas and so on. The solvents used in the reaction, such as
dichloromethane, THF, and so on, are all analytical pure, and their water content is
0.03% - 0.05%. All reactions were carried out using oven-dried glassware and all
catalytic reactions proceeded without special care. Analytical thin layer

chromatography was carried out using silica gel GF254, and visualized under 254 nm

11
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UV light or by staining with potassium permanganate. Column chromatography was
performed on 200-300 mesh silica gel (Huanghai, China).

'H, °F and BC{'H} NMR spectra were recorded on an Bruker Ascend 400MHz
spectrometer at ambient temperature. '"H NMR spectra are referred to the TMS signal
(8 =0 ppm) and '*C NMR spectra are referred to the residual solvent signal (8 = 77.16
ppm). Data for 'H NMR are reported as follows: chemical shifts (8 ppm),
multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br =
broad), coupling constants (Hz), integration. Data for 3C{'H} NMR and '°F NMR are
reported as follows: chemical shift (6 ppm), multiplicity (q = quartet), coupling
constant (Hz).

Preparation of enyne substrates: The procedure for the synthesis of enyne
substrates was based on the known procedure.'>* Compounds 1b, 1f-1j, 1p, 1r, and 9
are new and their characterization data are as follows. Other starting compounds are
known and their spectral data are in accordance with those reported in the literature.!?
Diethyl 2-(3-methylbut-2-en-1-yl)-2-(3-(p-tolyl)prop-2-yn-1-yl)malonate (1b):
Colorless oil. IR (KBr): 2984, 2930, 1731, 1471, 1223, 1195, 660 cm™'. '"H NMR (400
MHz, CDCls) 8 7.25 (d, 2H), 7.06 (d, J = 7.9 Hz, 2H), 4.97 (ddd, /= 7.6, 4.4, 1.3 Hz,
1H), 4.26 — 4.15 (m, 4H), 2.97 (s, 2H), 2.83 (d, J = 8.4 Hz, 2H), 2.31 (s, 3H), 1.71 (s,
3H), 1.68 (s, 3H), 1.25 (t, 6H). 3C {1H} NMR (101 MHz, CDCl;) é 170.3, 137.9,
136.5, 131.5, 129.0, 120.4, 117.5, 84.2, 83.3, 61.5, 57.4, 30.9, 26.1, 26.1, 23.4, 21.4,
18.1, 14.1. HR-MALDI-MS m/z calcd. for Cy,H,3NaO, [M+Na]™: 379.1880, found:
379.1879.

12
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Diethyl
2-(3-(4-(methoxycarbonyl)phenyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malo
nate (1f):

Colorless oil. IR (KBr): 2984, 2925, 1727, 1440, 1278, 1175, 1108 cm™'. '"H NMR
(400 MHz, CDCLy)  7.95 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 4.97 (t, J= 7.7
Hz, 1H), 4.32 — 4.14 (m, 4H), 3.91 (s, 3H), 3.02 (s, 2H), 2.84 (d, J = 7.6 Hz, 2H), 1.72
(s, 3H), 1.69 (s, 3H), 1.27 (t, J= 7.1 Hz, 6H). *C {IH} NMR (101 MHz, CDCl5) &
170.2, 166.7, 136.8, 131.6, 129.5, 129.3, 128.2, 117.3, 88.6, 82.7, 61.7, 57.4, 52.3,
31.0, 26.2, 23.5, 18.1, 14.2. HR-MALDI-MS m/z calcd. for C;H,sNaOg [M+Na]*:

423.1778, found: 423.1771.

Diethyl 2-(3-(2-chlorophenyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate
(1g):

Colorless oil. IR (KBr): 2984, 2925, 1731, 1471, 1223, 1195, 1061 cm'. 'H NMR
(400 MHz, CDCl3) 6 7.37 (ddd, J=16.7, 7.4, 1.4 Hz, 2H), 7.23 — 7.10 (m, 2H), 5.04 —
4.92 (m, 1H), 4.31 —4.11 (m, 4H), 3.06 (s, 2H), 2.87 (d, /= 7.7 Hz, 2H), 1.70 (d, J =
11.8 Hz, 6H), 1.26 (t, J = 7.1 Hz, 6H). 3C {IH} NMR (101 MHz, CDCls) 6 170.2,
136.8, 135.9, 133.6, 129.2, 129.0, 126.4, 123.3, 117.4, 90.7, 80.1, 61.7, 57.5, 30.9,
26.2, 23.7, 18.2, 14.2. HR-MALDI-MS m/z caled. for C,;H,sCINaO, [M+Na]*:

399.1334, found: 399.1332.

Diethyl 2-(3-(3-chlorophenyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate
(1h):

Colorless oil. IR (KBr): 2984, 2933, 1735, 1451, 1294, 1195, 1057 cm™'. 'H NMR

(400 MHz, CDCls) § 7.33 (s, 1H), 7.28 — 7.16 (m, 3H), 5.02 — 4.86 (m, 1H), 4.32 —

4.14 (m, 4H), 2.98 (s, 2H), 2.82 (d, J = 7.7 Hz, 2H), 1.72 (s, 3H), 1.68 (s, 3H), 1.26

13

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

(tt, J = 6.5, 3.2 Hz, 6H). 3C {IH} NMR (101 MHz, CDCl;) & 170.2, 136.8, 134.1,
131.5, 129.89, 129.5, 128.5, 128.3, 125.1, 117.3, 86.6, 82.0, 61.7, 57.4, 30.9, 26.2,
23.4, 18.1, 14.2. HR-MALDI-MS m/z caled. for Cy;H,sCINaO, [M+Na]*: 399.1334,

found: 399.1331.

Diethyl
2-(3-(3,4-dimethylphenyl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate (1i):
Colorless oil. IR (KBr): 2930, 1737, 1461, 1223, 1195, 766, 657 cm™'. 'H NMR (400
MHz, CDCl3) 8 7.16 — 7.06 (m, 1H), 7.05 — 6.96 (m, 1H), 6.92 — 6.79 (m, 1H), 4.92 —
4.80 (m, 1H), 4.20 — 4.07 (m, 4H), 2.93 (s, 2H), 2.74 (d, J= 7.7 Hz, 2H), 1.63 (s, 3H),
1.62 (s, 3H), 1.19 (t, J = 7.1 Hz, 6H). 3C {IH} NMR (101 MHz, CDCl;) 8 170.2,
136.8, 131.6, 126.9, 126.5, 123.5, 117.4, 89.2, 76.4, 61.7, 57.4, 31.0, 26.2, 23.8, 18.2,
14.2. HR-MALDI-MS m/z caled. for Cy3H30NaO, [M+Na]": 393.2036, found:
393.2036.

Diethyl 2-(3-methylbut-2-en-1-yl)-2-(3-(naphthalen-1-yl)prop-2-yn-1-yl)malonate
(1))

Colorless oil. IR (KBr): 2930, 1731, 1471, 1223, 1195, 765, 660 cm™'. '"H NMR (400
MHz, CDCl;) ¢ 8.29 (d, J = 8.3 Hz, 1H), 7.85 — 7.75 (m, 2H), 7.60 (d, J = 7.1 Hz,
1H), 7.58 — 7.52 (m, 1H), 7.49 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.38 (dt, J = 8.2, 5.6
Hz, 1H), 5.03 (t, J = 8.3, 7.0 Hz, 1H), 4.30 — 4.19 (m, 4H), 3.16 (s, 2H), 2.93 (d, J =
7.6 Hz, 2H), 1.73 (s, 3H), 1.69 (s, 3H), 1.27 (t, J = 7.1 Hz, 6H). 3C {IH} NMR (101
MHz, CDCl;) 6 170.4, 136.8, 133.5, 133.2, 130.5, 128.4, 128.3, 126.7, 126.4, 126.4,
125.3, 121.2, 117.5, 90.0, 81.4, 61.7, 57.6, 31.1, 26.2, 23.9, 18.2, 14.2.
HR-MALDI-MS m/z calcd. for C,sHygNaO4 [M+Na]™: 415.1880, found: 415.1881.
4-Methyl-N-(3-methylbut-2-en-1-yl)-V-(3-(thiophen-3-yl)prop-2-yn-1-yl)benzenes
ulfonamide (1p):

White solid. mp: 84.4-85.0 °C. IR (KBr): 3114, 2921, 1345, 1164, 1089, 903 cm™!. 'H
NMR (400 MHz, CDCl5) & 7.79 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.21
(dt, J=8.4,4.2 Hz, 1H), 7.13 (dd, J= 3.0, 1.0 Hz, 1H), 6.79 (dd, /= 5.0, 1.1 Hz, 1H),
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5.26 — 5.12 (m, 1H), 4.27 (s, 2H), 3.88 (d, J = 7.3 Hz, 2H), 2.37 (s, 3H), 1.76 (s, 3H),
1.71 (s, 3H). BC {IH} NMR (101 MHz, CDCl;) & 143.4, 139.2, 136.1, 129.6, 129.5,
128.8, 128.0, 125.3, 121.5, 118.1, 81.1, 80.6, 44.2, 36.4, 26.0, 21.6, 18.0.
HR-MALDI-MS m/z caled. for C;9H;;NNaO,S, [M+Na]": 382.0906, found:
382.0900.

4-Methyl-N-(3-methylbut-2-en-1-yl)-V-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1

-yl)benzenesulfonamide (1r):

White solid. mp: 65.1-65.7 °C. IR (KBr): 2976, 2925, 1617, 1325, 1160, 1120, 655
cm!, '"H NMR (400 MHz, CDCl;) 6 7.84 — 7.73 (m, 2H), 7.53 (t, J = 7.6 Hz, 2H),
7.34 —7.22 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.19 (dddd, J = 7.3, 6.0, 2.7, 1.4 Hz,
1H), 4.31 (s, 2H), 3.90 (d, J= 7.3 Hz, 2H), 2.35 (s, 3H), 1.77 (s, 3H), 1.71 (s, 3H). 13C
{IH} NMR (101 MHz, CDCl;) & 143.5, 139.4, 136.1, 131.8, 130.1, 129.6, 128.0,
126.5 (q, J = 263.2 Hz), 126.2 (q, J = 1.4 Hz), 125.25 (q, J = 3.9 Hz), 117.98, 85.14,
84.12, 44.39, 36.33, 26.06, 21.53, 18.04. 'F NMR (377 MHz, CDCl;) & -62.91.
HR-MALDI-MS m/z caled. for CyH,F;NNaO,S [M+Na]™: 444.1216, found:
444.1215.

(E)-N-(3,7-Dimethylocta-2,6-dien-1-yl)-4-methyl- V-(3-phenylprop-2-yn-1-yl)benz
enesulfonamide (9a):

White solid. 539.6 mg, 64% total yield. mp: 74.2-75.1 °C. IR (KBr): 2930, 2900,
1634, 1465, 910, 766, 660 cm™'. '"H NMR (400 MHz, CDCls) 6 7.77 (t, J = 7.1 Hz,
2H), 7.32 — 7.18 (m, 5H), 7.08 — 6.99 (m, 2H), 5.20 — 5.13 (m, 1H), 5.09 — 5.00 (m,
1H), 4.28 (s, 2H), 3.89 (d, J = 7.3 Hz, 2H), 2.32 (s, 3H), 2.04 (ddd, J = 18.0, 14.7, 4.7
Hz, 4H), 1.68 (s, 6H), 1.59 (s, 3H). 3C {IH} NMR (101 MHz, CDCl;) 6 143.4,

142.6, 136.1, 132.0, 131.5, 129.5, 128.4, 128.2, 128.0, 123.9, 122.4, 118.0, 85. 5,
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82.3, 44.2, 39.8, 36.2, 26.3, 25.8, 21.5, 17.8, 16.3. HR-MALDI-MS m/z calcd. for
Cy6H31NNaO,S [M+Na]*: 444.1968, found: 444.1959.
(E)-N-(3,7-Dimethylocta-2,6-dien-1-yl)-4-methyl-N-(3-(p-tolyl)prop-2-yn-1-yl)ben
zenesulfonamide (9b):
White solid. 548.9 mg, 63% total yield. mp: 75.9-76.2 °C. IR (KBr): 2927, 2908,
1465, 1330, 1155, 911, 759 cm’!. 'TH NMR (400 MHz, CDCl;) 6 7.69 (d, J = 8.3 Hz,
2H), 7.19 - 7.13 (m, 2H), 6.95 (d, J = 7.9 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 5.07 (td,
J=172,1.0Hz, 1H),4.96 (ddd, J=6.7,5.4, 1.2 Hz, 1H), 4.19 (s, 2H), 3.81 (d, J=7.3
Hz, 2H), 2.24 (d, J = 6.3 Hz, 6H), 2.08 — 1.92 (m, 4H), 1.59 (s, 6H), 1.51 (s, 3H). 13C
{IH} NMR (101 MHz, CDCly) 6 143.3, 142.5, 138.5, 136.1, 131.9, 131.4, 129.5,
128.9, 127.9, 123.9, 119.4, 118.1, 85. 6, 81.6, 44.1, 39.7, 36.3, 26.4, 25.8, 21.5, 17.8,
16.3. HR-MALDI-MS m/z calcd. for C,;H33NNaO,S [M+Na]™: 458.2124, found:
458.2124.
4-(3-(V-(3,7-dimethylocta-2,6-dien-1-yl)-4-methylphenylsulfonamido)prop-1-yn-1
-yl)benzoate (9c¢):
White solid. 565.9 mg, 59% total yield. mp: 87.3-88.9 °C. IR (KBr): 2913, 1600,
1515, 1327, 1150, 913, 845, 647 cm™'. '"H NMR (400 MHz, CDCl3) & 7.95 — 7.88 (m,
2H), 7.77 (d, J = 8.3 Hz, 2H), 7.27 — 7.22 (m, 2H), 7.13 — 7.05 (m, 2H), 5.18 — 5.12
(m, 1H), 5.08 —4.99 (m, 1H), 4.29 (s, 2H), 3.92 (s, 3H), 3.89 (d, /= 7.3 Hz, 2H), 2.33
(s, 3H), 2.11 — 2.02 (m, 4H), 1.68 (s, 3H), 1.67 (s, 3H), 1.59 (s, 3H). 13C {IH} NMR
(101 MHz, CDCls) & 166.5, 143.6, 142.8, 136.1, 132.1, 131.4, 129.6, 129.4, 128.0,
127.8, 127.1, 123.8, 117. 9, 85.6, 84.7, 52.4, 44.3, 39.8, 36.2, 26.3, 25.9, 21.6, 17.8,
16
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16.3, 16.3. HR-MALDI-MS m/z calcd. for C,sH33NNaO4S [M+Na]*: 502.2023,
found: 502.2022.
(E)-N-(3,7-Dimethylocta-2,6-dien-1-yl)-N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-4-m
ethylbenzenesulfonamide (9d):
White solid. 526.8 mg, 60% total yield. mp: 71.3-71.9 °C. IR (KBr): 2910, 2855,
1515, 1330, 1155, 843, 650 cm™. "H NMR (400 MHz, CDCl;) & 7.77 (d, J = 8.3 Hz,
2H), 7.25 (t, J = 6.5 Hz, 2H), 7.07 — 6.98 (m, 2H), 6.98 — 6.86 (m, 2H), 5.15 (td, J =
7.3, 1.0 Hz, 1H), 5.04 (td, J = 5.4, 2.6 Hz, 1H), 4.26 (s, 2H), 3.88 (dj, /= 8.2 Hz, 2H),
2.33 (s, 3H), 2.11 — 2.01 (m, 4H), 1.68 (s, 6H), 1.59 (s, 3H). *C {IH} NMR (101
MHz, CDCls) 6 162.5 (d, J = 249.8 Hz), 143.4, 142.6, 136.2, 133.4 (d, J = 8.4 Hz),
132.0, 129.5, 128.0, 123.8, 118.5 (d, J = 3.5 Hz), 118.0, 118.5 (d, J = 3.5 Hz), 84.3,
82.1, 82.1, 44.2,39.7, 36.2, 26.2, 25.8, 21.5, 17.8, 16.3. '’F NMR (377 MHz, CDCl;)
o -110.63. HR-MALDI-MS m/z calcd. for CysH3;0FNNaO,S [M+Na]": 462.1874,
found: 462.1873.
(E)-Methyl
General procedure for triflic acid-catalyzed cyclization of enynes: To a solution of
enyne substrate (0.1 mmol, 1.0 equiv) in wet CH,Cl, (2 mL, 0.05M) at room
temperature was added TfOH (0.9 L, 0.01 mmol, 0.1 equiv). The resultant mixture
was stirred at room temperature for 2 h. Next the mixture was concentrated in vacuo
and purified by preparative TLC (eluent: PE/EtOAc = 10/1, v/v) to yield the
corresponding cyclization product.
Diethyl 3-benzoyl-4,4-dimethylcyclohexane-1,1-dicarboxylate (2a):
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Colorless oil. 31.4 mg, 87% yield. IR (KBr): 2925, 2846, 1731, 1522, 1239, 545 cm!.
'"H NMR (400 MHz, CDCl;) & 7.91 (dd, J = 5.2, 3.3 Hz, 2H), 7.51 — 7.43 (m, 1H),
7.43 —7.34 (m, 2H), 4.28 — 4.15 (m, 2H), 4.12 — 4.03 (m, 2H), 3.61 (dd, J=12.7, 3.3
Hz, 1H), 2.24 — 2.11 (m, 2H), 2.09 — 1.96 (m, 2H), 1.39 — 1.29 (m, 2H), 1.22 (t, 3H),
1.15 (t,J=7.1 Hz, 3H), 1.00 (s, 3H), 0.75 (s, 3H). 3C {1H} NMR (101 MHz, CDCl;)
0 203.3, 171.9, 171.5, 138.9, 133.0, 128.7, 128.3, 61.6, 61.5, 54.8, 48. 6, 38.7, 33.3,
31.3, 30.2, 26.8, 20.3, 14.3, 14.2. HR-MALDI-MS m/z calcd. for C;H,sNaOs
[M+Na]*: 383.1829, found: 383.1822.
Diethyl 4,4-dimethyl-3-(4-methylbenzoyl)cyclohexane-1,1-dicarboxylate (2b):
Colorless oil. 31.8 mg, 85% yield. IR (KBr): 3460, 2961, 2929, 2862, 1727, 1672,
1243 cm'. '"H NMR (400 MHz, CDCl;) 6 7.89 (d, J= 8.2 Hz, 2H), 7.26 (d, J = 9.6 Hz,
2H), 4.36 — 4.22 (m, 2H), 4.20 — 4.08 (m, 2H), 3.64 (dd, J = 12.6, 3.3 Hz, 1H), 2.41 (s,
3H), 2.24 (ddd, J = 16.5, 5.5, 2.4 Hz, 2H), 2.15 — 2.04 (m, 2H), 1.46 — 1.35 (m, 2H),
1.30 (t,J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.06 (s, 3H), 0.82 (s, 3H). 3C {1H}
NMR (101 MHz, CDCl;) 6 202.8, 171.9, 171.5, 143.7, 136.4, 129.4, 128.5, 61.6, 61.
5, 54.8,48.3, 38.7,33.2, 31.3, 30.2, 26.8, 21.7, 20.3, 14.3, 14.1. HR-MALDI-MS m/z
calcd. for Cp,H30NaOs [M+Na]*: 397.1985, found: 397.1989
Diethyl 3-(4-fluorobenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2¢):
Colorless oil. 33.3 mg, 88% yield. IR (KBr): 2972, 2933, 1731, 1684, 1589, 1227,
1156 cm™'. "H NMR (400 MHz, CDCl;) & 8.01 — 7.90 (m, 2H), 7.09 — 7.00 (m, 2H),
4.29 — 4.15 (m, 2H), 4.14 — 4.02 (m, 2H), 3.57 (dd, J = 12.7, 3.3 Hz, 1H), 2.23 - 2.10
(m, 2H), 2.09 — 1.96 (m, 2H), 1.40 — 1.26 (m, 2H), 1.22 (t, 3H), 1.15 (t, /= 7.1 Hz,
18

ACS Paragon Plus Environment

Page 18 of 38



Page 19 of 38

oNOYTULT D WN =

The Journal of Organic Chemistry

3H), 1.00 (s, 3H), 0.76 (s, 3H). °C {IH} NMR (101 MHz, CDCls) 4 201. 7, 171.8,
171.5,165.8 (d, J = 254.5 Hz), 135.2 (d, J = 2.9 Hz), 131. 0 (d, /= 9.3 Hz), 115. 8 (d,
J=21.8 Hz), 61.7, 61.5, 54.8, 48.5, 38.7, 33.3, 31.2, 30.3, 26.7, 20.2, 14.3, 14.2. I°F
NMR (377 MHz, CDCl;) 8 -105.84. HR-MALDI-MS m/z calcd. for C,;Hy7FNaOs
[M+Na]*: 401.1735, found: 401.1731.

Diethyl 3-(4-chlorobenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2d):
Colorless oil. 32.8 g, 83% yield. IR (KBr): 2968, 1735, 1684, 1589, 1250, 1093, 848
cm'. '"H NMR (400 MHz, CDCl;) 8 7.98 — 7.90 (m, 2H), 7.47 — 7.39 (m, 2H), 4.35 —
4.21 (m, 2H), 4.21 —4.10 (m, 2H), 3.63 (dd, /= 12.7, 3.3 Hz, 1H), 2.24 (ddt, J = 14.1,
9.3,2.9 Hz, 2H), 2.14 — 2.03 (m, 2H), 1.46 — 1.34 (m, 2H), 1.30 (t, /= 7.1 Hz, 3H),
1.22 (t,J=7.1 Hz, 3H), 1.06 (s, 3H), 0.82 (s, 3H). 13C {IH} NMR (101 MHz, CDCl;)
0 202.1, 171.8, 171.5, 139.4, 137.1, 129.7, 129.0, 61.7, 61.5, 54.7, 48.6, 38.6, 33.3,
31.2, 30.2, 26.7, 20.2, 14.3, 14.1. HR-MALDI-MS m/z caled. for C,;H,7CINaOs
[M+Na]*: 417.1439, found: 417.1434.

Diethyl 3-(4-formylbenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2e):
Colorless oil. 29.5 mg, 76% yield. IR (KBr): 2980, 1727, 1290, 1250, 1160, 1045,
864 cm!. '"H NMR (400 MHz, CDCl3) § 10.11 (s, 1H), 8.13 (d, J = 8.2 Hz, 2H), 7.98
(d, J= 8.2 Hz, 2H), 4.38 — 4.23 (m, 2H), 4.23 — 4.10 (m, 2H), 3.71 (dd, J = 12.7, 3.2
Hz, 1H), 2.34 — 2.19 (m, 2H), 2.16 — 2.04 (m, 2H), 1.48 — 1.35 (m, 2H), 1.31 (t, J =
7.1 Hz, 3H), 1.24 (t, J = 12.1, 5.0 Hz, 3H), 1.07 (s, 3H), 0.82 (s, 3H). 3C {1H} NMR
(101 MHz, CDCl;) ¢ 203.0, 191.8, 171.7, 171.5, 143.3, 138.9, 130.0, 128.8, 61.8,
61.6, 54.7, 49.4, 38.6, 33.4, 31.3, 30.1, 26.7, 20.2, 14.3, 14.2. HR-MALDI-MS m/z
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calcd. for C,,HysNaO6 [M+Na]*: 411.1778, found: 411.1773.
Diethyl
3-(4-(methoxycarbonyl)benzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2f):
Colorless oil. 33.5 mg, 80% yield. IR (KBr): 2956, 2862, 1731, 1684, 1282, 1246,
1160 cm'!. '"H NMR (400 MHz, CDCl5) 8 8.05 (d, 2H), 7.96 (d, 2H), 4.29 — 4.16 (m,
2H), 4.14 — 4.04 (m, 2H), 3.88 (s, 3H), 3.61 (dd, J=12.7, 3.3 Hz, 1H), 2.27 — 2.12 (m,
2H), 2.09 — 1.97 (m, 2H), 1.39 — 1.28 (m, 2H), 1.23 (t, J= 8.5, 5.7 Hz, 3H), 1.14 (t, J
= 7.1 Hz, 3H), 0.99 (s, 3H), 0.74 (s, 3H). 13C {IH} NMR (101 MHz, CDCl;) § 203.0,
171.8, 171.4, 166.4, 142.2, 133.7, 130.0, 128.2, 61.7, 61.6, 54.7, 52. 6, 49.2, 38.6,
33.3, 31.3, 30.1, 26.7, 20.2, 14.3, 14.1. HR-MALDI-MS m/z calcd. for C,3H;3(NaO;
[M+Na]*": 441.1884, found: 441.1875.
Diethyl 3-(2-chlorobenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2g):
Colorless oil. 28.8 mg, 73% yield. IR (KBr): 2972, 2870, 1735, 1680, 1570, 1467,
1049 cm!'. '"H NMR (400 MHz, CDCl;) 6 7.49 (dd, J = 7.4, 1.8 Hz, 1H), 7.40 (dd, J =
7.8, 1.5 Hz, 1H), 7.38 — 7.29 (m, 2H), 4.29 — 4.21 (m, 2H), 4.21 — 4.13 (m, 2H), 3.49
(dd, J=12.8, 3.3 Hz, 1H), 2.42 — 2.33 (m, 1H), 2.24 — 2.15 (m, 2H), 2.06 — 1.93 (m,
1H), 1.41 — 1.34 (m, 2H), 1.31 — 1.21 (m, 6H), 1.04 (s, 3H), 0.83 (s, 3H). 3C {1H}
NMR (101 MHz, CDCl;) 6 205.4, 172.0, 171.2, 141.5, 131.6, 130.9, 130.8, 129.1,
126.9, 61. 7, 61.5, 54.7, 53.7, 38.7, 33.8, 31.1, 29.4, 26.7, 203, 14.2, 14.2.
HR-MALDI-MS m/z calcd. for C,1H»;CINaOs [M+Na]*: 417.1439, found: 417.1433.
Diethyl 3-(3-chlorobenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2h):
Colorless oil. 31.6 mg, 80% yield. IR (KBr): 2980, 1727, 1688, 1471, 1243, 1156,
20
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758 cm'. "TH NMR (400 MHz, CDCl;) 6 7.93 (t, J = 1.8 Hz, 1H), 7.88 (d, /= 7.8 Hz,
1H), 7.53 (ddd, J=7.9, 1.9, 0.9 Hz, 1H), 7.41 (t, J= 7.9 Hz, 1H), 4.38 — 4.25 (m, 2H),
4.20 —4.10 (m, 2H), 3.60 (dd, J = 12.7, 3.2 Hz, 1H), 2.35 - 2.17 (m, 2H), 2.18 — 2.02
(m, 2H), 1.49 — 1.36 (m, 2H), 1.31 (t,J=7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.06 (s,
3H), 0.83 (s, 3H). 3C {1H} NMR (101 MHz, CDCl;) 8 202.1, 171.8, 171.4, 140.4,
135.1, 132.9, 130.1, 128.3, 126.5, 61.7, 61.6, 54.7, 48.9, 38.6, 33.3, 31.2, 30.1, 26.7,
20.2, 14.3, 14.1. HR-MALDI-MS m/z calcd. for C,;H,;CINaOs [M+Na]*: 417.1439,
found: 417.1436.
Diethyl 3-(3,4-dimethylbenzoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2i):
Colorless oil. 33.0 mg, 85% yield. IR (KBr): 2925, 2862, 1680, 1349, 1160, 722, 545
cm’'. 'TH NMR (400 MHz, CDCl3) 8 7.69 — 7.61 (m, 2H), 7.14 (d, J = 7.7 Hz, 1H),
4.28 —4.16 (m, 2H), 4.12 — 4.03 (m, 2H), 3.55 (dd, J = 12.6, 3.3 Hz, 1H), 2.25 (s, 3H),
2.24 (s, 3H), 2.21 — 2.10 (m, 2H), 2.09 — 1.96 (m, 2H), 1.37 — 1.29 (m, 2H), 1.23 (t, J
= 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H), 0.98 (s, 3H), 0.75 (s, 3H). 13C {1H} NMR
(101 MHz, CDCly) 6 203.1, 172.0, 171.5, 142.5, 137.1, 136.8, 129.9, 129.4, 126.2,
61.6, 61. 5, 54.8, 48.3, 38.7, 33.2, 31.3, 30.2, 26.8, 20.4, 20.1, 20.0, 14.3, 14.2.
HR-MALDI-MS m/z calcd. for Co3H3,NaOs [M+Na]™: 411.2142, found: 411.2137.
Diethyl 3-(1-naphthoyl)-4,4-dimethylcyclohexane-1,1-dicarboxylate (2j):
Colorless oil. 27.9 mg, 68% yield. IR (KBr): 2984, 1727, 1684, 1459, 1246, 1156,
793 cm!'. '"H NMR (400 MHz, CDCl;) & 8.39 (d, J= 8.5 Hz, 1H), 7.96 (d, J = 8.3 Hz,
1H), 7.93 — 7.84 (m, 2H), 7.62 — 7.48 (m, 3H), 4.37 — 4.24 (m, 2H), 4.24 — 4.14 (m,
2H), 3.70 (dd, J = 12.8, 3.3 Hz, 1H), 2.50 — 2.34 (m, 1H), 2.31 — 2.18 (m, 2H), 2.11
21
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(td, J=13.6,4.7 Hz, 1H), 1.44 — 1.33 (m, 2H), 1.31 (t, /= 7.1 Hz, 3H), 1.25 (t, 3H),
1.14 (s, 3H), 0.74 (s, 3H). 13C {1H} NMR (101 MHz, CDCl;) § 207.3, 172.0, 171.5,
139.0, 134.2, 132.3, 129.8, 128.6, 127.9, 127.2, 126.5, 125.8, 124.6, 61.7, 61.5, 54.9,
53.2, 38.9, 33.9, 31.4, 30.1, 26.8, 20.2, 14.3, 14.2. HR-MALDI-MS m/z calcd. for
C,sH30NaOs [M+Na]*: 433.1985, found: 433.1978.
(5,5-Bis(methoxymethyl)-2,2-dimethylcyclohexyl)(phenyl)methanone (2k):
Colorless oil. 28.3 mg, 93% yield. IR (KBr): 2921, 2866, 1680, 1451, 1112, 689 cm!.
'"H NMR (400 MHz, CDCl;) § 7.84 (dd, J = 5.2, 3.4 Hz, 2H), 7.52 — 7.43 (m, 1H),
7.41 —7.33 (m, 2H), 3.43 — 3.35 (m, 3H), 3.33 (s, 3H), 3.24 (s, 3H), 3.13 — 3.06 (m,
2H), 1.62 (q, J = 14.3 Hz, 2H), 1.55 — 1.35 (m, 2H), 1.26 — 1.15 (m, 1H), 1.24 - 1.12
(m, 2H), 0.99 (s, 3H), 0.80 (s, 3H). 1*C {IH} NMR (101 MHz, CDCls)  204.0, 139.0,
132.7, 128.6, 128.2, 79.8, 72.9, 59.5, 59.5, 47.7, 38.8, 37.8, 33. 9, 31.4, 29.3, 25.8,
20.2. HR-MALDI-MS m/z calcd. for C;9H,sNaO; [M+Na]": 327.1931, found:
327.1933.
(3-Benzoyl-4,4-dimethylcyclohexane-1,1-diyl)bis(methylene) diacetate (21):
Colorless oil. 31.3 mg, 87% yield. IR (KBr): 2925, 2854, 1735, 1680, 1231, 1037,
691 cm’!. '"H NMR (400 MHz, CDCl3) & 7.85 (dd, J = 10.9, 3.7 Hz, 2H), 7.53 — 7.47
(m, 1H), 7.45 — 7.35 (m, 2H), 4.27 (d, J = 11.4 Hz, 1H), 4.05 (d, J = 11.4 Hz, 1H),
3.95-3.76 (m, 2H), 3.46 (dd, /= 13.1, 3.2 Hz, 1H), 1.99 (s, 3H), 1.98 (s, 3H), 1.85 —
1.75 (m, 1H), 1.45 (dtd, J = 16.3, 13.6, 6.7 Hz, 4H), 1.24 (dd, J = 10.4, 7.7 Hz, 1H),
0.94 (s, 3H), 0.79 (s, 3H). 13C {IH} NMR (101 MHz, CDCl;) & 203.5, 171.3, 171.2,
138. 9, 133.0, 128.8, 128.3, 70.1, 63.4, 47.0, 37.2, 37.1, 33.9, 31.6, 28.5, 25.3, 21.0,
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20.1. HR-MALDI-MS m/z calcd. for C, H,sNaOs [M+Na]": 383.1829, found:
383.1826.
Dimethyl 3-benzoyl-4,4-dimethylcyclohexane-1,1-dicarboxylate (2m):
Colorless oil. 29.6 mg, 89% yield. IR (KBr): 3458, 2960, 2930, 2865, 1727, 1243
cm’'. 'TH NMR (400 MHz, CDCl3) 8 7.99 (dt, J = 8.6, 1.7 Hz, 2H), 7.61 — 7.52 (m,
1H), 7.51 — 7.41 (m, 2H), 3.83 (s, 3H), 3.71 (s, 3H), 3.65 (dd, J = 12.6, 3.3 Hz, 1H),
2.33 —2.20 (m, 2H), 2.20 — 2.06 (m, 2H), 1.47 — 1.32 (m, 2H), 1.07 (s, 3H), 0.83 (s,
3H). *C {IH} NMR (101 MHz, CDCls) 6 203.2, 172.3, 171.9, 138.9, 133.0, 128.7,
128.3, 54.9, 52.9, 52.8, 48.6, 38.7, 33.2, 31.3, 30.3, 26.9, 20.3. HR-MALDI-MS m/z
calcd. for C;9H,4NaOs [M+Na]*: 355.1516, found: 355.1517.
2,2-Dimethyl-5,5-bis(phenylsulfonyl)cyclohexyl)(phenyl)methanone (2n):
White solid. 41.7 mg, 84% yield. mp: 147.4-147.8 °C. IR (KBr): 2933, 2854, 1448,
1341, 1156, 923, 746 cm’'. '"H NMR (400 MHz, CDCl;) & 8.12 (d, J = 7.4 Hz, 2H),
8.07 — 8.02 (m, 2H), 8.01 — 7.96 (m, 2H), 7.71 (dt, J = 10.1, 7.1 Hz, 2H), 7.63 — 7.56
(m, 5H), 7.47 (t, J = 7.6 Hz, 1H), 4.45 (dd, J = 12.7, 3.6 Hz, 1H), 2.89 (dd, J = 15.5,
12.8 Hz, 1H), 2.65 —2.53 (m, 1H), 2.34 —2.17 (m, 3H), 1.50 — 1.39 (m, 1H), 0.87 (s,
3H), 0.83 (s, 3H). 3C {IH} NMR (101 MHz, CDCl;) & 202.6, 138.5, 136.3, 135.9,
134.8, 134.7, 133. 5, 131.7, 131.3, 128.9, 128.8, 128.8, 128.4, 87.5, 46.5, 36.8, 32.8,
31.0, 26.4, 22.1, 19.6. HR-MALDI-MS m/z caled. for C,;H,sNaOsS, [M+Na]*:
519.1270, found: 519.1270.
(4,4-Dimethyl-1-tosylpiperidin-3-yl)(phenyl)methanone (20):
White solid. 24.3 mg, 65% yield. mp: 120.4-120.9 °C. IR (KBr): 2925, 1787, 1353,
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1160, 742, 553 cm™'. '"H NMR (400 MHz, CDCl;) 8 7.94 — 7.89 (m, 2H), 7.68 — 7.63
(m, 2H), 7.62 — 7.55 (m, 1H), 7.51 — 7.43 (m, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.75 —
3.59 (m, 3H), 2.82 — 2.72 (m, 1H), 2.55 — 2.47 (m, 1H), 2.46 (s, 3H), 1.77 (td, J =
13.2, 4.6 Hz, 1H), 1.46 (dt, J = 13.5, 2.7 Hz, 1H), 0.86 (s, 3H), 0.83 (s, 3H). '3C {1H}
NMR (101 MHz, CDCl;) 6 201.5, 143.8, 138.3, 133.5, 133.3, 129.9, 128.8, 128.4,
127. 8, 50.9, 44.6, 42. 6, 40.1, 32. 6, 31.3, 21.7, 19.9. HR-MALDI-MS m/z calcd. for
C,1HysNNaO;S [M+Na]™: 394.1447, found: 394.1443.
(4,4-Dimethyl-1-tosylpiperidin-3-yl)(thiophen-3-yl)methanone (2p):
Colorless oil. 23.4 mg, 62% yield. IR (KBr): 2925, 2580, 1664, 1357, 1164, 1093,
955 cm!. '"H NMR (400 MHz, CDCls) § 8.00 (dd, J = 2.8, 1.2 Hz, 1H), 7.58 (d, J =
8.3 Hz, 2H), 7.46 (dd, J=5.1, 1.2 Hz, 1H), 7.32 — 7.23 (m, 3H), 3.68 — 3.53 (m, 2H),
3.33(dd, J=11.5,3.7 Hz, 1H), 2.67 (t,J = 11.8 Hz, 1H), 2.49 — 2.32 (m, 4H), 1.75 —
1.63 (m, 1H), 1.38 (ddd, /=9.0, 5.9, 2.2 Hz, 1H), 0.87 (s, 3H), 0.77 (s, 3H). °C {1H}
NMR (101 MHz, CDCl;) 6 195.1, 143.8, 143.5, 133.3, 133.2, 130.0, 127. 8, 127.3,
126.8, 53.3, 44.5, 42.5, 40.1, 32.5, 31.4, 21.7, 19.8. HR-MALDI-MS m/z calcd. for
C19H,3NNaO;S, [M+Na]*: 400.1012, found: 400.1007.
(4,4-Dimethyl-1-tosylpiperidin-3-yl)(4-methoxyphenyl)methanone (2q):
White solid. 28.1 mg, 70% yield. mp: 137.4-137.9 °C. IR (KBr): 2956, 2925, 2854,
1455, 1337, 1164, 545 cm’!. 'TH NMR (400 MHz, CDCl;) 8 7.66 (d, J = 8.3 Hz, 2H),
7.25 (d, J = 7.2 Hz, 2H), 6.98 — 6.95 (m, 1H), 6.81 (d, J = 2.3 Hz, 1H), 6.68 (dd, J =
8.2, 2.4 Hz, 1H), 3.80 — 3.76 (m, 2H), 3.74 (s, 3H), 3.73 — 3.69 (m, 1H), 3.30 (t, J =
5.7 Hz, 2H), 2.50 — 2.44 (m, 2H), 2.35 (s, 3H), 1.13 (s, 6H). *C {IH} NMR (101
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MHz, CDCl;) 6 158.3, 155.3, 143. 7, 142.3, 134.7, 134.1, 130.7, 129.9, 127.7, 118.8,
111.2, 108.5, 55.7, 48.7, 43.3, 43.0, 24. 5, 22.6, 21. 7. HR-MALDI-MS m/z calcd. for
CyH,7NNaO,S [M+Na]*: 424.1553, found: 424.1547.
(4,4-Dimethyl-1-tosylpiperidin-3-yl)(4-(trifluoromethyl)phenyl)methanone (2r):
White solid. 27.6 mg, 63% yield. mp: 140.4-140.9 °C. IR (KBr): 2958, 2931, 1447,
1344, 1161, 1093, 907, 759, 553 cm’!. 'TH NMR (400 MHz, CDCl;) 8 7.95 (d, J = 8.2
Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.59 (d, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.67 — 3.52
(m, 3H), 2.72 (t, J = 12.4 Hz, 1H), 2.49 — 2.40 (m, 1H), 2.39 (s, 3H), 1.77 — 1.64 (m,
1H), 1.41 (dt, J = 13.7, 2.8 Hz, 1H), 0.79 (s, 3H), 0.75 (s, 3H). 13C {IH} NMR (101
MHz, CDCl;) 6 200.8, 143.9, 141.0, 133.3, 130.0, 128.7, 128.5 (q, J = 413.0 Hz),
127.8,126.0 (q,J=3.7 Hz), 51.5,44.4,42.5, 40.0, 32.8, 31.4, 21.7, 19.9. F NMR
(377 MHz, CDCl;) 6 -63.13. HR-MALDI-MS m/z calcd. for C,,H,4F3NNaOsS
[M+Na]*: 462.1321, found: 462.1321.
(4,4-Dimethyl-1-tosylpyrrolidin-3-yl)(phenyl)methanone (4a):
Colorless oil. 25.4 mg, 71% yield. IR (KBr): 2968, 2882, 1676, 1345, 1160, 1101,
663 cm™'. "H NMR (400 MHz, CDCl;) é 7.78 — 7.68 (m, 4H), 7.54 — 7.47 (m, 1H),
7.43 —7.36 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 3.73 (t, J = 7.6 Hz, 1H), 3.60 (ddd, J =
28.4, 10.0, 7.6 Hz, 2H), 3.16 (d, J = 9.5 Hz, 1H), 3.04 (d, J = 9.5 Hz, 1H), 2.39 (s,
3H), 1.04 (s, 3H), 0.62 (s, 3H). *C {1H} NMR (101 MHz, CDCl3) 3 199.1, 143.6,
137.8, 134.0, 133.6, 129.8, 128.9, 128.5, 127.8, 61.0, 53.2,49.7, 42.5, 27.6, 22.4, 21.7.
HR-MALDI-MS m/z caled. for C,0H,3NNaO3S [M+Na]*: 380.1291, found: 380.1289.
(4,4-Dimethyl-1-tosylpyrrolidin-3-yl)(4-fluorophenyl)methanone (4b):
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White solid. 24.8 mg, 66% yield. mp: 79.8-80.5 °C. IR (KBr): 2930, 2854, 1545,
1156, 1015, 927 cm’!. '"H NMR (400 MHz, CDCl;) § 7.82 — 7.75 (m, 2H), 7.73 — 7.67
(m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.10 — 7.00 (m, 2H), 3.67 (dd, /= 14.2, 6.6 Hz, 1H),
3.62 - 3.51 (m, 2H), 3.16 (d, J = 9.5 Hz, 1H), 3.04 (d, J = 9.5 Hz, 1H), 2.39 (s, 3H),
1.06 (s, 3H), 0.62 (s, 3H). 3C {1H} NMR (101 MHz, CDCl;) $ 197.5, 166.1 (d, J =
260.0 Hz), 143.7, 134.2 (d, J = 3.1 Hz), 134.0, 131.2 (d, J = 9.4 Hz), 129.8, 127.8,
116.0 (d, J = 21.9 Hz) 61.0, 53.2, 49.8, 42.6, 27.7, 22.5, 21.8. '’F NMR (377 MHz,
CDCl;) o -104.28. HR-MALDI-MS m/z calcd. for Cy)H,,FNNaO3;S [M+Na]*:
398.1197, found: 398.1192.
(4-Chlorophenyl)(4,4-dimethyl-1-tosylpyrrolidin-3-yl)methanone (4¢):
White solid. 25.0 mg, 64% yield. mp: 78.4-79.0 °C. IR (KBr): 2965, 2925, 2865,
1345, 1015, 670 cm’!. '"H NMR (400 MHz, CDCl;) § 7.69 (d, J = 8.4 Hz, 3H), 7.61 (d,
J=17.8 Hz, 1H), 7.47 (d, J= 7.9 Hz, 1H), 7.36 — 7.26 (m, 3H), 3.71 — 3.48 (m, 3H),
3.15(d, J=9.5 Hz, 1H), 3.04 (d, J = 9.5 Hz, 1H), 2.40 (s, 3H), 1.04 (s, 3H), 0.63 (s,
3H). 3C {IH} NMR (101 MHz, CDCls) 6 198.0, 143.7, 139.3, 135.3, 133.9, 133.5,
130.2, 129.9, 128.5, 127.8, 126.6, 60.9, 53.4, 49.6, 42.7, 27.6, 22. 5, 21.8.
HR-MALDI-MS m/z calcd. for C,yH»,CINNaO;S [M+Na]™: 414.0901, found:
414.0896.
(4-Methyl-4-phenyl-1-tosylpyrrolidin-3-yl)(phenyl)methanone (4d):
Colorless oil. 25.6 mg, 61% yield. IR (KBr): 2916, 1599, 1451, 1333, 1156, 1108,
908, 754, 563 cm™'. 'H NMR (400 MHz, CDCl;) 6 7.79 — 7.73 (m, 2H), 7.58 — 7.46
(m, 3H), 7.38 — 7.30 (m, 4H), 7.11 — 7.03 (m, 3H), 6.95 — 6.88 (m, 2H), 4.18 (dd, J =
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7.7,3.2 Hz, 1H), 4.11 — 4.03 (m, 1H), 3.91 (dd, J = 10.7, 7.7 Hz, 1H), 3.70 (d, J = 8.7
Hz, 1H), 3.55 (dt, J = 16.2, 8.1 Hz, 1H), 2.44 (s, 3H), 1.47 (s, 3H). 3C {IH} NMR
(101 MHz, CDCl) 6 199.4, 143.6, 143.1, 137.3, 134.3, 133.2, 129.9, 128. 7, 128.4,
128.1, 127.6, 126.6, 125.9, 57.9, 53.4, 50.2, 50.1, 30.1, 21.7. HR-MALDI-MS m/z
calcd. for C,sHpsNNaO;S [M+Na]*™: 442.1447, found: 442.1447.
3-(Prop-1-en-2-yl)-4-(thiophen-2-yl)-1-tosyl-1,2,3,6-tetrahydropyridine (6):
White solid. 24.4 mg, 68% yield. mp: 142.4-143.1 °C. IR (KBr): 3075, 2854, 1471,
1333, 1156, 663 cm’!. 'H NMR (400 MHz, CDCl;) § 7.61 (d, J = 8.3 Hz, 2H), 7.25 (d,
J=28.0 Hz, 2H), 7.04 (dd, J = 3.8, 2.4 Hz, 1H), 6.88 — 6.80 (m, 2H), 6.06 — 5.99 (m,
1H), 4.87 (s, 1H), 4.79 (s, 1H), 4.04 — 3.94 (m, 1H), 3.66 (dt, J = 33.0, 16.5 Hz, 1H),
3.32 (ddd, J = 13.3, 6.6, 4.2 Hz, 1H), 3.21 (s, 1H), 2.75 (dd, J = 11.6, 4.1 Hz, 1H),
2.36 (s, 3H), 1.77 (s, 3H). 13C {IH} NMR (101 MHz, CDCl;) 8 143.9, 143.8, 143. 7,
133.4,131.9, 129. 8, 127.9, 127. 5, 123.9, 123.3, 119.6, 115.1, 47.3, 45.7, 45.0, 29.8,
21. 7, 21.6. HR-MALDI-MS m/z caled. for C;9H,;NNaO,S, [M+Na]*: 382.0906,
found: 382.0904.
Ethyl
5,5-dimethyl-2-0x0-3-(3-phenylprop-2-yn-1-yl)tetrahydrofuran-3-carboxylate
8):
Colorless oil. 24.0 mg, 80% yield. IR (KBr): 2935, 2854, 1355, 1165, 758, 655, 541
cm’'. 'TH NMR (400 MHz, CDCl;) & 7.39 (dd, J = 7.1, 2.6 Hz, 2H), 7.33 — 7.20 (m,
2H), 4.37 - 4.17 (m, 2H), 3.24 — 3.10 (m, 1H), 3.05 (d, /= 16.9 Hz, 1H), 2.66 (t, J =
14.6 Hz, 1H), 2.57 (t, J = 18.4 Hz, 1H), 1.61 (s, 6H), 1.33 (t, 3H). 3C {IH} NMR
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(101 MHz, CDCl;) 6 173.2, 169. 8, 131.8, 128.4, 122.9, 84.4, 84.0, 83.0, 62.8, 56.9,
43.2, 29.9, 28.9, 26.5, 14.1. HR-MALDI-MS m/z calcd. for C;gH;)NaO4 [M+Na]*:
323.1254, found: 323.1256.
Phenyl(4a,8,8-trimethyl-2-tosyldecahydroisoquinolin-4-yl)methanone (10a):
White solid. 29.0 mg, 66% yield. mp: 124.4-125.0 °C. IR (KBr): 3445, 2925, 2854,
1633, 1160, 714, 549 cm™'. '"H NMR (400 MHz, CDCl;) 6 7.85 — 7.80 (m, 2H), 7.67
(d, J= 8.3 Hz, 2H), 7.57 — 7.51 (m, 1H), 7.44 (dd, J = 10.5, 4.7 Hz, 2H), 7.29 (t, J =
6.7 Hz, 2H), 3.72 — 3.65 (m, 2H), 3.22 (dd, J = 4.7, 2.0 Hz, 1H), 3.11 (dd, J = 12.9,
4.8 Hz, 1H), 2.62 — 2.53 (m, 2H), 2.43 (s, 3H), 1.59 — 1.53 (m, 1H), 1.47 (dd, J = 12.6,
3.1 Hz, 1H), 1.37 (ddd, /= 13.4, 10.6, 5.7 Hz, 2H), 1.31 — 1.22 (m, 2H), 1.11 (s, 3H),
0.95 (s, 3H), 0.81 (s, 3H). 3C {1H} NMR (101 MHz, CDCl;) & 200.5, 143.4, 138.4,
134.5, 133.0, 129.7, 128.8, 128.2, 127.8, 51.6, 44.2, 43.2, 42.3, 41.7, 36.5, 36.3, 33.0,
32.5,22.3,21.7,21.0, 18.6. HR-MALDI-MS m/z calcd. for C,sH33NNaO3S [M+Na]*:
462.2073, found: 462.2073.
p-Tolyl(4a,8,8-trimethyl-2-tosyldecahydroisoquinolin-4-yl)methanone (10b):
White solid. 30.8 mg, 68% yield. mp: 154.4-154.9 °C. IR (KBr): 2921, 2854, 1522,
1160, 742 cm™'. '"H NMR (400 MHz, CDCl;) 4 7.73 (d, J = 8.2 Hz, 2H), 7.67 (d, J =
8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 3.71 — 3.60 (m, 2H),
3.20 (dd, J = 4.7, 2.1 Hz, 1H), 3.11 (dd, J = 12.9, 4.7 Hz, 1H), 2.69 — 2.53 (m, 2H),
2.42 (s, 3H), 2.40 (s, 3H), 1.62 — 1.50 (m, 1H), 1.45 (dd, /= 12.6, 3.2 Hz, 1H), 1.41 —
1.32 (m, 2H), 1.30 — 1.20 (m, 2H), 1.11 (s, 3H), 0.94 (s, 3H), 0.80 (s, 3H). 13C {1H}
NMR (101 MHz, CDCl;) & 200.1, 143.8, 143.3, 135.6, 134.6, 129.6, 129. 5, 128.3,
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127.8,51.4,44.2,43.2,42.3,41.7, 36.5, 36.3, 33.0, 32.5, 22.3, 21.7, 21.7, 21.1, 18.6.
HR-MALDI-MS m/z caled. for C,7H;35NNaO3S [M+Na]*: 476.2230, found: 476.2228.
Methyl  4-(4a,8,8-trimethyl-2-tosyldecahydroisoquinoline-4-carbonyl)benzoate
(10c¢):

White solid. mp: 188.7-189.1 °C. 31.8 mg, 64% yield. IR (KBr): 2925, 2854, 1727,
1282, 1156, 1105, 730 cm™!. 'TH NMR (400 MHz, CDCl;) 6 8.15 — 8.06 (m, 2H), 7.90
— 7.81 (m, 21H), 7.69 — 7.63 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 3.95 (s, 3H), 3.72 —
3.63 (m, 2H), 3.19 (dd, J = 4.6, 2.0 Hz, 1H), 3.09 (dd, J = 12.8, 4.7 Hz, 1H), 2.60 —
2.52 (m, 2H), 2.43 (s, 3H), 1.64 — 1.59 (m, 2H), 1.49 — 1.39 (m, 2H), 1.27 (ddd, J =
15.5, 11.7, 3.5 Hz, 2H), 1.11 (s, 3H), 0.96 (s, 3H), 0.80 (s, 3H). 3C {1H} NMR (101
MHz, CDCl;) 6 200.1, 166.3, 143.5, 141.7, 134.5, 133.7, 130.0, 129.7, 128.0, 127.8,
52.6, 52.2, 44.3, 43.1, 42.4, 41.7, 36.5, 36.4, 33.0, 32.5, 22.3, 21.7, 21.0, 18.6.
HR-MALDI-MS m/z calcd. for Co,sH35sNNaOsS [M+Na]*: 520.2128, found: 520.2128.
(4-Fluorophenyl)(4a,8,8-trimethyl-2-tosyldecahydroisoquinolin-4-yl)methanone
(10d):

White solid. mp: 166.5-167.0 °C. 28.8 mg, 63% yield. IR (KBr): 2929, 2854, 1546,
1156, 1014, 927 cm™'. '"H NMR (400 MHz, CDCl;) 8 7.86 (ddd, J = 8.3, 5.2, 2.5 Hz,
2H), 7.67 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.16 — 7.06 (m, 2H), 3.70 —
3.60 (m, 2H), 3.16 (dd, J=4.6, 1.9 Hz, 1H), 3.12 - 3.05 (m, 1H), 2.62 — 2.50 (m, 2H),
2.43 (s, 3H), 1.64 — 1.56 (m, 2H), 1.46 — 1.36 (m, 2H), 1.30 — 1.21 (m, 2H), 1.11 (s,
3H), 0.95 (s, 3H), 0.81 (s, 3H). 3C {1H} NMR (101 MHz, CDCl3) 5 198.8, 165.6 (d,
J = 12548 Hz), 143.4, 134.7 (d, J = 17.4 Hz), 130.8 (d, J = 9.2 Hz), 129.7, 127.8,
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115.9 (d, J=21.8 Hz), 51.6, 44.2, 43.2, 42.3, 41.7, 36.6, 36.3, 33.0, 32.5, 22.3, 21.7,
21.1, 18.6. ’F NMR (377 MHz, CDCl;) 6 -105.69. HR-MALDI-MS m/z calcd. for

Cy6H3,FNNaO;S [M+Na]*": 480.1979, found: 480.1976.
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