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Synthesis of 2�aryl�6�nitro�4�(vic�triazol�1�yl)�1H�indoles
from E�2,4,6�trinitrostilbenes*
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A method is developed for the preparation of 4�(vic�triazol�1�yl)indoles that involves
replacement of the ortho�NO2 group in E�2,4,6�trinitrostilbenes by an azido group, condensa�
tion of E�2�azido�4,6�dinitrostilbenes with acetylacetone, replacement of the second ortho�NO2
group in the resulting stilbenes by N3, and subsequent thermolysis of the azide into the target
indole. The reactions of E�2�azido�4,6�dinitrostilbenes with cyclohexane�1,3�dione gave
E�2�amino�4,6�dinitrostilbenes, which can be used for selective transformation of the ortho�NO2
group into an amino group in E�2,4,6�trinitrostilbenes.
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The present work was performed as a part of the pro�
gram on the study of chemistry of 2,4,6�trinitrotoluene
(TNT) aimed at creating scientific fundamentals and tech�
nologies for its use as a multipurpose starting material.1,2

E�2,4,6�Trinitrostilbenes 1 belong to the most accessible
TNT derivatives; these can be prepared in high yields
by condensation of TNT with aromatic aldehydes under
the conditions of the Knoevenagel reaction (see Ref. 3
and references therein). In the framework of the afore�

mentioned program, we are studying the transforma�
tions of E�2,4,6�trinitrostilbenes 1 in order to synthe�
size polyfunctional benzoannelated heterocycles based
on them.

Earlier,3—5 we have demonstrated that the ortho�NO2
group in stilbenes 1 is regioselectively replaced under the
action of anionic nucleophiles, which allowed the use of a
β�arylvinyl fragment in an intramolecular cyclization. For
instance, thermolysis of E�2�azido�4,6�dinitrostilbenes 2
obtained by the action of NaN3 on stilbenes 1 gave
2�aryl�4,6�dinitroindoles 3 in high yields (see Ref. 3)
(Scheme 1).

* Dedicated to Academician N. K. Kochetkov on the occasion
of his 90th birthday.
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The goal of the present work was to develop a method
for the synthesis of a rare type of indoles with the 1,2,3�tri�
azolyl substituent from stilbenes 1.

Previously,6—8 in our studies on sequential replace�
ment of nitro groups in 1,3,5�trinitrobenzene (TNB) un�
der the action of NH�azoles in the presence of inor�
ganic bases, we have found that an N�azolyl substituent
(1,2,3� and 1,2,4�triazolyl) is similar to the nitro group in
activating effect in SNAr reactions of the meta�NO2 group.

The accumulated data altogether allowed us to
choose two possible versions of the synthesis of the target
4�(vic�triazol�1�yl)indoles. The first version involves re�
placement of the ortho�NO2 group in stilbenes 1 by a
triazole to give 4,6�dinitro�2�(vic�triazol�1�yl)stilbenes 4
(Scheme 2, pathway a), replacement of the second
ortho�NO2 group in compound 4 under the action of
NaN3, and thermolysis of the resulting azide 5 into the
target indole 6.

However, NH�azoles (1,2,3� and 1,2,4�triazoles and
benzotriazole) could not replace the nitro group in stil�
benes 1: no replacement occurred at moderate tempera�
tures (20—60 °C) in dipolar aprotic solvents (DMF,
N�methylpyrrolidone, DMSO, etc.) in the presence of
inorganic bases, while an increase in the temperature
(>80 °C) resulted only in strong resinification.

The second version involves 1,3�dipolar cycloaddi�
tion of the E�2�azido�4,6�dinitrostilbenes 2 prepared ear�
lier3 to appropriate dipolarophiles (e.g., 1,3�dicarbonyl
compounds9) to give the corresponding 4,6�dinitro�2�
(vic�1,2,3�triazol�1�yl)stilbenes 4 and their subsequent
transformations.

We studied the reactions of azides 2 with different
types of dipolarophiles: vinyl ethers, 1,3�diketones, and
diethyl acetylenedicarboxylate. An unambiguous reaction
proved to occur only with acetylacetone (see Scheme 2,
pathway b). Heating of equimolar amounts of E�2�azido�
4,6�dinitrostilbenes 2a—c with acetylacetone in EtOH in
the presence of Et3N gave E�6�(4�acetyl�5�methyl�1H�
1,2,3�triazol�1�yl)�2,4�dinitrostilbenes 4a—c in 40—75%
yields (Scheme 3). As noted above, the N�triazolyl frag�
ment is similar to the nitro group in the activating effect
in SNAr reactions of the meta�NO2 group. Indeed, the
nitro group in stilbenes 4a—c is replaced under the action

of NaN3 under the same mild conditions as in stilbenes 1
(DMF, ~20 °C). The reaction is also regiospecific: only
the ortho�NO2 group is replaced to give E�6�(4�acetyl�5�
methyl�1H�1,2,3�triazol�1�yl)�2�azido�4�nitrostilbenes
5a—c in 60—80% yields (see Scheme 3). According to
1H NMR data, the reaction is unambiguous: in all cases,
the reaction of NaN3 with stilbenes 4a—c yielded single
products. The fact of replacement of the ortho�NO2
group in stilbenes 4a—c was proved by thermolysis of
ortho�azidostilbenes 5a—c: when heated in ethylene gly�
col at 160—180 °C, they liberated nitrogen to form the
target indoles, namely, 4�(4�acetyl�5�methyl�1H�1,2,3�
triazol�1�yl)�2�aryl�6�nitro�1H�indoles 6a—c, in high
yields (see Scheme 3). Thus, we developed a novel method
for the synthesis of 4�(vic�triazol�1�yl)indoles.

It should be noted that the reactions of ortho�azido�
stilbenes 2a—c with a cyclic 1,3�dicarbonyl compound
(cyclohexane�1,3�dione) occur differently than with
acetylacetone. Here, the azido group is replaced by an
amino group rather than an N�vic�triazolyl fragment; i.e.,
the azido group is formally reduced to give E�2�amino�
4,6�dinitrostilbenes 7a—c (see Scheme 3). Owing to the
satisfactory yields of ortho�aminostilbenes 7 (45—85%),
this process can be regarded as a two�step preparative
method for selective transformation of the ortho�NO2
group in E�2,4,6�trinitrostilbenes 1 into an amino group:
first, the ortho�NO2 group is replaced under the action of
NaN3 and then the azido group is transformed into an
amino group in the reaction of ortho�azidostilbenes 2 with
cyclohexane�1,3�dione.

The formation of the amino group from the azido
group in the presence of dipolarophiles containing a reac�
tive methylene group (1,3�dicarbonyl compounds, benzyl
cyanides, malononitrile, ethyl cyanoacetate, etc.) is well
known10 and suggests that diazo transfer occurs instead of
1,3�dipolar addition: a methylene compound is converted
into a diazo derivative, and the azido group is transformed
into an amino group (Scheme 4).

Such a process is characteristic of those substrates in
which an aromatic azido group is bound to a strongly
electron�deficient aromatic ring (e.g., some azidotriazines,
azidopyrimidines, picryl azide, etc.10). Among 1,3�di�
carbonyl compounds, cyclic diketones are more prone to
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diazo transfer than their acyclic analogs,11,12 which was
observed in our case.

Experimental

1H and 13C NMR spectra were recorded on Bruker AC�200
and Bruker AM�300 instruments, respectively. Chemical shifts
are referenced to Me4Si. Mass spectra (EI, 70 eV) were recorded
on an MS�30 instrument (Kratos). Melting points were deter�
mined on a Boetius hot stage (heating rate 4 deg min–1).

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2,4�dinitro�
stilbenes 4 (general procedure). Triethylamine (5 mmol) was
added to a solution of E�2�azido�4,6�dinitrostilbene 2 3

(10 mmol) and acetylacetone (10 mmol) in EtOH (20 mL). The
mixture was refluxed for 3 to 4 h (TLC) and then cooled. The
precipitate that formed was filtered off and recrystallized from
MeCN—EtOH (1 : 1).

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2,4�dinitro�
stilbene (4a). The yield was 57%, m.p. 135—137 °C. Found (%):

C, 57.79; H, 3.62; N, 17.86. C19H15N5O5. Calculated (%):
C, 58.01; H, 3.84; N, 17.80. 1H NMR (DMSO�d6), δ: 9.10, 8.92
(both s, 1 H each, C6H2(NO2)2); 7.41—7.29 (m, 5 H, Ph); 7.12,
6.26 (both d, 1 H each, CH, 3Jtrans = 15.7 Hz); 2.62, 2.42
(both s, 3 H each, Me). MS, m/z: 393 [M]+.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�4´�chloro�2,4�
dinitrostilbene (4b). The yield was 41%, m.p. 167—169 °C.
Found (%): C, 53.25; H, 3.12; Cl, 8.07; N, 16.49.
C19H14ClN5O5. Calculated (%): C, 53.34; H, 3.30; Cl, 8.29;
N, 16.37. 1H NMR (CDCl3), δ: 8.28, 8.01 (both s, 1 H each,
C6H2(NO2)2); 7.30, 7.19 (both d, 2 H each, C6H4Cl, 3J =
6.7 Hz); 6.67—6.54 (m, 2 H, CH=CH); 2.76, 2.38 (both s,
3 H each, Me). MS, m/z: 427 [M]+.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�4´�methoxy�
2,4�dinitrostilbene (4c). The yield was 73%, m.p. 177—178 °C.
Found (%): C, 56.52; H, 3.77; N, 16.23. C20H17N5O6. Calcu�
lated (%): C, 56.74; H, 4.05; N, 16.54. 1H NMR (DMSO�d6), δ:
9.09, 8.89 (both s, 1 H each, C6H2(NO2)2); 7.30 (d, 2 H,
C6H4OMe, 3J = 7.1 Hz); 6.98—6.87 (m, 3 H, C6H4OMe + CH);
6.18 (d, 1 H, CH, 3Jtrans = 15.5 Hz); 3.79 (s, 3 H, OMe); 2.64,
2.41 (both s, 3 H each, Me). MS, m/z: 423 [M]+.

E�2�Amino�4,6�dinitrostilbenes 8 (general procedure). Tri�
ethylamine (5 mmol) was added to a solution of 2�azido�
4,6�dinitrostilbene 2 (10 mmol) and cyclohexane�1,3�dione
(10 mmol) in EtOH (50 mL). The mixture was refluxed for 5 h
(TLC) and cooled. The precipitate that formed was filtered off.

2�Amino�4,6�dinitrostilbene (7a). The yield was 46%, m.p.
124—125 °C. Found (%): C, 58.57; H, 3.94; N, 14.37.
C14H11N3O4. Calculated (%): C, 58.95; H, 3.89; N, 14.73.

Scheme 3

R = H (a), Cl (b), OMe (c)
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1H NMR (DMSO�d6), δ: 7.79—7.74 (m, 2 H, C6H2(NO2)2);
7.62—7.56 (m, 2 H, Ph); 7.47—7.32 (m, 3 H, Ph); 7.13, 6.82
(both d, 1 H each, =CH, 3Jtrans = 16.3 Hz); 6.44 (s, 2 H, NH2).
MS, m/z: 285 [M]+.

2�Amino�4´�chloro�4,6�dinitrostilbene (7b). The yield
was 73%, m.p. 140—141 °C. Found (%): C, 52.69; H, 2.86;
Cl, 10.84; N, 12.93. C14H10ClN3O4. Calculated (%): C, 52.60;
H, 3.15; Cl, 11.09; N, 13.14. 1H NMR (DMSO�d6), δ:
7.79—7.76 (m, 2 H, C6H2(NO2)2); 7.64 (d, 2 H, C6H4Cl, 3J =
6.9 Hz); 7.47 (d, 2 H, C6H4Cl, 3J = 6.7 Hz); 7.14 (d, 1 H, CH,
3Jtrans = 16.2 Hz); 6.79 (d, 1 H, CH, 3Jtrans = 16.3 Hz); 6.46 (s,
2 H, NH2). MS, m/z: 319 [M]+.

2�Amino�4´�methoxy�4,6�dinitrostilbene (7c). The yield
was 83%, m.p. 129—131 °C. Found (%): C, 56.88; H, 4.36;
N, 13.07. C15H13N3O5. Calculated (%): C, 57.14; H, 4.16;
N, 13.33. 1H NMR (DMSO�d6), δ: 7.78—7.74 (m, 2 H,
C6H2(NO2)2); 7.55 (d, 2 H, C6H4OMe, 3J = 6.9 Hz); 7.02—6.90
(m, 3 H, C6H4OMe + CH); 6.7 (d, 1 H, CH, 3Jtrans = 16.7 Hz);
6.37 (s, 2 H, NH2); 3.79 (s, 3 H, OMe). MS, m/z: 315 [M]+.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�azido�4�
nitrostilbenes 5 (general procedure). Sodium azide (0.31 g,
4.8 mmol) was added to a stirred solution of compound 4
(4 mmol) in DMF (20 mL). The reaction mixture was stirred at
room temperature for 4 h (TLC) and then poured into cold
water. The precipitate that formed was filtered off and recrystal�
lized from MeCN.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�azido�4�
nitrostilbene (5a). The yield was 60%, m.p. 165—167 °C
(decomp.). Found (%): C, 58.42; H, 3.60; N, 24.61.
C19H15N7O3. Calculated (%): C, 58.61; H, 3.88; N, 25.18.
1H NMR (DMSO�d6), δ: 8.39, 8.32 (both s, 1 H each,
C6H2(NO2)2); 7.41—7.30 (m, 5 H, Ph); 6.79—7.76 (m, 2 H,
CH=CH); 2.63, 2.37 (both s, 3 H each, Me). MS, m/z:
361 [M]+ – N2.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�azido�
4´�chloro�4�nitrostilbene (5b). The yield was 66%, m.p.
101—103 °C. Found (%): C, 53.81; H, 3.03; Cl, 7.96; N, 22.84.
C19H14ClN7O3. Calculated (%): C, 53.85; H, 3.33; Cl, 8.37;
N, 23.13. 1H NMR (DMSO�d6), δ: 8.40, 8.31 (both s, 1 H each,
C6H2(NO2)2); 7.40—7.34 (m, 2 H, C6H4Cl); 6.73—7.69 (m,
2 H, CH=CH); 2.67, 2.38 (both s, 3 H each, Me). MS, m/z:
395 [M]+ – N2.

6�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�azido�
4´�methoxy�4�nitrostilbene (5c). The yield was 81%, m.p.
190—193 °C (decomp.). Found (%): C, 57.20; H, 3.89; N, 23.50.
C20H17N7O4. Calculated (%): C, 57.28; H, 4.09; N, 23.38.
1H NMR (DMSO�d6), δ: 8.35, 8.29 (both s, 1 H each,
C6H2(NO2)2); 7.29, 6.93 (both d, 2 H each, C6H4OMe, 3J =
7.0 Hz); 6.65, 6.52 (both d, 1 H each, =CH, 3Jtrans = 16.4 Hz);
3.77 (s, 3 H, OMe); 2.68, 2.32 (both s, 3 H each, Me). MS, m/z:
391 [M]+ – N2.

4�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�aryl�6�nitro�
1H�indoles 6 (general procedure). A stirred suspension of azide 5
(0.5 g) in ethylene glycol (30 mL) was heated to 160—180 °C
and kept at this temperature until nitrogen ceased to evolve
(~30 min). The mixture was poured into ice and the precipitate
that formed was filtered off and recrystallized from MeCN.

4�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�6�nitro�2�phe�
nyl�1H�indole (6a). The yield was 73%, m.p. 295—297 °C.
Found (%): C, 62.87; H, 3.92; N, 19.02. C19H15N5O3. Calcu�

lated (%): C, 63.15; H, 4.18; N, 19.38. 1H NMR (DMSO�d6), δ:
12.83 (s, 1 H, NH); 8.52, 8.18 (both s, 1 H each, C6H2(NO2));
8.02—7.96 (m, 2 H, Ph); 7.60—7.42 (m, 3 H, Ph); 6.97 (s, 1 H,
CH); 2.72, 2.50 (both s, 3 H each, Me). MS, m/z: 361 [M]+.

4�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�(4�chloro�
phenyl)�6�nitro�1H�indole (6b). The yield was 68%, m.p.
217—219 °C. Found (%): C, 57.43; H, 3.64; Cl, 9.11; N, 17.52.
C19H14ClN5O3. Calculated (%): C, 57.66; H, 3.57; Cl, 8.96;
N, 17.69. 1H NMR (DMSO�d6), δ: 12.90 (s, 1 H, NH); 8.51,
8.17 (both s, 1 H each, C6H2(NO2)); 8.03, 7.62 (both d, 2 H each,
C6H4Cl, 3J = 6.7 Hz); 7.01 (s, 1 H, CH); 2.72, 2.50 (both s,
3 H each, Me). MS, m/z: 395 [M]+.

4�(4�Acetyl�5�methyl�1H�1,2,3�triazol�1�yl)�2�(4�methoxy�
phenyl)�6�nitro�1H�indole (6c). The yield was 83%, m.p.
137—139 °C. Found (%): C, 61.12; H, 4.50; N, 17.81.
C20H17N5O4. Calculated (%): C, 61.38; H, 4.38; N, 17.89.
1H NMR (DMSO�d6), δ: 12.73 (s, 1 H, NH); 8.48, 8.11 (both s,
1 H each, C6H2(NO2)); 7.93, 7.11 (both d, 2 H each, C6H4OMe,
3J = 6.7 Hz); 6.82 (s, 1 H, CH); 3.83 (s, 3 H, OMe); 2.70, 2.50
(both s, 3 H each, Me). MS, m/z: 391 [M]+.
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