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Summary of main observation and conclusion  Copper-catalyzed intramolecular N−H/C−H annulation with alkynes has been developed. A variety of 
densely functionalized heterocycles, such as pyrrolo[1,2-a]indoles, indolo[1,2-c]quinazolin-2-ones, oxazolo[3,4-a]indoles, and imidazo[1,5-a]indoles, were 
synthesized in an atom- and step-economical manner, owing to the high modularized feature of aniline moiety, the linker moiety, as well as the alkyne 
moiety. By simply changing the oxidant from DTBP to TEMPO, the reaction could readily be transformed to the aminooxygenation pathway, which grabs 
one oxygen atom from the TEMPO to generate 5-aroyl-pyrrol-2-ones. Mechanistic experiments indicate that vinyl radical is involved in this reaction and 
an amidyl-radical-initiated radical cascade might be responsible for this transformation. 

 

Background and Originality Content 
Fused heterocyclic compounds constitute one of the most 

significant structural motifs in natural products and 
pharmaceuticals, among which polycyclic indoles are important 
subtypes.[1] For example, the melatonin analogues featuring a 
tricyclic indole cores show stronger anti-inflammatory and 
anti-nociceptive activity compared to melatonin itself.[1b] The 
artificial nucleotide pairs dCPPI has been used to stablize the DNA 
triplexes.[1c] Flinderole C, a tricyclic indole alkaloid isolated from 
the plant genus Flindersia, shows significant antimalarial 
activity.[1d] MK-7246 was disclosed by Merck researchers as a 
potent and selective CRTH2 antagonist for the potential 
treatment of respiratory disease.[1e]  
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Figure 1   Biologically Active Compounds Bearing Tricyclic Indole 
Cores. 

 
Therefore, novel synthesis of these compounds is of 

significance.[2] In this context, annulation of indole derivatives 
with alkenes, alkynes or diazo compounds has been extensively 

studied (Scheme 1 A, path a).[3] In contrast, the direct indolization 
would be a more appealing strategy since it employs more 
accessible anilines as building blocks, thus conferring the products 
with more diversity and tunability.[4] Nakamura[5] and Nevado[6a] 
reported the transition-metal-catalyzed synthesis of tricyclic 
indoles based on the cleavage of N−O/C−H bond or N−S/C−H 
(Scheme 1 A, path b, c) via Pt-carbenoid insertion into C(sp2)−H 
bond or carbon-centered-radical initiated cascade reaction[6b,6c,6d] 
separately. Recently, without pre-activation of the N−H bond, Xu 
and coworkers reported an electrochemical oxidative annulation 
to access these scaffolds (Scheme 1 A, path d).[7] The generation 
of a N-centered radical and a subsequent addition across the 
alkyne units was involved in this process. Various highly 
functionalized (Aza) indoles was synthesized via the 
6-membered-ring closure pattern from urea type substrates. 
However, 5-membered-ring closure pattern as well as carboxylic 
amide substrates was not reported due to the high energy barrier 
for cyclization of the former or the higher oxidation potential of 
the latter. 

Herein, as part of our interest in constructing heterocycles in 
an atom- and step-economic manner,[8] we developed a 
copper-catalyzed intramolecular oxidative annulation of alkynes 
with N−H/C−H bonds (Scheme 1 B, path I). This reaction features 
its obviation of prefunctionalization of N−H & C−H bond, excellent 
functional group tolerance (including highly electron-withdrawing 
group) and high structure flexibility (amides, ureas, carbamates 
etc.). Various densely functionalized heterocyclic scaffolds such as 
pyrrolo[1,2-a] indoles, indolo[1,2-c]quinazolin-2-ones, 
oxazolo[3,4-a]indoles and imidazo[1,5-a]indoles could be 
obtained  in an atom- and step-economical manner. Besides, by 
changing the oxidant from DTBP to TEMPO the reaction could be 
channeled towards aminooxygenation pathway efficiently 
(Scheme 1 B, path I).  Notably, further tuning of reaction 
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parameters significantly accelerated or suppressed the incidental 
hydroamidation and/or hydro-oxygenation products through an 
ionic addition pathway (Scheme 1 B, path II), highlighting the 
divergent nature of this reaction. Extensive mechanistic probes 
were conducted via judicious reaction design and trapping of key 

intermediates. The results suggest the reaction cascade might be 
initiated by oxidatively generated amidyl radical, a N-centered 
radical species which gained resurgent and increasing interest in 
recent years.[9] 

This article is protected by copyright. All rights reserved.
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Scheme 1  A) Strategies for the synthesis of polycyclic indoles; B) This work: Cu-catalyzed highly modular N−H/C−H annulations for the synthesis of 
polycyclic indoles: radical addition vs ionic addition. 
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Results and Discussion 
Reaction Design and Optimization  

We commenced our study using easily procured 
2,2-dimethyl-N,5-diphenylpent-4-ynamide 1s as a model substrate 
(Table 1). Predictably, one of the major hurdles for this substrate is 
the liable intramolecular hydroamidation or hydro-oxygenation 
pathway (Scheme 1 B, path II).[10] Indeed, when 1s was subjected 
to the reaction using 2.0 equivalents of Cu(OAc)2 as oxidant in 
pivalonitrile, the hydroamidation (1a, 26%, CCDC 1870711) and 
hydro-oxygenation (3a, 32%, CCDC 1870710) pathway proved 
competitive. However, to our delight the desired product 1 (CCDC 
1870709) could be obtained in 33% yield (Entry 1). Ag2CO3 also 
mediated the reaction, acting as oxidants, although in relatively 
low efficiency (Entries 2, 3). To override the side reactions, a 
thorough screening of solvents, oxidants, temperature and other 
factors were conducted (see SI for detailed optimizations). When 
O2 was used as sole oxidant, 1 was only obtained in 15% yield with 
the concomitant formation of (E)-2a (CCDC 1870712). An 
unexpected product with one oxygenation atom integration was 

observed (entry 4, 4a, 10%, CCDC 1870713). The use of K2S2O8 as 
oxidant proved in vain (entry 5), while the use of BaO2 or catalytic 
amount of Li2O2 delivered the hydroamidation product 1a in 
almost quantitative yield (entries 6 and 7). When using silver salt 
(such as AgNO3) as catalyst, in combination with 2.0 equiv HOAc, 
the hydro-oxygenation product 3a was obtained in 75% yield 
while the desired product 1 was not obtained either (See SI).[11]  

Intriguingly, the annulation product 1 could be obtained in 83% 
yield when using 1.3 equiv DTBP as oxidant and 5 mol % loading 
of CuI as catalyst (entry 8, CONDITIONS I, for details See the 
Supporting Information). Surprisingly, when using TEMPO as 
oxidant the aminooxygenation product 4a could be obtained in 84% 
yield (entry 9, CONDITIONS II), reflecting the decisive effect of 
oxidants and divergent nature of this reaction. Other copper 
catalyst did not show higher efficiency (entries 10−13). Solvents 
optimization indicated the crucial  role of t-BuCN as solvent both 
for the high yield and good chemical selectivity of  the divergent 
synthesis (See SI). Finally, control experiment revealed the 
indispensability of oxidant (entry 14). 
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Table 1  Optimization of reaction parameters to control the reaction pathwaya 
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entry [M] (mol %) oxidant (equiv) 
Solvent 

(mL) 

T 

(oC) 
T (h) 

yield (%) CONDITIONS 

1 1a 2a 3a 4a  

1 Cu(OAc)2 (200) \ t-BuCN (1.0) 140 8 33 26  32   

2 Ag2CO3 (200) \ t-BuCN (0.5)  3 10 20 14    

3 Ag2CO3 (200) \ DMSO (0.5)  3 31 48 18    

4 CuI (5) O2 Ph-CF3 140 12 15  29  10  

5 CuI (5) K2S2O8 (2.0) t-BuCN (1.0) 140 12 trace      

6 CuI (5) BaO2 (1.0) t-BuCN (1.0) 140 3  88 5    

7 CuI (5) Li2O2 (0.2) t-BuCN (1.0) 120 3  89b 5    

8 CuI (5) DTBP (1.3) t-BuCN (1.0) 140 12 83b 4 8   CONDITIONS I 

9 CuI (5) TEMPO (2.0) t-BuCN (1.0) 140 12     84b CONDITIONS II 

10 CuOAc (5) DTBP (1.3) t-BuCN (1.0) 140 12 57  22    

11 CuBr (5) DTBP (1.3) t-BuCN (1.0) 140 12 62 3 6    

12 Cu powder (10) DTBP (1.3) t-BuCN (1.0) 140 12 41 3 4    

13 Cu(MeCN)4PF6 (5) DTBP (1.3) t-BuCN (1.0) 140 12 70  12    

14 CuI (5) \ t-BuCN (1.0) 140 12 ND ND ND ND ND  
a Reactions were performed on a 0.1 mmol scale in 1 mL t-BuCN under N2 atmosphere unless otherwise noted. Yield was determined by 1H NMR 
ananlysis using CH2Br2 as internal standard. b Isolated yield. t-BuCN = pivalonitrile. DTBP = di-tert-butyl peroxide. ND = not detected.

Scope of the N−H/C−H Annulation Reaction 
(Aminoarylation, CONDITIONS I) 

With the optimized conditions in hand we explored the 
reaction scopes of polycyclic indoles first (Scheme 2). For the 
aniline moiety, both electron-withdrawing (2, F; 6, Br; 8, CF3) and 
-donating (3, OMe; 5, Me) substituents para to the amide N 
moiety were compatible, affording the diversely functionalized 
indole-cores in good yields. Notably, substrates bearing strong 
electron-withdrawing groups, such as ester and especially the 

nitro group which contains highly polarized N−H bond could also 
gave the aminoarylation product 4 and 7 in moderate yield (65%, 
46%), mainly due to the competitive ion-type hydroamination 
reaction. Substrates bearing substitutes meta to the amide N 
moiety afforded a mixture of regio-isomers (8, 9, 10). The 
N-naphthylpropynamide 11s also reacted smoothly to give 11 in 
46% yield. Various substituents, such as p-trifluoromethyl, 
p-tert-butyl, o-methyl, o-fluoro and o-methoxyl at the phenyl 
group of the alkyne moiety could be tolerated, affording the 
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desired products in good yields (12−16). The scope of alkyl-linker 
was also investigated, and spiro-compounds 18 and 19 could be 
obtained in good yields (18, 95%; 19, 70%) while tertiary-carbon 
at the α-position was less compatible and resulted in decreased 
yield (20, 58%) due to the Thorpe-Ingold effect.[12] For the 
terminal group of the pendant alkyne, TMS group was well 
tolerated giving the desired product 21 in 95% yield and  the 
alkyl group was also reactive delivering 22 in 45% yield. This 
method was found to accommodate benzo-fused linker affording 
the tetracyclic indoles in moderate to good yields (23−25). 
Similarly, the silyl group showed superior reactivity than the 
phenyl or alkyl group terminus (24 vs 23 and 25). Notably, 
substrates bearing substituents ortho to the amide N moiety 
failed to give the desired products, a similar phenomenon was 
ever observed by Nevado[6a] and Xu[13]. Nevertheless, this 
reaction  anomaly  offered us opportunites for mechanism 

elucidation (vide infra, Scheme 6, 40s→42). The 
heteroatom-fused substrates such as carbamates and ureas could 
smoothly underwent the N−H/C−H annulation reaction delivering 
the oxazolo[3,4-a]indoles (26−30) and imidazo[1,5-a]indoles (31, 
32) with modest yield. Finally, we were pleased to find the 
6-membered-ring cyclization pattern was also tolerated and 
various indolo[1,2-c]quinazolinone cores could be obtained. As 
exemplified, 33 was successfully obtained in 66% yield, which was 
desilylated during the silica gel column purification. Contrary to 
the low reactivity of alkyl terminated alkynes in the 
5-membered-ring closure pattern (22 and 25), in the 
6-membered-ring closure pattern, 34 could be obtained in almost 
quantitative yield (95%). Furthermore, the electron deficient 
pyridine as the N-aryl moiety could also be tolerated (35, 56%), 
which further expanded the structural complexity. 

Scheme 2  Scope of N−H/C−H annulation reactiona 
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a Reactions were performed on 0.1 mmol scale. Isolated yields for the average for three runs. b 120 °C. c With the formation of 18% hydroamidation 
product 1h, see Scheme 4 A. 

Scope of the Aminooxygenation Reaction (CONDITIONS II) 
Cu-catalyzed aminooxygenation of alkynes using O2 as oxygen 

source has been reported.[14] TEMPO as a persistent radical 

species has been used in broad range of laboratory and industrial 
processes, for example acting as alkyl radical scavenger, however, 
it has rarely been used to trap a vinyl group[15] or as the source of 
an oxygen atom as disclosed in this aminooxygenation reaction. 
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Accordingly, we explored the reaction scope using 
N-arylpropynamides as substrates. A series of 5-aroyl-pyrrol-2-one 
cores could be synthesized in high to excellent yields (77%−95%) 
regardless of the electronic nature of the N-aryl groups (Scheme 
3, 4b, 4c). And ureas could also be tolerated (4j). Slightly 
frustrated, the aryl substituents at the terminal of alkyne moiety 
proved requisite and when 22s was subjected to this condition, a 
complex mixture was obtained.[16] 

Scheme 3  Scope for the aminooxygenationa 
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a Substrate (0.1 mmol), CuI (5 mol %), TEMPO (2.0 equiv) in 1 mL t-BuCN at 
140 oC for 12 h. Isolated yields of the average for two runs. 

Mechanistic Probes 
We speculate that a radical pathway involving the transient 

vinyl radical species[17] might be involved and the subsequent 
attack of this species to the N-aryl group or TEMPO yielded the 
different products. This highly reactive species might be generated 
by the amidyl radical (which is formed by the chemical oxidation 
of the amide N−H bond[18]) addition onto the pendant alkyne 
group, or by the cis-aminocupration of alkyne and a subsequent 
homolysis of the vinylcuprate species. Whereas the actual 
mechanism might be complex, a series of control experiments 
supported our speculation. 

We first devoted to gain insight into whether an amidyl radical 
might be generated in this reaction. N-centered radicals (NCRs) 
are traditionally highly reactive short-lived species, and the 
process for proving their existence would be tedious. However, 
these species could be stabilized by resonance with an 
electron-donating group (such as a phenyl group) or by 
transition-metal coordination.[9] Experimentally, the oxidative 
dimerization of N-alkoxyl amides by strong metal oxidants has 
been recognized as a solid evidence for the formation of 
N-alkyoxylamidyl radical.[18i,19] However, attempts to isolate the 

intermolecular dimerization product using N-phenylacetamide 
under the aminoarylation condition resulted in the clean recovery 
of starting materials (See SI). This turned our attention to the 
intramolecular pattern. As shown in Scheme 2, 36 was 
successfully converted to 37 in the presence of 20 mol% CuI, 1.3 
equiv DTBP and 20 mol% 1,2-diphenylacetylene (might act as 
ligand). When 50 mol% CuCl was used the yield could be 
improved to 69% without the addition of 1,2-diphenylacetylene. 
Though not conclusive, this result reminiscent of the recent 
reports by Waldvogel,[20] suggests that 37 might be formed by an 
intramolecular recombination of (copper-coordinated) 
diamidylradical species INT-I. 

 
Scheme 4  Proposal for the generation of amidyl radical. 
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a Conditions A: CuI (20 mol %), 1.3 equiv DTBP, diphenylacetylene 
(20 mol %), t-BuCN (1.0 mL), 140 oC, 20 h, N2. b Conditions B: CuCl 
(50 mol %), 1.3 equiv DTBP, t-BuCN (1.0 mL), 120 oC, 12 h, N2. 
 
 

The generation of 4a when using O2 (Table 1, entry 4) or 
TEMPO (Table 1, entry 9) as oxidant offers a mechanistic clue that 
vinyl radical species might be involved. Accordingly, attempt was 
made to isolate the TEMPO-trapped species (Scheme 5).[14,15] To 
avoid the aminooxygenation reaction, 24s, 26s, and 29s 
possessing no propargylic hydrogen atom were subjected to the 
TEMPO inhibition reaction. While 26s suffered a significant 
decrease in yield (entry 2, 30% vs 79%), the yield of 29s and 24s 
kept unaffected (entries 3 and 4). We attribute this result to the 
steric bulk of the triisopropylsilyl (TIPS) terminus, which would 
inhibit the intermolecular capture of the resulting vinyl radical 
species by TEMPO and therefore lead to the intramolecular 
cyclization. Of particular significance is that when 26s and 24s 
were subjected to the aminooxygenation condition (replacing 
DTBP with TEMPO), the annulation products 26 and 24 could be 
obtained in comparable yields (entries 5 and 6). These results 
reveal that: 1) TEMPO indeed interrupted the current reaction; 2) 
both TEMPO and DTBP could act as oxidant for the N−H/C−H 
annulation reactions and they might share the same vinyl radical 
species if this species was involved. This promoted us to further 
design/choose substrates to retard the following vinyl radical 
addition to the aryl moiety to ensure a prolonged lifetime for the 
TEMPO trapping. 
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Scheme 5  TEMPO inhibition experiments.  
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When evaluating the substrate scope of the aminoarylation 
reaction, we observed that electron-deficient substrate 28s 
reacted sluggishly to give 28 and yielded significant amount of 
hydroamidation product 1h (Scheme 2). We speculated that the 
lower electron density may hampered the addition of vinyl radical 
to the aryl moiety, and prolonged the life time of the potential 
radical species and thus more prone to be captured. In addition, 
the absence of propargylic hydrogen atom renders 28s a perfect 
model substrate for TEMPO trapping experiment. As shown in 
Scheme 6 A, the addition of TEMPO significantly impeded the 
aminoarylation pathway and gave increased yield of the 
hydroamidation product 1h (entries 1 and 2).  Careful isolation 
of the reaction mixture showed the generation of an unexpected 
product 38 (entry 1, 20%; entry 2, 16%) which was unambiguously 
confirmed by X-ray crystallography analysis (CCDC 1870708 ). The 
standard CONDITIONS I gave no formation of 38, indicating the 
oxygen atom source was from TEMPO (entry 3). The generation of 
4a and 38 could be well explained by the involvement of vinyl 
radical, as delineated in Scheme 4 B. The vinyl radical I1 is 
captured by TEMPO to yield I2. I2 undergoes homolytic cleavage 
of the weak N−O bond, either by thermal cleavage or Fenton type 
cleavage,[21] generating the O-centered radical I3, which keeps 
equilibrium with the C-centered radical I4. When no H atom exists 
at the β-position (R = Me), the C-centered radical of I4 is captured 
by TEMPO to form I5,[22] followed by N−O homolysis and 
β-scission to give 38.[14c,23] In contrast, the oxidative β-hydrogen 
elimination of I4 would be a preferred pathway when adjacent 
hydrogen atom exists, which finally generates 4a. 

Scheme 6  Mechanistic Probe of Vinyl Radical by TEMPO Trapping 
Experiments; B) Rational Explanation for the Generation of 4a and 38. 
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As 1,1-diphenylethylene (DPE) was commonly used as a 
radical trapping agent,[24] the DPE trapping experiment was also 
conducted to further corroborate this scenario. Far beyond our 
expectation, 39 was successfully obtained in 17% yield along with 
the normal products of 1 in 25% yield (Scheme 7). This result 
clearly supported the existence of vinyl radical. 

 
Scheme 7  DPE Trapping Experiments 
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Nevado[6] has ever reported a novel vinyl radical initiated, 
4-aryl migration or ortho-methyl substitution reaction pathway of 
the ortho-methylated aniline moiety. Considering the 
incompatibility of the substrate containing an ortho-methylated 
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aniline moiety (40s), we wondered whether the reported reaction 
pathways was responsible for the complexity of the reaction 
mixtures. Thus, a careful isolation and analysis of the reaction 
mixture of 40s under CONDITIONS I was conducted (Scheme 8). In 
addition to the hydroamidation product Z-41, an unexpected 
product 42 was isolated in 12% yield. The desired aminoarylation 
product as well as the methyl group-substituted product 
(predicted by Nevado’s pathway) could not be isolated. This is a 
distinct result from what was reported by Nevado. Control 
experiment excluded the possibility of generation of 42 from Z-41 
(Scheme 8 A, path I, See the Supporting Information), and a vinyl 
radical initiated 1, 6-hydrogen atom transfer pathway (path II) was 
proposed to rationalize the generation of 42. The in situ generated 
vinyl radical Ia is converted to benzyl radical Ib via a novel 1, 
6-HAT pathway.[25] Subsequent radical addition to the alkene staff 
gives an N-fused tertiary radical Ic, which undergoes oxidative β-H 
elimination to deliver 42. Subsequently, the proposed reaction 
path II was further confirmed by the deuterium-labelled 
experiment (Scheme 8 B). When D3-40s was subjected to 
CONDITIONS I, quantitative deuterium incorporation at C1 
position was observed form the isolated D3-42, unambiguously 
indicating the involvement of 1, 6-HAT pathway, and the 
involvement of vinyl radical species Ia. Interestingly, the 
aminoarylation product D3-40 could be isolated in 30% yield, in 
sharp contrast to the reaction of 40s. 

  
Scheme 8  A) Generation of 42 and A Rational Explanation; B) Proof of 1, 
6-HAT. 
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Finally, a kinetic isotope effect experiment was conducted and 
a KIE value of about 0.96 and 1.32 was observed for the 
intramolecular and intermolecular competition experiment (See 
the Supporting Information)). This indicates that the putative C−H 

cleavage step of aniline moiety is not involved in the 
rate-determining step and this KIE value is consist with the 
proposed radical addition type pathway.[26] 

Taken together, a reaction mechanism was proposed in 
Scheme 9. Coordination and deprotonation of N−H bond in 1s 
generates the N−Cu(II) amidate a. In path I, a undergoes a 
reversible disassociation with CuX forming the electrophilic 
N-phenyl amidyl radical c. Radical type addition onto alkyne gives 
vinyl radical species d. Electrophilic addition of vinyl radical to the 
aryl group yields the Wheland intermediate e. Subsequent 
single-electron oxidation by Cu(II) and re-aromatization of f 
delivers the final product 1. The interception of vinyl radical by 
different trappers would yield 4a, 38, 39 and 42 as demonstrated 
in Scheme 4−6. However, an alternative pathway II cannot be 
excluded at this point. In this pathway, vinyl radical d is generated 
via a successive cis-aminocupration of alkyne and homolytic 
cleavage of C(sp2)-Cu bond, the valent of the copper center is not 
clear for the moment in this process. 
Scheme 9  Proposed mechanism for aminoarylation reaction. 
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Conclusions 
In conclusion, using alkynes tethered to the anilines as 

precursors we have identified a Cu-catalyzed highly controllable 
radical cascade providing access to versatile densely 
functionalized heterocyclic compounds from a wide array of 
carbamates, amides, and ureas. Via judicious choice of oxidant, 
the transition-metal-catalyzed ion-type hydroamination or 
hydrooxygenation could be suppressed significantly. The structure 
of these products could be easily designed via modularized 
modification of the arylamine moieties, the linker moieties and 
the alkyne moieties conferring the product structures with high 
flexibility. Extensive control experiments were designed implying 
that the reaction might by initiated by the Cu-catalyzed amidyl 
radical-triggered radical cascade, which to some extent facilitates 
the formation of the active amidyl radical species and offers 
strategic bond disconnections for the synthesis of complex 
molecules. 
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