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A Convenient Reagent for the Conversion of Aldoximes into 
Nitriles and Isonitriles 
Wei Zhang,a Jin-Hong Lin,a Pengfei Zhang,*b and Ji-Chang Xiao*a

For the dehydroxylation of aldoximes with 4-nitro-1-
((trifluoromethyl)sulfonyl)-imidazole (NTSI), slight 
modifications of reaction conditions resulted in significantly 
different reactions paths to provide either nitriles or isonitriles. The 
challenging conversion of aldoximes into isonitriles was 
achieved under mild conditions.

It is well known that reaction conditions play an important role 
in organic conversions and may determine reaction paths. If 
slight modifications of reaction conditions could result in 
completely different reaction paths to provide different useful 
products, the transformations may deserve much attention. 
Dehydroxylation of aldoximes has found widespread 
applications in organic synthesis since it may deliver nitriles1 or 
provide amides2 via the first formation of nitriles followed by a 
hydrolysis3 (Scheme 1, eq 1). A migration of the substituent anti 
to the hydroxyl unit from the carbon to the nitrogen atom may 
be involved in the dehydroxylation of oximes, but the oximes 
which can undergo this rearrangement are limited to 
ketoximes.4 For the dehydroxylation of aldoximes, the direct 
elimination of the proton in the CH=N moiety to afford nitriles 
is preferred, and thus this rearrangement usually does not 
occur.2b Although a previous example for the dehydroxylation 
of aldoximes have shown that the migration process may 
proceed to give isonitriles, the transformation suffers from a 
tedious two-step procedure and the need for isolation of the 
first-step products (eq 2).5 Interestingly, we found that slight 
modifications of the reaction conditions could significantly 
change the reaction paths to furnish different products, nitriles 
and isonitriles, for the dehydroxylation of aldoximes with 4-

nitro-1-((trifluoromethyl)sulfonyl)-imidazole (NTSI) (eq 3). The 
substituent migration was involved for the formation of 
isonitriles under mild conditions.
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Scheme 1 The conversion of aldoximes into nitriles and isonitriles

The dehydroxylation reagent, NTSI, could be easily prepared 
by a reaction of nitro-imidazole with trifluoromethanesulfonic 
anhydride at room temperature (See supporting Information). 
The side product was removed by filtration, and the pure NTSI 
was obtained as a solid simply by concentration under vacuum 
to remove the solvent. Compared with the similar compound 
without a NO2 substituent, a reagent which has to be purified 
by distillation and is usually used to convert phenols into aryl 
triflates,6 NTSI may show wider application due to the 
convenient operations for its isolation and its higher 
electrophilic reactivity enhanced by the electron-withdrawing 
NO2 group. Although both nitrile 2-1 and isonitrile 3-1 were 
produced in the dehydroxylation of aldoxime 1-1 with NTSI in 
most cases (Table 1), the base and the reaction solvent were 
found to be crucial for the respective reaction path. The use of 
CH3CN as the solvent favoured the formation of nitrile 2-1 
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irrespective of whether an organic or inorganic base was used 
(entries 1-6). Whereas isonitrile 3-1 was obtained in 38% yield 
in CH3CN by using K2HPO4 as the base (entry 5). The conversion 
into nitrile 2-1 occurred rapidly, and was finished within 10 min 
to give a high yield (entry 7). The conditions for the generation 
of isonitrile 3-1 was further screened (entries 8-14). A brief 
survey of the reaction solvents (entries 8-11) revealed that in 
CH3NO2 nitrile 2-1 could be suppressed and isonitrile 3-1 was 
obtained in 35% yield (entry 11). Prolonging the reaction time 
and elevating the reaction temperature increased the yield of 
isonitrile to 72% yield (entry 13). 13C NMR analysis could easily 
distinguish the isonitrile structure from the nitrile structure. 
Two unique triplet signals were observed for the isonitrile (δ = 
167 ppm and δ = 124 ppm), corresponding to the N≡C carbon 
and the C-(N ≡ C) carbon, respectively (See Supporting 
Information and the references therein).

Table 1 Optimization of The Reaction Conditionsa

NSO2CF3N
+

CN NC
+

base, solvent

1-1 2-1 3-1

N
OH

r.t., 2 h

NTSI
O2N

yield (%)b
entry base solvent

2-1 3-1
1 Et3N CH3CN 86 12
2 pyridine CH3CN 58 20
3 Na2CO3 CH3CN 48 37
4 KF CH3CN 38 30
5 K2HPO4 CH3CN 45 38
6 Na2HPO4 CH3CN trace trace

 7c Et3N CH3CN 87 12
8 K2HPO4 Acetone 32 28
9 K2HPO4 EA 40 20

10 K2HPO4 THF 43 22
11 K2HPO4 CH3NO2 trace 35

 12d K2HPO4 CH3NO2 7 46
  13de K2HPO4 CH3NO2 8 72
  14df K2HPO4 CH3NO2 13 64

aReaction conditions: 1-1 (0.2 mmol), NTSI (1.2 equiv), base (2.0 equiv), 
solvent (2.0 mL), under N2, 2 h; EA = Ethyl Acetate; THF = Tetrahydrofuran; 
bThe yields were determined by 1H NMR spectroscopy by using CH2Br2 as an 
internal standard; cThe reaction time was 10 min; dThe reaction time was 
overnight; eThe reaction temperature was 50 oC; fThe reaction temperature 
was 70 oC.

With the optimal conditions in hand (Table 1, entry 7), we 
then investigated the substrate scope of the conversion into 
nitriles. As shown in Scheme 2, this process could be extended 
to a wide range of aryl (2-1 ~ 2-22), heteroaryl (2-23 ~ 2-34), 
alkenyl (2-35 ~ 2-37) and alkyl (2-38 ~ 2-40) aldoximes. All 
reactions proceeded very fast and a reaction time of 10 min 
gave moderate to high yields. Electron-rich, -neutral, and -
deficient aryl aldoximes could all be transformed smoothly, 
indicating that substituent electronic effects have no obvious 
impact on this transformation. This protocol could be applied to 
the synthesis of various heteroaryl nitriles (2-23 ~ 2-34). A 
variety of functional group could be tolerated, such as vinyl, 
Bpin, amide, silyl, nitro, cyanide, Ms (CH3SO2), halide, and 

carbonyl groups. The compatibility of Bpin (2-8), siyl (2-11) and 
halide (2-16, 2-23, 2-33 and 2-34) groups with these conditions 
may allow for further coupling reactions of these CN-containing 
products.

Since nitriles are widely present as key structural motifs in 
biologically active molecules and have emerged as versatile 
intermediates in synthetic chemistry,7 significant efforts have 
been devoted to the development of efficient methods for the 
incorporation of a nitrile group into organic molecules.8 
Cyanation is apparently one of the most straightforward 
strategies, and a large number of cyanation approaches have 
been developed.9 But the most commonly used reagents, 
including TMSCN10, KCN11 and CuCN12, are highly toxic and are 
prone to hydrolysis to generate hazardous HCN gas. We have 
previously shown that the combination of difluorocarbene and 
ammonia could act as a CN- source for cyanation.13 The 
transformation from aldoximes is also a convenient strategy 
since aldoximes could be easily prepared. It has been reported 
that the conversions of aldoximes into nitriles could proceed 
smoothly under the catalysis of various transition metals,14 such 
as palladium15 and copper16. However, a high reaction 
temperature (80 oC or higher) is usually needed. Compared with 
the previous methods, the protocol is attractive due to the mild 
conditions and the rapid reaction rate.
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Scheme 2 The conversions of aldoximes into nitriles. Reaction conditions: 
substrate 1 (0.5 mmol), NTSI (0.6 mmol), Et3N (1.0 mmol) in CH3CN (2 mL) at 
room temperature for 10 min. Isolated yields are shown.

We further investigated the substrate scope of the 
conversion into isonitriles by using K2HPO4 as the base. As 
shown in Scheme 3, moderate to good yields were obtained in 
most cases. Because of its substantial sublimation, product 3-1 
was isolated in a lower yield (51%) compared with its NMR yield 
(72% shown in Table 1, entry 13). The electronic effect of the 
substituent had a strong impact on the reactions of aryl 
aldoximes. Electron-donating groups are favourable, but an 
electron-withdrawing group would suppress this conversion (3-
11). Unlike the conversion into nitriles, the transformation into 
isonitriles could not be extended to alkyl aldoximes. 
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Scheme 3 The conversion of aldoximes to isonitriles. Reaction conditions: 
substrate 1 (0.5 mmol), NTSI (0.6 mmol), K2HPO4 (1.0 mmol) in CH3NO2 (2 mL) 
at 50 oC for overnight. Isolated yields are shown. aThe yield of product 3-11 
was a 19F NMR yield by using CF3CH2OH as an internal standard.

Isonitriles are commonly found in naturally occurring 
compounds,17 and have served as important intermediates due 
to the dual nucleophilic and electrophilic character of the 
isonitrile group.18 Many methods for the synthesis of isonitriles 
have been developed, such as direct isocyanation,19 
dehydration of formamides,20 and carbylamine reaction of 
primary amines with a dihalocarbene21. The transformation 
from aldoximes is a promising approach for the synthesis of 
isonitriles, but it is a challenging task since the direct conversion 
into nitriles is preferred over the substituent migration. In our 
protocol, this reaction proceeds smoothly by using suitable 
reagents. 

Irrespective of whether Et3N or K2HPO4 is used as the base, 
the first step is to form the N-OTf intermediate A (Scheme 4). 
The generation of the N-OTf moiety increases the acidity of the 
proton in CH=N group, and thus the elimination of this proton 
can readily occur to provide nitriles by using Et3N (pKa of Et3N+H 
is 10.75) as the base. However, K2HPO4 (pKa of H2PO4

- is 7.21) is 
not basic enough for deprotonation, and thus a migration would 
occur.4 The anchimeric assistance of the aryl group22 favours the 
elimination of the TfO- anion by forming a three-membered ring 
(Intermediate C). The formation of the cation C explains why an 
electron-donating group is favourable for the conversion into 
isonitriles. The ring opening affords vinyl cation D, in which the 
proton is acidic enough to be eliminated by K2HPO4.
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Scheme 4 The proposed mechanism

Conclusions
In summary, we have described the use of NTSI as a 
dehydroxylation reagent for the conversion of aldoximes into 
nitriles and isonitriles. It is interesting that slight modifications 
of the reaction conditions could result in significantly different 
reaction paths. We have also shown that a dehydroxylation 
reagent and a base are important for the challenging 
transformation of aldoximes into isonitriles. NTSI may become 
an attractive dehydroxylation reagent because of its easy 
availability and high reactivity.
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