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CARVEDILOL, AN ANTIHYPERTENSIVE DRUG
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A simple synthetic route for active metabolites of carvedilol is reported. The metabolites

40-hydroxycarvedilol and 50-hydroxycarvedilol have exhibited high activity for b-blockade.

We have disclosed syntheses of 40-hydroxycarvedilol and 50-hydroxycarvedilol from

commercially available vanillin and isovanillin, respectively.

Keywords: Angina; antihypertension; carvedilol; congestive heart failure; metabolite; 4-oxiranylmethoxy-

9H-carbazole

INTRODUCTION

Carvedilol 1 is a multiple-action drug useful in the treatment of hypertension
and angina,[1,2] which is known to be both a competitive nonselective b-adrenocep-
tor antagonist and a vasodilator. The vasodilatory action of carvedilol 1 results
primarily from a1-adrenoceptor blockade, whereas the b-adrenoceptor blocking
activity of the drug prevents reflex tachycardia when used in the treatment of
hypertension. Common structural features of b-adrenoreceptor blockers include
either an arylethanolamine or an aryloxyisopropanolamine moiety.[3] The com-
pounds differ in the nature of the aryl group as well as the group linked to the
amine moiety.

Carvedilol 1 contains an oxyisopropanolamine moiety with aromatic substitu-
ents linked to both the oxy and amine ends of the molecule, which provide its com-
bined activity, and carvedilol 1 also has much greater antioxidant activity than other
commonly used b-blockers.[4,5]

Additionally, carvedilol 1 is useful in the treatment of congestive heart failure[6]

and is marketed as racemic mixture as Coreg. Carvedilol 1 is used clinically
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as a racemic mixture of R(þ)- and S(�)-enantiomers. Carvedilol 1 is extensively
metabolized primarily by aromatic oxidation and glucuronidation. Hydroxylation
at the phenol ring produces two active metabolites with b-receptor blocking activity.
Based on preclinical studies, the 40-hydroxycarvedilol 2, the active metabolite, is
approximately 13 times more potent than carvedilol for b-blockade. CYP2D6 is
thought to be the major enzyme in the 40- and 50-hydroxylation of carvedilol, with
a potential contribution from CYP3A4.[7]

50-Hydroxycarvedilol 3[3] and 40-hydroxycarvedilol 2 are most valuable meta-
bolites, which are required to determine absorbility and bioavailability of carvedilol.
Synthesis of these metabolites has not been reported in literature. We disclose con-
vergent syntheses of metabolites 2 and 3, starting with commercially available
vanillin 4 and isovanillin 11 respectively.

RESULTS AND DISCUSSION

The synthesis of metabolite 2 (Scheme 1) involves O-alkylation of the phenolic
group of vanillin 4 with 1,2-dibromoethane in the presence of a base at 95 �C gave 5[8]

in 93% yield. Dakin oxidation of the formyl group of 5 using m-chloroperbenzoic
acid (m-CPBA) at room temperature gave 6 in 81% yield.

Further, hydrolysis[9] of 6 with sodium hydroxide in methanol at 0 �C afforded
7 in 75% yield. Compound 7 was condensed with potassium phthalimide in the pres-
ence of NaI (catalyst) in dimethylformamide (DMF) at 60 �C, and compound 8 was
isolated. Dephthalimidation of 8 with methanolic monomethylamine at 30 �C
resulted in corresponding amine 9,[10] which was isolated as hydrochloride salt
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9a from acetonitrile. Finally, amine hydrochloride 9a was coupled with oxirane
10[11–13] (Scheme 2) to produce 40-hydroxycarvedilol metabolite 2.

The synthesis of metabolite 3 (Scheme 3) involves O-alkylation of the phenolic
group of isovanillin 11 with 1,2-dibromoethane in the presence of a base at 95 �C and
gave 12[8] in 93% yield. Dakin oxidation of the formyl group of 12 using m-CPBA
at room temperature gave 13 in 81% yield.

Further, hydrolysis[9] of 13 with sodium hydroxide in methanol at 0 �C
afforded 14 in 75% yield. Compound 14 was condensed with potassium phthalimide
in the presence of NaI (catalyst) in DMF at 60 �C, and compound 15 was isolated.
Dephthalimidation of 15 with methanolic monomethylamine at 30 �C resulted in the
corresponding amine 16,[10] which was isolated as hydrochloride salt 16a from
acetonitrile. Finally, amine hydrochloride 16a was coupled with oxirane 10[11–13]

(Scheme 4) to produce 50-hydroxycarvedilol metabolite 3.

Scheme 2. Reagents and conditions: (a) i-PrOH, TEA, 45 �C.

Scheme 1. Reagents and conditions: (a) 1,2-dibromoethane, NaOH (1.6N), 95 �C; (b) m-CPBA, CH2Cl2,

30 �C; (c) NaOH (6N), MeOH, 0 �C; (d) potassium phthalimide, NaI, DMF, 60 �C; (e) MeOH-CH3NH2,

i-PrOH-HCl, MeCN, 30 �C.
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CONCLUSION

To summarize, we have developed simple syntheses of 40-hydroxycarvedilol 2
and 50-hydroxycarvedilol 3 from easily available starting materials.

EXPERIMENTAL

1H NMR and 13C NMR spectra were recorded on a Bruker 300 spectrometer at
300MHz, and the chemical shifts were reported as d values in parts per million relative
to tetramethylsilane (TMS) as an internal standard. Infrared (IR) spectra were
recorded in the solid state as KBr dispersions using a Perkin-Elmer spectrophotometer.
Mass spectra were recorded on an API 2000 Perkin-Elmer PE-SCIEX mass spec-
trometer. The melting points were recorded on open capillaries and are uncorrected.

4-(2-Bromoethoxy)-3-methoxybenzaldehyde (5)

Vanillin (4, 50 g, 0.329mol) was added to mixture of 1,2-dibromoethane (246 g,
1.31mol) and aq. 1.6N NaOH (416mL) at 30 �C. The reaction mixture was heated

Scheme 4. Reagents and conditions: (a) i-PrOH, TEA, 45 �C.

Scheme 3. Reagents and conditions: (a) 1,2-dibromoethane, NaOH (1.6N), 95 �C; (b) m-CPBA, CH2Cl2,

30 �C; (c) NaOH (6N), MeOH, 0 �C; (d) potassium phthalimide, NaI, DMF, 60 �C; (e) MeOH-CH3NH2,

i-PrOH-HCl, MeCN, 30 �C.
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to 95 �C and maintained until completion of reaction. The reaction mixture was
cooled to 30 �C and extracted with CH2Cl2 (700mL), followed by washing with
H2O (400mL). The organic layer was concentrated at 50 �C under reduced pressure
to yield 5 (58 g, 96.6%). Mp 68–69 �C; IR (KBr): n¼ 3343, 3080, 3040, 3002, 1698,
1683, 1673, 1594, 1585, 1509, 1463, 1444, 1427, 1397, 1380, 1348, 1280, 1268, 1215,
1196, 1177, 1156, 1079, 1016, 1003, 960, 865, 812 cm�1; 1H NMR (300MHz, CDCl3):
d¼ 3.68–3.75 (t, 2H), 3.94 (s, 3H), 4.40–4.44 (t, J¼ 6Hz, 2H), 6.98–7.01 (d, J¼ 9Hz,
1H), 7.44–7.46 (m, 2H), 9.9 (s, 1H); 13C NMR (75MHz, CDCl3): d¼ 28, 56, 69, 110,
112, 126, 131, 150, 153, 191; MS: m=z¼ 261.0 [Mþ].

3-(2-Bromoethoxy)-4-methoxybenzaldehyde (12)

Mp 80–81 �C; IR (KBr): n¼ 3426, 3075, 3040, 2977, 2925, 1679, 1596, 1583,
1510, 1436, 1392, 1263, 1241, 1132, 798, 737 cm�1; 1H NMR (300MHz, CDCl3):
d¼ 3.67–3.71 (t, 2H), 3.96 (s, 3H), 4.37–4.41 (t, J¼ 6.3Hz, 2H), 6.9–7.0 (d, 1H),
7.4 (s, 1H), 7.49–7.52 (d, J¼ 8.4Hz, 1H), 9.85 (s, 1H); 13C NMR (75MHz, CDCl3):
d¼ 29, 56, 69, 111, 112, 127, 130, 148, 155, 191; MS: m=z¼ 261.0 [Mþ].

Formic Acid 4-(2-Bromoethoxy)-3-methoxyphenylester (6)

Compound 5 (50 g, 0.193mol) was added to the solution of m-CPBA (66.7 g,
0.387mol) in CH2Cl2 (500mL) at 30 �C. The reaction mixture was maintained at
30 �C until completion of the reaction. The reaction mixture was quenched into
10%w=w aq. Na2CO3 (2L). The organic layer was separated and concentrated
completely to yield 6 (43 g, 81.1%) as a solid. Mp 67–68 �C; IR (KBr): n¼ 3435,
3124, 3087, 3067, 1723, 1606, 1514, 1474, 1448, 1275, 1268, 1225, 1159, 1109, 1031,
871 cm�1; 1H NMR (300MHz, CDCl3): d¼ 3.62–3.64 (t, 2H), 3.8 (s, 3H), 4.29–
4.34 (t, J¼ 13.2Hz, 2H), 6.65–6.69 (m, 2H), 6.91–6.93 (d, J¼ 8.1Hz, 1H), 8.28
(s, 1H); 13C NMR (75MHz, CDCl3): d¼ 29, 56, 70, 106, 113, 115, 145, 146, 151,
160; MS: m=z¼ 294.1 [MþNH4]

þ.

Formic Acid 3-(2-Bromoethoxy)-4-methoxyphenylester (13)

Mp 73–74 �C; IR (KBr): n¼ 3442, 2969, 1729, 1605, 1512, 1454, 1426, 1281,
1267, 1226, 1162, 1126, 1097, 873, 783 cm�1; 1H NMR (300MHz, CDCl3):
d¼ 3.64–3.69 (t, 2H), 3.8 (s, 3H), 4.29–4.34 (t, J¼ 6Hz, 2H), 6.72–6.77 (m, 2H),
6.88–6.91 (d, J¼ 9Hz, 1H), 8.2 (s, 1H); 13C NMR (75MHz, CDCl3): d¼ 29, 56,
69, 109, 113, 114, 144, 148, 160; MS: m=z¼ 293.9 [MþNH4]

þ.

4-(2-Bromoethoxy)-3-methoxyphenol (7)

Compound 6 (38 g, 0.138mol) was added to methanol (266mL) and treated
with aq. 6N NaOH (38mL) at 0 �C. The reaction mixture was maintained for 2 h
at 0 �C. Methanol was distilled out completely from the reaction mixture at 45 �C
under reduced pressure. The solid obtained was added to mixture of CH2Cl2
(200mL) and H2O (100mL), filtered, and separated. The organic layer was washed
with H2O (2� 100mL), dried with Na2SO4, filtered, and concentrated completely at
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35 �C under reduced pressure to yield 7 (27 g, 79.6%) as a solid. Mp 95–96 �C; IR
(KBr): n¼ 3371, 3126, 3010, 2972, 1604, 1522, 1471, 1463, 1455, 1282, 1220, 1197,
1125, 1036, 1014, 829 cm�1; 1H NMR (300MHz, CDCl3): d¼ 3.61–3.65 (t, J¼ 6.3Hz,
Hz, 2H), 3.8 (s, 3H), 4.24–4.29 (t, 2H), 6.39–6.41 (m, 1H), 6.47–6.48 (s, 1H), 6.75–6.78
(d, J¼ 8.7Hz, 1H); 13C NMR (75MHz, CDCl3): d¼ 29, 56, 71, 101, 106, 118, 141,
151, 152; MS: m=z¼ 247 [Mþ].

3-(2-Bromoethoxy)-4-methoxyphenol (14)

Mp 84–85 �C; IR (KBr): n¼ 3365, 3126, 3010, 2972, 1602, 1525, 1513, 1441,
1271, 1227, 1172, 1124, 1020, 828, 733 cm�1; 1H NMR (300MHz, CDCl3):
d¼ 3.58–3.62 (t, 2H), 3.8 (s, 3H), 4.22–4.27 (t, 2H), 6.32–6.34 (m, 1H), 6.43–6.47
(s, 1H), 6.80–6.83 (d, J¼ 8.4Hz, 1H); 13C NMR (75MHz, CDCl3): d¼ 29, 57, 69,
103, 108, 114, 143, 149, 151; MS: m=z¼ 247 [Mþ].

3-Methoxy-4-(2-phthalimidoethoxy)phenol (8)

Compound 7 (10 g, 0.0407mol) was added to the mixture of potassium phthali-
mide (11.3 g, 0.0609mol) and DMF (40mL) at 30 �C. NaI (1 g, 10wt%) was added
and heated to 60 �C until the completion of reaction. The reaction mixture was
cooled to 30 �C. The mixture of CH2Cl2 (50mL) and H2O (160mL) was added to
rection mixture and stirred for 10min. The organic layer was separated, washed with
H2O (2� 25mL) and dried with Na2SO4. The resulting organic layer was concen-
trated completely at 35 �C under reduced pressure. The solid obtained was slurried
with CH2Cl2 (20mL), filtered, and dried to yield 8 (10.96 g, 84.96%). Mp
164–165 �C; IR (KBr): n¼ 3323, 2941, 1764, 1693, 1615, 1596, 1509, 1479, 1466,
1431, 1400, 1309, 1203, 1170, 1014, 831, 723 cm�1; 1H NMR (300MHz, DMSO-d6):
d¼ 3.48(s, 3H), 3.86–3.90 (m, 2H), 4.02–4.06 (m, 2H), 6.17–6.21 (m, 1H), 6.33–6.34
(s, 1H), 6.74–6.77 (d, J¼ 8.7Hz, 1H), 7.82–7.91 (m, 4H), 9.0 (s, 1H); 13C NMR
(75MHz, DMSO-d6): d¼ 38, 56, 68, 101, 106, 118, 124, 132, 135, 141, 151, 154,
168; MS: m=z¼ 314.1 [Mþ].

4-Methoxy-3-(2-phthalimidoethoxy)phenol (15)

Mp 136–137 �C; IR (KBr): n¼ 3454, 2940, 1768, 1653, 1621, 1515, 1465, 1448,
1435, 1422, 1400, 1397, 1211, 1191, 1173, 1020, 983, 828 cm�1; 1H NMR (300MHz,
DMSO-d6): d¼ 3.4 (s, 3H), 3.92–3.96 (m, 2H), 4.11–4.15 (m, J¼ 5.7Hz, 2H),
6.25–6.28 (m, 1H), 6.40–6.41 (s, 1H), 6.68–6.71 (d, J¼ 8.7Hz, 1H), 7.81–7.87 (m,
4H), 9.0 (s, 1H); 13C NMR (75MHz, DMSO-d6): d¼ 38, 57, 66, 104, 108, 115,
123, 132, 135, 143, 149, 152, 168; MS: m=z¼ 314.1 [Mþ].

4-(2-Aminoethoxy)-3-methoxyphenol Hydrochloride (9a)

Compound 8 (3 g, 0.0096mol) was reacted with 20%w=w monomethyl amine
(12mL in CH3OH) at 30 �C. The reaction mixture was stirred at 30 �C for 1 h,
and the by-product was filtered. The filtrate was concentrated completely at 45 �C
under reduced pressure. The resulting residue was dissolved in methanol and treated

ACTIVE METABOLITES OF CARVEDILOL 273

D
ow

nl
oa

de
d 

by
 [

Fo
rd

ha
m

 U
ni

ve
rs

ity
] 

at
 2

2:
18

 2
0 

D
ec

em
be

r 
20

12
 



with isopropyl alcohol (IPA)-HCl. The methanol was distilled out completely at
45 �C under reduced pressure. The solid obtained was purified with acetonitrile to
yield 9a (1.52 g, 72.3%). Mp 137–138 �C; IR (KBr): n¼ 3435, 3304, 3117, 2979,
2905, 1611, 1520, 1479, 1465, 1454, 1289, 1214, 1189, 1138, 1123, 1010, 952,
832 cm�1; 1H NMR (300MHz, DMSO-d6): d¼ 3.06–3.10 (m, 2H), 3.72 (s, 3H),
4.01–4.05 (m, 2H), 6.29 (m, 1H), 6.46–6.47 (s, 1H), 6.85–6.87 (d, J¼ 8.4Hz, 1H),
8.16 (br, 3H), 9.25 (s, 1H); 13C NMR (75MHz, DMSO-d6): d¼ 39, 56, 68, 101,
106, 118, 140, 151, 154; MS: m=z¼ 184.2 [Mþ].

3-(2-Aminoethoxy)-4-methoxyphenol Hydrochloride (16a)

Mp 125–126 �C; IR (KBr): n¼ 3429, 3252, 2985, 2902, 1674, 1616, 1518, 1484,
1464, 1291, 1226, 1163, 1125, 1016, 827 cm�1; 1H NMR (300MHz, DMSO-d6):
d¼ 3.22–3.29 (m, 2H), 3.72 (s, 3H), 4.08–4.13 (m, 2H), 6.33–6.37 (m, 1H),
6.47–6.48 (s, 1H), 6.78–6.81 (d, J¼ 8.7Hz, 1H), 8.13 (br, 3H), 9.1 (s, 1H); 13C
NMR (75MHz, DMSO-d6): d¼ 39, 57, 66, 104, 108, 114, 143, 148, 152; MS:
m=z¼ 184.2 [Mþ].

(2RS)-1-(9H-Carbazol-4-yloxy)-3-[[2-(2-methoxy-4-
hydroxyphenoxy)ethyl]amino]propan-2-ol (2)

Compound 9a (1 g, 0.00456mol) was neutralized in isopropyl alcohol (5mL) at
30 �C by the addition of triethylamine (0.69 g, 0.00684mol). The reaction mixture
was heated to 45 �C. Compound 10 (0.54 g, 0.00226mol) was added and stirred at
45 �C for 6 h (high-performance liquid chromatographic analysis showed 40% con-
version). The reaction mixture was concentrated completely at 45 �C under vacuum.
The resulting crude product was purified by column chromatography on silica gel
(100–200 mesh, EtOAc–hexane, 3:2) to yield 2. IR (KBr): n¼ 3402, 3056, 2933,
2874, 1626, 1606, 1509, 1455, 1402, 1347, 1161, 1100, 935, 785 cm�1; 1H NMR
(300MHz, DMSO-d6): d¼ 2.83–2.90 (m, 4H), 3.68 (s, 3H), 3.90–3.93 (m, 2H),
4.12–4.15 (m, 3H), 5.2 (m, 1H), 6.19–6.23 (m, 1H), 6.39–6.40 (m, 1H), 6.67–6.76
(m, 2H), 7.05–7.12 (m, 2H), 7.26–7.33 (m, 2H), 7.43–7.45 (d, 1H), 8.20–8.23 (d,
J¼ 9Hz, 1H), 9.0 (s, 1H), 11.25 (s, 1H); 13C NMR (75MHz, DMSO-d6): d¼ 49,
53, 56, 68, 70, 71, 101, 104, 105, 111, 117, 119, 122, 123, 125, 127, 139, 141, 142,
151, 153, 155; MS: m=z¼ 423.3 [Mþ].

(2RS)-1-(9H-Carbazol-4-yloxy)-3-[[2-(2-methoxy-
5-hydroxyphenoxy)ethyl]amino]propan-2-ol (3)

IR (KBr): n¼ 3399, 3300, 2934, 2836, 1627, 1606, 1509, 1455, 1442, 1347, 1167,
1101, 991, 755, 724 cm�1; 1H NMR (300MHz, DMSO-d6): d¼ 2.96–2.97 (m, 4H),
3.68 (s, 3H), 3.99–4.02 (m, 3H), 4.13–4.16 (m, 3H), 5.2 (m, 1H), 6.25–6.28 (m,
1H), 6.42–6.43 (m, 1H), 6.67–6.76 (m, 2H), 7.05–7.12 (m, 2H), 7.26–7.33 (m, 2H),
7.43–7.45 (d, 1H), 8.20–8.23 (d, J¼ 9Hz, 1H), 8.96 (s, 1H), 11.24 (s, 1H); 13C
NMR (75MHz, DMSO-d6): d¼ 49, 53, 57, 69, 71, 101, 103, 104, 107, 111, 112,
114, 119, 122, 123, 125, 127, 139, 142, 143, 149, 152, 155; MS: m=z¼ 423.3 [Mþ].
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