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Synthesis of Seven-membered Azepino[3,2,1-Ai]indoles via
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30 Abstract

33 An unprecedented rhodium-catalyzed regioselectively C-H
35 activation/DBU-catalyzed  intramolecular —amidation of 7-arylindoles with
38 diazomalonates is described that provides a straightforward route to seven-membered
azepino[3,2,1-hi]indoles in good to excellent yields in one pot. A wide range of
43 functional groups, including F, OMe, NPh,, SiMes;, Cl, CN, CHO, COMe, CO,Me,

46 CF;, NO, were all well tolerated.

| A\ [Cp*RhCly]5 (2.5 mol%) N
R AgOAc (15 mol%) R'—
49 Z N N ] Z
N . b§ DBU (30 mol%) o
51 = R400C~ “COOR3 EtOAc, Ar, 60 °C, _
52 R2— | RZ_ COOR3
X NS
53 R3 = less bulky group
>4 R* = more bulky group

\
N

56 @ Tandem C-H activation/amidation in one-pot @ Selectively (ortho-C-H activation, mono-C-H activation)

58 @ Mild conditions, excellent yields, gram scale (@ High functional group tolerance
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INTRODUCTION

Transition-metal-catalyzed C-H bond activation is a versatile synthetic tool for
the construction of carbon-carbon bonds and carbon-heteroatom bonds.! In particular,
transition-metal-catalyzed C-H activation/cyclization is a powerful and distinct
method for the synthesis of cyclic and heterocyclic compounds.? In this context,
recent years have witnessed a lot of efficient methods for the synthesis of
five-membered or six-membered cyclic compounds.? However, one pot C-H
activation/cyclization strategies leading to seven-membered rings have rarely been
developed due to entropic factors and transannular  interactions.*
Azepino[3,2,1-hi]indoles and their derivatives are important classes of fused tricyclic
compounds containing a seven-membered ring that are found in a wide range of
natural products and biological active compounds (Figure 1). For example,
erythrivarine B was isolated from the flower of Erythrina Variegata,’ and extracts
from the roots of stemonaceae plants were found to contain a class of polycyclic
alkaloids which are structurally characterized by the presence of a
azepino[3,2,1-hi]indole  nucleus as show in stenine, stemona-lactam,’
tuberostemonol,® dehydrostenine® and tridehydrotuberostemonine.!® These alkaloids
exhibit a wide variety of biological activities, such as antitussive activity, insecticidal
activity, anti-inflammatory and so on.!! The structural diversity associated with
biological activities of azepino[3,2,1-Ai]indoles have attracted the attention of the
synthetic community.'> However, the synthesis of azepino[3,2,1-Ai]indoles usually

requires multistep approaches, and the development of novel strategies for efficient
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and straightforward construction of azepino[3,2,1-Ai]indoles still remains a great

challenge. Indole nuclei are ubiquitous structural motifs. Recently, our group and

oNOYTULT D WN =

9 other laboratories have demonstrated that NH-indole was explored as an intrinsic
12 directing group which is present in the final product.!> Herein, we report a
regioselective Cp*Rh(III)-catalyzed C-H activation/base-catalyzed intramolecular
17 amidation of 7-phenylindoles with diazomalonates to give the corresponding
20 azepino[3,2,1-hi]indoles in good to excellent yields (Scheme 1). This catalytic method
offers opportunities for the synthesis of azepino[3,2,1-hiJindoles derivatives’

25 synthesis.

stemona-lactam

47 tuberostemonol dehydrostenine tridehydrotuberostemonine

Figure 1.Natural products bearing azepino[3,2,1-Ai]indole core
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A [CP*RNCl], (2.5 mol%) S
AgOAG (15 mol%) SR
N Na DBU (30 mol%) N

+
, 7 R4OOC)J\COOR3 EtOAc, Ar, 60 °C, , 7~ ©
Rt R I “coore

R1_| N \
| / N 3
H R” = less bulky group
COOR3

R* = more bulky group
C-H activation Rz_i | COOR* amidation

Q Tandem C-H activation/amidation cyclization in one-pot
Q Selectively (ortho-C-H activation, mono-C-H activation)
Q@ Mild conditions, excellent yields (up to 98%)

@ High functional group tolerance

O Gram scale

Scheme 1 Synthesis of Azepino|3,2,1-Ai]indoles via Tandem C-H
Activation/Amidation in One Pot

RESULT AND DISCUSSION

To begin, the experiments were performed with 7-phenyl-1H-indole (1a, 1
equiv) and dimethyl diazomalonate (2a, 1.5 equiv) in the presence of [Cp*RhCl;],
(2.5 mol %) and AgOAc (15 mol %) at 60 °C for 24 h, and the desired
mono-substituted product 3a was obtained selectively in 91% yield (Scheme 2, eq. 1).
No disubstituted product!3*-¢ or C3-substititued product!'* was found in the reaction
mixture. The structure of 3a was confirmed by X-ray crystallography (see the
Supporting Information). Treating 3a with 30 mol % KOH in EtOAc resulted in
intramolecular amidation to provide 7-membered ring 4a in 69% yield. Changing the
base to DBU afforded 4a in quantitative yield (Scheme 2, eq. 2). The structure of 4a
was also confirmed by X-ray crystallography (see the Supporting Information).
Encourage by the above results, the tandem C-H activation/amidation of

7-phenyl-1H-indole with
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N
O N N [CP*RhCly], (2.5 mol%)
H + 2 AgOAc (15 mol%)
O MeOOC™ “COOMe EtOAc, Ar, 60 °C,
1a 2a
O ) )
N N et )
COOMe Base (30 mol%) o — A {‘E\ €q-
‘ COOMe  EtOAc, Air, R.T. . f s
5h COOMe R
3a 4a ‘

CCDC 1939305
KOH: 69% yield
DBU: 100% yield

Scheme 2 Rhodium-Catalyzed ortho C-H Coupling of 7-Arylindoles with Diazo

Compounds (eq. 1); Base-Catalyzed Intramolecular Amidation Cyclization (eq. 2).

dimethyl diazomalonate leading to azepino[3,2,1-hi]indole 4a in one pot was
surveyed (Table 1). It is found that KOH was incompatible with the
[Cp*RhCl,],/AgOAc catalyst system; almost no annulated product was formed, and
the starting material 1a was recovered totally (Table 1, entry 1). We reasoned that
strong base KOH had an adverse impact on Rhodium-catalyzed NH-indole directed
C-H activation cycle. To our delight, by changing the base from KOH to DBU, the
yield of the desired product was significantly improved to 94% (Table 1, entry 2).
Other bases such as Et;N, KO'Bu, DMAP, LiOH, piperidine, Me,;NOAc and
"BuysNOACc gave unsatisfactory results (Table 1, entries 3-9). The effect of the solvent
on the formation of 4a was also briefly investigated. In xylene, the reaction proceeded
as smoothly as in EtOAc (Table 1, entry 10). However, the use of other solvents such
as CH;CN, 1,4-dioxane, DCM and MeOH resulted in significant decreases of the

yields (Table 1, entries 11-15).
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Table 1. Optimization of the Reaction Conditions?

O D [Cp*RNCl5], (2.5 mol%) O b
IR G-z 7 o
° h
O H ~ MeOOC™ COOMe o\ ent Ar, 60°C, 24n O
COOMe
1a 2a 4a
entry base solvent yield (%)?
1 KOH EtOAC trace
2 DBU EtOAc 94
3 EtsN EtOAc 0
4 KO'Bu EtOAc trace
5 DMAP EtOAC trace
6 LiOH EtOAc 0
7 piperidine EtOAC trace
8 MesNOAc EtOAc 22
9 "BuysNOAC EtOAc 30
10 DBU xylene 91
11 DBU CH3;CN trace
12 DBU 1,4-dioxane 47
13 DBU DCM 79
14 DBU DCE trace
15 DBU MeOH 0

“Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), [Cp*RhCl,], (2.5 mol%), AgOAc (15
mol%), base (30 mol%), solvent (2 mL), argon atmosphere, 60°C, 24 h. isolated yield on the basis
of the amount of 1a used.

Under the optimal catalytic reaction conditions, the generality of the Rh(IIl)-catalyzed
tandem C-H activation/cyclization was examined (Table 2). The reaction is found to
be very sensitive with respect to the positions of substituents. Substituents at the 4 or
S-positions of the indole ring or the 3 or 4-positions of the benzene ring favored the
reaction, affording the desired products in good to excellent yields (Table 2. 4b-e),

while substituents on other positions led to complete reaction shutdown (4f-i).

Notably, a wide range of functional groups, including F, OMe, NPh,, SiMes, CI, CN,
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CHO, COMe, CO,Me, CF;, NO, were all well tolerated (4e, 4j, 41-t), providing the
corresponding products in 56-95% yields. The diverse groups in the products can
serve as a handle for further transformation. Only 18% yield of the desired product
was detected when an OH group was present, which is probably a result of the
chelating ability of the OH group with Rh metal (see 4w). It is worth mentioned that
7-naphthylindole and 1,4-diindolylbenzene both coupled smoothly with 2a to afford
the annulated products. The resulting structures 4u and 4v may be useful as valuable
intermediate for preparing optoelectronic materials. In order to determine if the
electronic nature of the substituent affected the reaction, an intermolecular
competition experiment was conducted with an equimolar mixture of
7-(4-methoxyphenyl)-1H-indole and 7-(4-nitrophenyl)-1H-indole. A ratio of 3:1 was
obtained between 4j and 4t after 12 h, which suggests that electron-rich substrates are
favorable to the reaction (Scheme 3, eq. 1). An intermolecular competition reaction
between 7-phenyl-1H-indole 1a and its deuterated derivative 1a-D5 gave a KIE value
of 2.5, indicating that the C-H bond cleavage might be involved in the
rate-determining step (Scheme 3, eq. 2). Next, various diazo compounds were
examined under the standard conditions. It is found that the steric effects of the
substituents on the diazomaonates play an important role in the cyclization step.
Changing the methyl group to ethyl group afforded a lower yield (4x, 55%).
Diisopropyl 2-diazomalonate was found to couple with la to afford the
mono-substituted product 3y in quantitative yield; and the amidation cyclization of 3y

can not happen in one pot. However, treating 3y with 30 mol% KOH in DCM
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Table 2. Substrate Scope

N . 9
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“Reaction conditions: 1 (0.3 mmol), 2 (0.45 mmol), [Cp*RhCL], (2.5 mol%), AgOAc (15

mol%), DBU (30 mol%), EtOAc (2 mL), argon atmosphere, 60 °C, 24 h; isolated yield.

9 O N O N [Cp*RNClyl, (2.5 mol%)

10 N N AgOAc (15 mol%)

1 H . H DBU (30 mol%)

" O O EtOAc, Ar, 60 °C, 12 h

13 MeO,C COzMe CO,Me CO,Me eq (1)
OMe NO,

1j, 0.1 mmol 1t, 0.1 mmol 4j, 75.8% at, 24.2%

oNOYTULT D WN =

20
- O \ O \ [CP*RNCly], (2.5 mol%) O N O N
N N AgOAc (15 mol%) N N
DH +1p  DBU (30 mol%) 0 ° @

+ D + D
23 O O EtOAc, Ar, 60 °C, 2 h O o O o

i bvie ovie
24 D ) 28% yield D D

26 1a, 0.1 mmol 1a-D5, 0.1 mmol 4a 4a-D4
27 Ku/Kp=2.5:1

29 Scheme 3. Competition Experiment

32 delivered cyclization product 4y in 50% yield. Interestingly, when the unsymmetrical
diazomalonate n-butyl methyl 2-diazomalonate was employed, the amidation
37 occurred at the more bulky group and reserved the less bulky group in the final

40 product 4a.

In order to demonstrate the practical application of the methodology, the reaction
45 of 1a and 2a was carried out on a gram scale, which provided an 89% yield of 4a
48 (1.55 g, Scheme 4, eq. 1). Demethoxycarbonylation of 4a through a saponification
50 and decarboxylation sequence gave benzo[4,5]azepino[3,2,1-ki]indol-4(5H)-one 5a in
53 60% yield (Scheme 4, eq. 2).!° Finally, 4a can be efficiently alkenylated at the
3-position with acrylate affording 6a in 80% yield by a Pd(OAc),-catalyzed

58 Fujiwara-Moritani reaction (Scheme 4, eq. 3).1¢
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O A\ [Cp*RhCly], (2.5 mol %) O A\
N MeOzC COzMe AgOAC (15 mol %) N
H + hil DBU (30 mol %) _ o
O N2 EtOAc, Ar, 60 °C. O eq (1)
CO,Me
1a, 6 mmol 2a, 9 mmol 4a, 89%, 1.55¢g

(L3 (L
N N

(i) 5% KOH/MeOH, R.T., 2 h

0 > 0
(i) (@)10 % HCI=> pH 4-5, 0 °C eq (2)
COzMe (b) 70°C, 2 h
4a, 1 mmol 52 60%
CO,Et
N
N o
N Pd(OAC); (5 mol%) O N
Acetone (2 mL) 0]
O CO,Me Ar,80°C, 24 h
CO,Me
4a, 0.3 mmol 0.75 mmol 6a, 80%

Scheme 4. Synthetic Transformations

In fact, several attempts to recrystallize or in situ characterize the key
intermediates from the reaction of 7-phenyl-/H-indole with equimolar [Cp*RhCl;],
were problematic. However, based on our group’s previous research of
NH-indole-directed C-H bond functionalization,'3* a possible mechanism for the
present reaction is depicted briefly in Scheme 5. First, the active Rh(III) species A is
generated with the assistance of AgOAc, which undergoes N-H bond cleavage and
C-H bond cleavage to give six-membered rhodacycle B. Then rhodacycle B
decomposes the diazo compound 2a to generate metal carbene species D; D

undergoes migratory insertion to produce seven-membered rhodacycle E. At this
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point, E is protonated to afford the coupling product 3a and regenerate the active
Rh(III) catalyst A. Finally, 3a can be converted into the seven-membered product 4a

via intramolecualr amidation in the presence of DBU catalyst.
[Cp*Rh(II)Cly],

DBU
Oz R
HN OMe < @OMG<—
. COOMe AgOAc AgCl
6 o Ai\/
O COOMs COOMe
COOMe

Cp*Rh(lll)(OAC),
l\ 2 HOAC A 2 HOAc
MeOH
AN
N A\
N
c

1a

QOW
Q

Iz __
Iz __

(0]

‘ 0OMe O CO;Me B
4 Kc:ozlvle

-z

“Cp* N,
MeOZCACOZMe
2a
c
oy o
N N
| .Cp* o .Cp*
&%COzMe O %C%Me
Ng
MeO,C §/ Me0,C ~> N
N2

Scheme 5. Proposed Reaction Mechanism

In conclusion, we have developed a significant advancement to catalytic C-H
activation/cyclization. This protocol enables unprecedented general access to the
seven-membered azepino[3,2,1-Ai]indoles. The tandem rhodium-catalyzed C-H
coupling of 7-phenylindoles with diazo compounds and DBU-catalyzed
intramolecular amidation proceeds in one pot under mild reaction conditions. The
reactions have a broad range of substrates giving a variety of functionalized products
in high yields. A wide range of functional groups, including F, OMe, NPh,, SiMes;,
Cl, CN, CHO, COMe, CO,Me, CF;, NO, were all well tolerated. Further applications

of this C-H activation/cyclization in the synthesis of related targets are in progress.
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Experimental Section

General Method

7-Phenyl-1H-indoles (1) were synthesized from 7-bromo-/H-indoles and
Phenylboronic acid via Suzuki coupling.!” 1a, 1¢, 1f, 1h-j, 1p, 1s-u are known
compounds, 'H NMR data of the isolated products were in agreement with the
literature reports.!® 1b, 1d-e, 1g, 1k-0, 1q, 1v-w are new compounds. They were
characterized by 'H NMR, 13C NMR and HRMS. Diazo compounds (2) were prepared
according to the reported procedures, and the compounds’ spectra data are in
agreement with the reports.’” "H NMR spectra were recorded at 400 MHz and '3C
NMR spectra at 100 MHz, respectively. 'H chemical shifts (8) were referenced to
TMS, and '3C NMR chemical shifts (8) were referenced to internal solvent resonance.
ESI-HRMS spectra were recorded by using a Q-TOF mass spectrometer. Data
collection and structural analysis of the crystal was collected on a Single Crystal
Diffractometer equipped with graphite monochromatic Cu/Mo K, radiation
(A=1.54184A).

7-Phenyl-1H-indole (1a): 'H NMR (400 MHz, CDCl;) & 8.43 (s, 1H), 7.69 —
7.64 (m, 3H), 7.55 — 7.50 (m, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.26 — 7.20 (m, 3H), 6.64
(dd,J=3.2,2.1 Hz, 1H).

4-Methyl-7-phenyl-1H-indole (1b): 'TH NMR (400 MHz, CDCl;) & 8.45 (s, 1H),
7.64 (dt, J= 7.7, 1.5 Hz, 2H), 7.54 — 7.49 (m, 2H), 7.42 — 7.38 (m, 1H), 7.23 (dd, J =
3.2,2.5Hz, 1H), 7.16 (d, J= 7.3 Hz, 1H), 7.03 (dd, J = 7.5, 1.0 Hz, 1H), 6.66 (dd, J =

3.2, 2.1 Hz, 1H), 2.63 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) & 139.4, 133.3,
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129.6, 129.1, 128.2, 128.0, 127.1, 123.7, 123.3, 122.0, 120.5, 101.6, 18.7. HRMS
(ESI) m/z: [M+H]* Caled for CsH 4N, 208.1121; found, 208.1117.

7-(p-Tolyl)-1H-indole (1¢): '"H NMR (400 MHz, CDCl3) & 8.45 (s, 1H), 7.71 —
7.57 (m, 3H), 7.44 — 7.20 (m, 5H), 6.68 (s, 1H), 2.49 (s, 3H).

7-(m-Tolyl)-1H-indole (1d): 'H NMR (400 MHz, CDCI;) & 8.43 (s, 1H), 7.68 —
7.63 (m, 1H), 7.48 — 7.44 (m, 2H), 7.41 (td, J = 7.2, 1.4 Hz, 1H), 7.25 — 7.19 (m, 4H),
6.64 (dd, J=3.2, 2.1 Hz, 1H), 2.46 (s, 3H). BC{!H} NMR (100 MHz, CDCl;) & 139.2,
138.8, 133.7, 129.0, 128.9, 128.2, 128.1, 125.7, 125.2, 124.2, 121.8, 120.2, 119.9,
103.0, 21.6. HRMS (ESI) m/z: [M+H]* Caled for C;sH;4N, 208.1121; found,
208.11109.

5-Fluoro-7-phenyl-1H-indole (1e): 'H NMR (400 MHz, CDCl3) & 8.37 (s, 1H),
7.65 —7.61 (m, 2H), 7.56 — 7.51 (m, 2H), 7.47 — 7.42 (m, 1H), 7.31 (dd, J=9.3, 2.3
Hz, 1H), 7.25 (t, J = 2.9 Hz, 1H), 7.02 (dd, J = 10.0, 2.4 Hz, 1H), 6.60 (dd, J = 3.1,
2.1 Hz, 1H). BC{'H} NMR (100 MHz, CDCl;) & 158.2 (d, J = 234.5 Hz), 138.1,
130.2, 129.2, 128.5 (d, J = 10.5 Hz), 128.1, 127.9, 126.3 (d, J = 9.4 Hz), 125.9, 110.1
(d, J=26.6 Hz), 104.6 (d, J = 23.4 Hz), 103.2 (d, ] = 4.8 Hz). 19 F NMR (376 MHz,
CDCl3)é -124.7 (t, J = 9.3 Hz). HRMS (ESI) m/z: [M+H]* Caled for C,4H;,FN,
212.0870; found, 212.0865.

2-Methyl-7-phenyl-1H-indole (1f): 'H NMR (400 MHz, CDCl;) 6 8.12 (s, 1H),
7.67 —7.63 (m, 2H), 7.55 — 7.50 (m, 3H), 7.43 — 7.38 (m, 1H), 7.19 — 7.13 (m, 2H),

6.33 —6.27 (m, 1H), 2.45 (s, 3H).
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3-Methyl-7-phenyl-1H-indole (1g): 'H NMR (400 MHz, CDCls) & 8.16 (s, 1H),
7.73 — 7.64 (m, 2H), 7.64 — 7.59 (m, 1H), 7.57 — 7.49 (m, 2H), 7.44 — 7.39 (m, 1H),
7.27 —7.24 (m, 2H), 7.00 (dd, J = 2.3, 1.2 Hz, 1H), 2.40 (s, 3H). 3C{'H} NMR (100
MHz, CDCl;) ¢ 139.3, 134.0, 129.1, 128.6, 128.2, 127.3, 125.4, 121.8, 119.6, 118.1,
112.1, 9.8. HRMS (ESI) m/z: [M+H]" Calcd for C;sH 4N, 208.1121; found, 208.1116.

6-Methyl-7-phenyl-1H-indole (1h): '"H NMR (400 MHz, CDCls) & 7.87 (s, 1H),
7.56 — 7.49 (m, 3H), 7.45 — 7.40 (m, 3H), 7.12 — 7.05 (m, 2H), 6.55 (dd, J = 3.2, 2.1
Hz, 1H), 2.31 (s, 3H).

7-(o-Tolyl)-1H-indole (1i): '"H NMR (400 MHz, CDCl;) 8 7.95 (s, 1H), 7.68 (dt,
J=28.0, 0.9 Hz, 1H), 7.40 — 7.30 (m, 4H), 7.24 — 7.18 (m, 2H), 7.10 (dd, J = 7.2, 1.1
Hz, 1H), 6.64 (dd, J =3.2, 2.1 Hz, 1H), 2.21 (s, 3H).

7-(4-Methoxyphenyl)-1H-indole (1j): '"H NMR (400 MHz, CDCl5) 8 8.40 (s, 1H),
7.65 —7.55 (m, 3H), 7.23 — 7.18 (m, 3H), 7.08 — 7.02 (m, 2H), 6.66 — 6.59 (m, 1H),
3.89 (s, 3H).

7-(4-(Tert-butyl)phenyl)-1H-indole (1k): '"H NMR (400 MHz, CDCl;) 6 8.45 (s,
1H), 7.65 (ddd, J = 6.8, 2.1, 0.7 Hz, 1H), 7.62 — 7.58 (m, 2H), 7.57 — 7.53 (m, 2H),
7.25-7.20 (m, 3H), 6.64 (dd, J = 3.2, 2.1 Hz, 1H), 1.42 (s, 9H). 3C{'H} NMR (100
MHz, CDCl5) 6 150.3, 136.3, 133.8, 128.2, 127.9, 126.0, 125.5, 124.2, 121.8, 120.3,
119.8, 103.0, 34.6, 31.4. HRMS (ESI) m/z: [M+H]" Caled for C;gH,oN, 250.1590;
found, 250.1584.

4-(1H-Indol-7-yl)-N,N-diphenylaniline (11): '"H NMR (400 MHz, CDCls) & 8.47

(s, 1H), 7.63 (dd, J = 6.4, 2.2 Hz, 1H), 7.55 — 7.48 (m, 2H), 7.33 — 7.27 (m, 4H), 7.24
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—7.16 (m, 8H), 7.13 (dt, J = 8.7, 1.8 Hz, 1H), 7.09 — 7.04 (m, 2H), 6.63 (dd, ] = 3.2,
2.1 Hz, 1H). BC{'H} NMR (100 MHz, CDCI3) & 147.6, 147.2, 133.7, 133.1, 129.3,
129.2, 128.9, 128.2, 127.3, 125.2, 124.5, 124.3, 124.2, 124.0, 123.1, 122.8, 121.6,
120.3, 119.7, 103.1. HRMS (ESI) m/z: [M+H]" Calcd for CycH,1N», 361.1699; found,
361.1689.

7-(4-(Trimethylsilyl)phenyl)-1H-indole (1m): 'H NMR (400 MHz, CDCl;) 6
8.45 (s, 1H), 7.71 — 7.63 (m, 5H), 7.26 — 7.20 (m, 3H), 6.64 (dd, J= 3.2, 2.1 Hz, 1H),
0.35 (t, 9H). *C{'H} NMR (100 MHz, CDCl;) & 139.6, 139.5, 134.1, 133.7, 128.2,
127.5,125.5,124.3, 121.8, 120.3, 120.1, 103.0, -1.1. HRMS (ESI) m/z: [M+H]" Calcd
for C;7H,0NSi, 266.1360; found, 266.1352.

7-(4-Chlorophenyl)-1H-indole (1n): '"H NMR (400 MHz, CDCls) 6 8.34 (s, 1H),
7.67 (ddd, J=7.3, 1.9, 0.7 Hz, 1H), 7.60 — 7.56 (m, 2H), 7.51 — 7.47 (m, 2H), 7.24 —
7.18 (m, 3H), 6.64 (dd, J = 3.2, 2.0 Hz, 1H). BC{'H} NMR (100 MHz, CDCl;) &
137.7, 133.5, 133.3, 129.5, 129.3, 128.4, 124.5, 124.3, 121.9, 120.4, 120.3, 103.2.
HRMS (ESI) m/z: [M+H]" Caled for Ci4H;;CIN, 228.0575; found, 228.0569.

4-(1H-Indol-7-yl)benzaldehyde (10): 'H NMR (400 MHz, CDCIl;) & 10.06 (s,
1H), 8.51 (s, 1H), 8.03 — 8.00 (m, 2H), 7.84 — 7.81 (m, 2H), 7.71 (ddd, J = 7.2, 1.8,
0.7 Hz, 1H), 7.29 — 7.21 (m, 3H), 6.66 (dd, J = 3.2, 2.0 Hz, 1H). BC{'H} NMR (100
MHz, CDCl;) 6 191.8, 145.7, 135.2, 133.4, 130.6, 128.7, 128.6, 124.7, 124.1, 122.2,
121.2, 120.4, 103.3. HRMS (ESI) m/z: [M+H]" Caled for C;5H;,NO, 222.0913; found,

222.0908.
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4-(1H-Indol-7-yl)benzonitrile (1p): '"H NMR (400 MHz, CDCls) & 8.43 (s, 1H),
7.81 —7.75 (m, 4H), 7.73 — 7.68 (m, 1H), 7.28 — 7.19 (m, 4H), 6.66 (dd, J = 3.2, 2.0
Hz, 1H).

1-(4-(1H-Indol-7-yl)phenyl)ethan-1-one (1q): 'H NMR (400 MHz, CDCl;) 6
8.56 (s, 1H), 8.11 — 8.06 (m, 2H), 7.77 — 7.73 (m, 2H), 7.70 (dd, J = 7.0, 1.7 Hz, 1H),
7.28 —7.21 (m, 3H), 6.66 (dd, J = 3.1, 2.1 Hz, 1H), 2.65 (s, 3H). 3C{'H} NMR (100
MHz, CDCl;) 6 197.8, 144.3, 135.8, 129.2, 128.5, 128.3, 124.7, 124.3, 122.0, 121.0,
120.3, 104.9, 103.2, 26.6. HRMS (ESI) m/z: [M+H]" Calcd for C;cH;4NO, 236.1070;
found, 236.1064.

Methyl 4-(1H-indol-7-yl)benzoate (1r): 'H NMR (400 MHz, CDCl;) 6 8.50 (s,
1H), 8.17 (d, J = 8.2 Hz, 2H), 7.72 (d, ] = 8.2 Hz, 2H), 7.69 (dd, J = 7.0, 2.0 Hz, 1H),
7.27 —7.21 (m, 3H), 6.65 (dd, J = 3.2, 2.1 Hz, 1H), 3.96 (s, 3H). 3C{'H} NMR (100
MHz, CDCl;) & 166.9, 144.0, 133.4, 130.4, 128.9, 128.5, 128.1, 124.6, 124.4, 122.0,
120.9, 120.3, 103.2, 52.2. HRMS (ESI) m/z: [M+H]" Calcd for C,cH4NO,, 252.1019;
found, 252.1012.

7-(4-(Trifluoromethyl)phenyl)-1H-indole (1s): 'H NMR (400 MHz, CDCl;) 6
8.37 (s, 1H), 7.80 — 7.75 (m, 4H), 7.72 — 7.68 (m, 1H), 7.26 — 7.22 (m, 3H), 6.66 (dd,
J=3.2,2.0 Hz, 1H).

7-(4-Nitrophenyl)-1H-indole (1t): 'H NMR (400 MHz, CDCls) & 8.43 (s, 1H),
8.39 — 8.35 (m, 2H), 7.85 — 7.80 (m, 2H), 7.75 — 7.71 (m, 1H), 7.32 — 7.20 (m, 3H),

6.67 (dd, J=3.2,2.0 Hz, 1H).
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7-(Naphthalen-2-yl)-1H-indole (1u): '"H NMR (400 MHz, CDCls) 6 8.50 (s, 1H),
8.11 (s, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.95 — 7.90 (m, 2H), 7.78 (dd, J = 8.4, 1.7 Hz,
1H), 7.70 (d, J = 7.8 Hz, 1H), 7.59 — 7.51 (m, 2H), 7.35 (d, J = 7.1 Hz, 1H), 7.30 —
7.23 (m, 2H), 6.67 (m, 1H).

1,4-Di(1H-indol-7-yl)benzene (1v): 'H NMR (400 MHz, CDCl;) 6 8.51 (s, 2H),
7.80 (s, 4H), 7.69 (d, J = 7.2 Hz, 2H), 7.31 — 7.23 (m, 6H), 6.67— 6.65 (m, 2H).
BC{'H} NMR (100 MHz, CDCl;) 5 138.4, 133.7, 128.9, 128.4, 127.7, 125.1, 124 .4,
121.9, 120.4, 120.3, 103.2. HRMS (ESI) m/z: [M+H]* Calcd for C5,H;7N,, 309.1386;
found, 309.1379.

4-(1H-Indol-7-yl)phenol (1w): 'H NMR (400 MHz, CDCls) & 8.39 (s, 1H), 7.64
(d,J=7.0 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.27 - 7.17 (m, 3H), 6.97 (d, ] = 8.4 Hz,
2H), 6.67 — 6.59 (m, 1H), 5.09 (s, 1H). 3C{"H} NMR (100 MHz, CDCl;) & 154.9,
133.8, 131.8, 129.5, 128.2, 125.2, 124.3, 121.7, 120.3, 119.6, 116.0, 103.0. HRMS

(ESI) m/z: [M+H]" Caled for C1,H,,NO, 210.0913; found, 210.0908.

General Procedure for the Synthesis of Azepino[3,2,1-hilindoles 4a-4x:
Under argon atmosphere, 7-aryl-1H-indoles 1(0.3 mmol), diazo compounds 2 (0.45
mmol, 1.5 equiv.), [Cp*RhCl;], (4.7 mg, 0.0075 mmol, 2.5mol%), AgOAc (7.5 mg,
0.045 mmol, 15 mol%), DBU (13.5 pL, 0.09 mmol, 30 mmol%) and EtOAc (2 mL)
were placed in a 25 mL seal tube. The mixture was heated in oil bath at 60 °C for 24 h
and then cooled to room temperature. The crude reaction mixture was diluted with
EtOAc to 5 mL, filtered through a celite pad, and then washed with 10 mL EtOAc.
The volatiles were removed under reduced pressure, and the residue was subjected to

silica gel column chromatography [eluting with petroleum ether/ethyl acetate] to

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

afford the corresponding product.

Dimethyl 2-(2-(1H-indol-7-yl)phenyl)malonate (3a): 88 mg (91%); white solid,
mp 151-152 °C; Purification (Petroleum ether/ethyl acetate = 10/1). "H NMR (400
MHz, CDCl;) 6 8.22 (s, 1H), 7.68 (dt, J = 8.0, 1.0 Hz, 1H), 7.67 — 7.63 (m, 1H), 7.51
— 7.38 (m, 3H), 7.20 (dd, J = 8.0, 7.2 Hz, 1H), 7.14 (dd, J = 3.2, 2.4 Hz, 1H), 7.06
(dd, J=7.2, 1.2 Hz, 1H), 6.60 (dd, J = 3.2, 2.1 Hz, 1H), 4.72 (s, 1H), 3.68 (s, 3H),
3.63 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 8 169.7, 168.9, 138.9, 134.6, 131.7,
130.6, 129.4, 128.5, 128.3, 127.8, 124.6, 123.3, 122.8, 120.4, 119.9, 102.8, 53.8, 52.8.
HRMS (ESI) m/z: [M+Na]* Caled for C;oH;;NO4Na, 346.1050; found, 346.1051. It
was crystallized from cyclohexane/dichloromethane.

Methyl 4-oxo0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4a):
82 mg (94%); white solid, mp 128-129 °C; Purification (Petroleum ether/ethyl acetate
=10/1). "H NMR (400 MHz, CDCl) § 7.88 (d, J = 3.7 Hz, 1H), 7.75 — 7.72 (m, 2H),
7.66 (dd, J=7.7, 1.0 Hz, 1H), 7.56 — 7.47 (m, 3H), 7.41 (t,J= 7.7 Hz, 1H), 6.77 (d, J
= 3.7 Hz, 1H), 5.07 (s, 1H), 3.26 (s, 3H). *C{'H} NMR (100 MHz, CDCl;) 3 167.3,
165.1, 135.6, 131.8, 131.6, 131.5, 129.6, 129.5, 129.0, 128.6, 127.1, 125.6, 124.2,
123.5, 121.6, 109.8, 62.1, 52.6. HRMS (ESI) m/z: [M+Na]* Calcd for C,3H,3NO;sNa,
314.0788; found, 314.0788. It was crystallized from cyclohexane/dichloromethane.

Methyl
12-methyl-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate
(4b):70 mg (76%); white solid, mp 172-173 °C; Purification (Petroleum ether/ethyl

acetate = 10/1). '"H NMR (400 MHz, CDCls) & 7.87 (d, J = 3.8 Hz, 1H), 7.71 (d, J =
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7.6 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.53 — 7.43 (m, 3H), 7.21 (dd, J = 7.8, 0.9 Hz,
1H), 6.81 (d, J = 3.8 Hz, 1H), 5.07 (s, 1H), 3.27 (s, 3H), 2.60 (s, 3H). *C{'H} NMR
(100 MHz, CDCly) 6 167.5, 165.0, 135.7, 131.6, 131.5, 131.44, 131.41, 131.1, 129.2,
128.9, 128.3, 126.4, 125.0, 123.5, 123.2, 108.1, 62.1, 52.6, 18.4. HRMS (ESI) m/z:
[M+Na]" Calcd for Ci9H;sNO;Na, 328.0944; found, 328.0944. It was crystallized
from cyclohexane/dichloromethane.

Methyl
7-methyl-4-o0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4¢): 71
mg (77%); white solid, mp 164-165 °C; Purification (Petroleum ether/ethyl acetate =
10/1). "H NMR (400 MHz, CDCl3) 6 7.86 (d, J= 3.7 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H),
7.63 (d, J=7.7 Hz,2H), 7.41 — 7.28 (m, 3H), 6.76 (d, J = 3.7 Hz, 1H), 5.01 (s, 1H),
3.25 (s, 3H), 2.45 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 8 167.4, 165.1, 138.7,
132.8, 132.1, 131.7, 131.5, 129.9, 129.4, 127.1, 125.6, 124.2, 123.3, 121.2, 109.7,
62.1, 52.6, 21.0. HRMS (ESI) m/z: [M+Na]" Calcd for C;oH;sNOs;Na, 328.0944;
found, 328.0944. It was crystallized from cyclohexane/dichloromethane.

Methyl
8-methyl-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4d): 61
mg (67%); white solid, mp 127-128 °C; Purification (Petroleum ether/ethyl acetate =
10/1)."H NMR (400 MHz, CDCl3) 6 7.87 (d, J= 3.7 Hz, 1H), 7.72 (dd, /= 7.7, 1.0 Hz,
1H), 7.64 (dd, J = 7.7, 1.0 Hz, 1H), 7.55 — 7.53 (m, 1H), 7.39 (dd, J = 15.7, 7.8 Hz,
2H), 7.29 (d, J= 7.7 Hz,1H), 6.76 (d, J = 3.7 Hz, 1H), 5.03 (s, 1H), 3.25 (s, 3H), 2.46

(s, 3H). *C{'H} NMR (100 MHz, CDCl;) § 167.5, 165.3, 139.0, 135.4, 131.8, 131.7,
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131.4, 130.2, 129.5, 127.1, 126.9, 125.7, 124.2, 123.4, 121.5, 109.7, 61.7, 52.6, 21.3.
HRMS (ESI) m/z: [M+Na]* Calcd for C9HsNO3Na, 328.0944; found, 328.0943.

Methyl
11-fluoro-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4e): 64
mg (69%); white solid, mp 140-141 °C; Purification (Petroleum ether/ethyl acetate =
10/1). '"H NMR (400 MHz, CDCl;3) $ 7.90 (d, J = 3.7 Hz, 1H), 7.70 (dd, J = 7.3, 1.7
Hz, 1H), 7.57 — 7.43 (m, 4H), 7.33 (dd, J = 8.1, 2.4 Hz, 1H), 6.73 (d, J= 3.7 Hz, 1H),
5.07 (s, 1H), 3.30 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 6 167.1, 164.6, 159.8 (d,
Jcr = 240.8 Hz), 134.6, 132.9 (d, 2Jcr = 10.5 Hz), 131.7, 129.5 (d, 3Jcr = 4.6 Hz),
129.2 (d, 3Jcr = 4.3 Hz), 128.8, 128.1, 126.8 (d, 2Jcr = 9.2 Hz), 110.7, 110.5, 109.6
(d, 3Jcr =4.0 Hz), 107.6, 107.4, 62.0, 52.8. '°F NMR (376 MHz, CDCl;)3-118.9 (t, J
=9.0 Hz, 1F).HRMS (ESI) m/z: [M+Na]* Calcd for C;3sH,FNO3Na, 332.0693; found,
332.0693. It was crystallized from cyclohexane/dichloromethane.

Methyl
7-methoxy-4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate  (4j):
92 mg (95%); white solid, mp 125-126 °C; Purification (Petroleum ether/ethyl acetate
= 4/1). '"H NMR (400 MHz, CDCl;) 8 7.86 (d, J = 3.7 Hz, 1H), 7.67 — 7.63 (m, 2H),
7.60 (dd, J=7.7, 1.0 Hz, 1H), 7.37 (t, J= 7.7 Hz, 1H), 7.07 (dd, J = 8.7, 2.7 Hz, 1H),
7.01 (d, J=2.7 Hz, 1H), 6.76 (d, J = 3.7 Hz, 1H), 5.00 (s, 1H), 3.89 (s, 3H), 3.26 (s,
3H). BC{'H} NMR (100 MHz, CDCl3) & 167.2, 164.8, 159.9, 131.7, 131.3, 130.8,
130.7, 128.2, 127.0, 125.4, 124.2, 123.0, 120.8, 116.2, 115.1, 109.8, 62.1, 55.5, 52.6.

HRMS (ESI) m/z: [M+Na]" Calcd for C;9H;5sNO4Na, 344.0893; found, 344.0893.
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Methyl
7-(tert-butyl)-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ahi]indole-5-carboxylate (4k):
93 mg (89%); white solid, mp 167-168 °C; Purification (Petroleum ether/ethyl acetate
=10/1). '"H NMR (400 MHz, CDCl;) 6 7.87 (d, J = 3.7 Hz, 1H), 7.71 (dd, J= 7.7, 1.0
Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.63 (dd, J= 7.7, 1.0 Hz, 1H), 7.55 (dd, /= 8.2, 2.0
Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.39 (t, /= 7.7 Hz, 1H), 6.76 (d, J = 3.7 Hz, 1H),
5.07 (s, 1H), 3.26 (s, 3H), 1.39 (s, 9H). BC{'H} NMR (100 MHz, CDCl;) 3 167.5,
165.2, 151.9, 132.8, 131.7, 131.6, 129.2, 129.2, 128.4, 127.0, 126.3, 125.6, 124.2,
123.2, 121.2, 109.7, 62.5, 52.6, 34.7, 31.3. HRMS (ESI) m/z: [M+H]" Calcd
forC,,H»,NO3, 348.1594; found, 348.15809.

Methyl
7-(diphenylamino)-4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylat
e (41): 116 mg (84%); white solid, mp 198-199 °C; Purification (Petroleum ether/ethyl
acetate = 10/1).'H NMR (400 MHz, CDCl;) 8 7.85 (d, J = 3.7 Hz, 1H), 7.65 (d, J =
7.7 Hz, 1H), 7.60 (dd, J = 7.7, 1.0 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.37 (t, J= 7.7
Hz, 1H), 7.31 (td, J = 8.5, 7.2 Hz, 4H), 7.21 — 7.15 (m, 5H), 7.13 — 7.07 (m, 3H), 6.75
(d, J=3.7 Hz, 1H), 4.84 (s, 1H), 3.26 (s, 3H). 3C{'H} NMR (100 MHz, CDCl;) &
167.3, 164.9, 148.4, 147.1, 131.7, 131.3, 130.4, 130.3, 129.5, 128.7, 127.0, 125.5,
125.2, 124.3, 124.2, 123.8, 123.0, 122.6, 120.8, 109.8, 62.1, 52.6. HRMS (ESI) m/z:
[M+H]" Calcd for C30H,3N,0;, 459.1698; found, 459.1698. It was crystallized from

cyclohexane/dichloromethane.
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Methyl
4-oxo0-7-(trimethylsilyl)-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate
(4m): 82 mg (75%); white solid, mp 153-154 °C; Purification (Petroleum ether/ethyl
acetate = 8/1). '"H NMR (400 MHz, CDCl;)  7.88 (d, J= 3.7 Hz, 1H), 7.76 — 7.71 (m,
2H), 7.69 — 7.64 (m, 2H), 7.59 (d, J = 0.8 Hz, 1H), 7.41 (t, J= 7.7 Hz, 1H), 6.77 (d, J
= 3.7 Hz, 1H), 5.12 (s, 1H), 3.26 (s, 3H), 0.35 (t, 9H). *C{'H} NMR (100 MHz,
CDCl;) 6 167.4, 165.2, 141.4, 136.5, 135.9, 133.9, 131.8, 131.6, 128.8, 128.6, 127.1,
125.7, 124.2, 123.4, 121.6, 109.7, 62.3, 52.6, -1.2. HRMS (ESI) m/z: [M+Na]" Calcd
for C,H;NO;3;SiNa, 386.1183; found, 386.1183. It was crystallized from
cyclohexane/dichloromethane.

Methyl
7-chloro-4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4mn): 83
mg (85%); white solid, mp 165-166 °C; Purification (Petroleum ether/ethyl acetate =
10/1). 'H NMR (400 MHz, CDCl;) 6 7.87 (d, J = 3.7 Hz, 1H), 7.70— 7.64 (m, 3H),
7.54 —7.46 (m, 2H), 7.40 (t, J = 7.7 Hz, 1H), 6.77 (d, J = 3.7 Hz, 1H), 5.00 (s, 1H),
3.27 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 8 166.7, 164.4, 134.5, 134.2, 131.9,
131.4,131.2, 130.9, 130.7, 129.1, 127.2, 124.5, 124.3, 123.4, 121.9, 109.9, 61.5, 52.8.
HRMS (ESI) m/z: [M+Na]* Calcd for C;sH;,CINO;Na, 348.0398; found, 348.0398.

Methyl
7-formyl-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (40): 89
mg (93%); white solid, mp 222-223 °C; Purification (Petroleum ether/ethyl acetate =

3/1). 'H NMR (400 MHz, CDCl3) & 10.11 (s, 1H), 8.04 — 7.99 (m, 2H), 7.92 — 7.88 (m,
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2H), 7.77 (dt, J= 7.8, 0.6 Hz, 1H), 7.73 (dd, J= 7.7, 1.0 Hz, 1H), 7.45 (t, J = 7.7 Hz,
1H), 6.80 (d, J = 3.7 Hz, 1H), 5.19 (s, 1H), 3.27 (s, 3H). 3C{'H} NMR (100 MHz,
CDCl) 6 191.1, 166.7, 164.3, 141.5, 135.9, 133.1, 132.1, 131.7, 130.4, 130.3, 129.6,
127.4, 124.4, 124.1, 122.9, 109.9, 61.8, 52.9. HRMS (ESI) m/z: [M+Na]" Calcd for
Ci9H;3NOg4Na, 342.0737; found, 342.0731. It was crystallized from
cyclohexane/dichloromethane.

Methyl
7-cyano-4-oxo-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4p): 71
mg (75%); white solid, mp 160-161 °C; Purification (Petroleum ether/ethyl acetate =
4/1)."H NMR (400 MHz, CDCl;) & 7.89 (d, J= 3.7 Hz, 1H), 7.85 (d, /= 8.5 Hz, 1H),
7.82—7.78 (m, 2H), 7.76 — 7.71 (m, 2H), 7.45 (t, J=7.7 Hz, 1H), 6.80 (d, /= 3.7 Hz,
1H), 5.09 (s, 1H), 3.28 (s, 3H). *C{'H} NMR (100 MHz, CDCl;) § 166.3, 164.0,
140.3, 135.0, 132.2, 132.2, 131.7, 130.6, 130.3, 127.4, 124.54, 124.51, 124.0, 123.2,
118.0, 112.3, 110.0, 61.4, 53.0. HRMS (ESI) m/z: [M+Na]* Calcd for C;9H;,N,0O;Na,

339.0740; found, 339.0740.

Methyl
7-acetyl-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4q): 71
mg (71%); white solid, mp 149-150 °C; Purification (Petroleum ether/ethyl acetate =
3/1). 'H NMR (400 MHz, CDCl;) & 8.11 — 8.06 (m, 2H), 7.88 (d, J = 3.7 Hz, 1H),
7.84 —7.81 (m, 1H), 7.75 (dd, J = 7.7, 0.9 Hz, 1H), 7.71 (dd, J = 7.7, 0.9 Hz, 1H),
7.43 (tt, J = 7.7, 0.6 Hz, 1H), 6.78 (dd, J = 3.7 Hz, 1H), 5.17 (s, 1H), 3.26 (s, 3H),

2.68 (t, J = 0.6 Hz, 3H). 3C{'H} NMR (100 MHz, CDCL;) & 197.0, 166.9, 164.6,
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140.2, 136.7, 132.0, 131.7, 131.7, 129.9, 129.9, 128.7, 127.3, 124.6, 124.4, 124.0,
122.7, 109.9, 77.1, 62.0, 52.8, 26.8. HRMS (ESI) m/z: [M+Na]* Calcd for
CyHsNO4Na, 356.0893; found, 356.0888. It was crystallized from

cyclohexane/dichloromethane.

Dimethyl 4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5,7-dicarboxylate
(4r): 94 mg (90%); white solid, mp 170-171 °C; Purification (Petroleum ether/ethyl
acetate = 4/1). "H NMR (400 MHz, CDCl;) 6 8.18 — 8.13 (m, 2H), 7.88 (d, /= 3.7 Hz,
1H), 7.79 (d, J = 8.1 Hz, 1H), 7.74 (dd, J= 7.7, 0.9 Hz, 1H), 7.68 (dd, /= 7.7, 0.9 Hz,
1H), 7.41 (td, J=7.7, 0.7 Hz, 1H), 6.77 (dd, J= 3.7, 0.7 Hz, 1H), 5.16 (s, 1H), 3.96 (d,
J=0.7 Hz, 3H), 3.24 (s, 3H).!3C{'H} NMR (100 MHz, CDCl;) 6 166.8, 166.2, 164.5,
139.9, 132.8, 131.9, 131.6, 129.9, 129.8, 129.6, 129.6, 127.2, 124.5, 124.3, 123.9,
122.5, 109.7, 61.8, 52.7, 52.3. HRMS (ESI) m/z: [M+Na]* Calcd for CyH;5NOsNa,

372.0842; found, 372.0842. It was crystallized from cyclohexane/dichloromethane.

Methyl
4-o0x0-7-(trifluoromethyl)-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylat
e (4s): 83 mg (77%); white solid, mp 149-151 °C; Purification (Petroleum ether/ethyl
acetate = 10/1). '"H NMR (400 MHz, CDCl;) & 7.89 (d, J = 3.7 Hz, 1H), 7.86 (d, J =
8.1 Hz, 1H), 7.79 — 7.70 (m, 4H), 7.44 (t, J = 7.7 Hz, 1H), 6.79 (d, J = 3.7 Hz, 1H),
5.13 (s, 1H), 3.27 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 6 166.6, 164.3, 139.2,
132.0, 131.7, 130.5 (q, J = 33.0 Hz), 130.3, 130.0, 128.4 (q, J = 3.0 Hz), 127.3, 126.5

(q, J =271 Hz), 125.7 (q, J = 4.0 Hz), 124.4, 124.3, 123.9, 122.6, 109.9, 61.8, 52.8.
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9F NMR (376 MHz, CDCl;) 6-62.4 (s, 3F). HRMS (ESI) m/z: [M+Na]* Calcd for
Ci9HpF3NO;3;Na, 382.0661; found, 382.0661. It was crystallized from

cyclohexane/dichloromethane.

Methyl
7-nitro-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate  (4t): 57
mg (56%); white solid, mp 177-178 °C; Purification (Petroleum ether/ethyl acetate =
5/1). 'TH NMR (400 MHz, CDCl;) 6 8.40 (d, J= 2.4 Hz, 1H), 8.35 (dd, /= 8.6, 2.4 Hz,
1H), 7.92 - 7.87 (m, 2H), 7.76 (d, J = 7.7 Hz, 2H), 7.46 (dd, J = 8.0, 7.5 Hz, 1H), 6.81
(d, J= 3.7 Hz, 1H), 5.20 (s, 1H), 3.28 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) &
166.2, 163.8, 147.3, 142.1, 132.2, 131.6, 130.6, 130.5, 127.5, 126.6, 124.6, 124.3,
123.7, 123.6, 123.4, 110.0, 61.5, 53.0. HRMS (ESI) m/z: [M+Na]" Calcd for
C1sH12N,O5Na, 359.0638; found, 359.0637.

Methyl
4-0x0-4,5-dihydronaphtho[2',3":4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4u): 101
mg (98%); white solid, mp 169-170 °C; Purification (Petroleum ether/ethyl acetate =
10/1). '"H NMR (400 MHz, CDCl3) 6 8.17 (s, 1H), 8.01 — 7.85 (m, 5H), 7.67 (dd, J =
7.7, 1.0 Hz, 1H), 7.59 — 7.52 (m, 2H), 7.44 (t, J = 7.7 Hz, 1H), 6.78 (d, J = 3.7 Hz,
1H), 5.25 (s, 1H), 3.27 (s, 3H). *C{'H} NMR (100 MHz, CDCl3) 6 167.5, 165.2,
133.3, 133.2, 132.8, 132.1, 131.9, 130.7, 129.2, 128.14, 128.07, 127.5, 127.14, 127.12,
126.9, 126.0, 124.4, 123.5, 121.5, 109.8, 62.4, 52.7. HRMS (ESI) m/z: [M+Na]*
Calcd for C,,H;sNOsNa, 364.0944; found, 364.0944. It was crystallized from

cyclohexane/dichloromethane.
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Methyl7-(1H-indol-7-yl)-4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-
carboxylate (4v): 61mg (50%); white solid, mp 208-209 °C; Purification (Petroleum
ether/ethyl acetate = 4/1). 'H NMR (400 MHz, CDCl5) & 8.55 (s, 1H), 7.90 (d, J=3.8
Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.81 — 7.75 (m, 3H), 7.69 (dq, J= 7.7, 1.3 Hz, 2H),
7.45 (t, J=17.7 Hz, 1H), 7.31 — 7.22 (m, 3H), 6.80 (d, J = 3.7 Hz, 1H), 6.66 (dd, J =
3.2,2.0 Hz, 1H), 5.14 (s, 1H), 3.29 (s, 3H). BC{'H} NMR (100 MHz, CDCl3) & 167.2,
164.9, 139.8, 134.6, 133.6, 131.9, 131.6, 131.1, 130.3, 130.3, 128.8, 128.5, 127.2,
125.3, 124.6, 124.4, 124.0, 123.5, 122.0, 121.7, 120.6, 120.4, 109.9, 103.2, 62.1, 52.8.
HRMS (ESI) m/z: [M+Na]* Calcd for C,6H gN,O3;Na, 429.1210; found, 429.1202.

Methyl
7-hydroxy-4-oxo0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate
(4w):17 mg (18%); white solid, mp 124-125 °C; Purification (Petroleum ether/ethyl
acetate = 2/1). '"H NMR (400 MHz, CDCls) & 7.86 (d, J = 3.7 Hz, 1H), 7.65 (dd, J =
7.8, 1.0 Hz, 1H), 7.63 — 7.58 (m, 2H), 7.38 (t, J = 7.7 Hz, 1H), 6.99 (dd, J = 8.5, 2.6
Hz, 1H), 6.94 (d, J = 2.6 Hz, 1H), 6.76 (d, J= 3.7 Hz, 1H), 5.84 (s, 1H), 4.96 (s, 1H),
3.28 (s, 3H). BC{'H} NMR (100 MHz, CDCl;) 8 167.3, 165.0, 156.4, 131.7, 131.3,
131.1, 130.8, 128.2, 127.0, 125.5, 124.3, 123.1, 120.9, 118.0, 116.6, 110.0, 61.8, 52.8.

HRMS (ESI) m/z: [M+Na]* Caled for C;sH,;NO,Na, 330.0737; found, 330.0731.

Ethyl 4-oxo0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate (4x):
51 mg (55%); white solid, mp 119-120 °C; Purification (Petroleum ether/ethyl acetate
=10/1). '"H NMR (400 MHz, CDCl;) 6 7.88 (d, /= 3.7 Hz, 1H), 7.75 — 7.71 (m, 2H),

7.65 (dd, J=7.7, 1.1 Hz, 1H), 7.55 — 7.46 (m, 3H), 7.40 (t, J= 7.7 Hz, 1H), 6.77 (d, J
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= 3.7 Hz, 1H), 5.05 (s, 1H), 3.82 — 3.74 (m, 1H), 3.72 — 3.64 (m, 1H), 0.60 (t, J = 7.1
Hz, 3H). '*C{'H} NMR (100 MHz, CDCl3) 5 166.7, 165.3, 135.6, 131.9, 131.7, 131.6,
129.9, 129.5, 129.0, 128.6, 127.2, 125.9, 124.2, 123.6, 121.5, 109.6, 62.3, 61.7, 13.4.
HRMS (ESI) m/z: [M+Na]* Caled for CioH;sNO3Na, 328.0944; found, 328.0944. It

was crystallized from cyclohexane/dichloromethane.

Diisopropyl 2-(2-(1H-indol-7-yl)phenyl)malonate (3y): 114 mg (100%); white
solid, mp 84-85 °C; Purification (Petroleum ether/ethyl acetate = 10/1). '"H NMR (400
MHz, CDCl) 6 8.37 (s, 1H), 7.72 — 7.65 (m, 2H), 7.50 (td, J = 7.5, 1.8 Hz, 1H), 7.45
(td, J=7.4, 1.5 Hz, 1H), 7.42 — 7.38 (m, 1H), 7.21 (dd, J = 8.0, 7.2 Hz, 1H), 7.17 (dd,
J=3.2,2.5 Hz, 1H), 7.08 (dd, J = 7.2, 1.1 Hz, 1H), 6.62 (dd, J = 3.2, 2.0 Hz, 1H),
5.07 — 4.94 (m, 2H), 4.62 (s, 1H), 1.24 (dd, J = 6.3, 4.3 Hz, 6H), 1.18 (d, /= 6.3 Hz,
3H), 1.11 (d, J = 6.3 Hz, 3H). BC{'H} NMR (100 MHz, CDCl;) é 169.0, 167.8,
139.0, 134.6, 132.2, 130.7, 129.4, 128.3, 127.8, 124.5, 123.7, 123.0, 120.2, 119.9,
102.7, 69.6, 69.2, 54.7, 21.5. HRMS (ESI) m/z: [M+Na]*Calcd for Cy;HsNO4Na,

402.1676; found, 402.1676.

Procedure for Synthesis of Isopropyl
4-0x0-4,5-dihydrobenzo(4,5]azepino|3,2,1-hi]indole-5-carboxylate 4y):
Compound 3y (0.3 mmol) and KOH (0.09 mmol, 30 mol%) were added in an
oven-dried sealing tube, then CH,Cl, was added. The reaction mixture was stirred at
room temperature for 2 h and then filtered through a plug of silica and washed with
EtOAc. The filtrate was concentrated under vacuum and purified by flash column

chromatography (petroleum ether/EtOAc = 2/1) to give product 4y as a white solid.

Isopropyl 4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indole-5-carboxylate
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(4y): 48 mg (50%); white solid, mp 135-136 °C; Purification (Petroleum ether/ethyl
acetate = 10/1). '"H NMR (400 MHz, CDCls) 6 7.87 (d, J = 3.2 Hz, 1H), 7.76 — 7.69
(m, 2H), 7.64 (d, J = 7.4 Hz, 1H), 7.55 — 7.45 (m, 3H), 7.39 (td, J= 7.7, 2.2 Hz, 1H),
6.76 (t, J=3.1 Hz, 1H), 5.02 (s, 1H), 4.59 — 4.49 (m, 1H), 0.87 (dd, J = 6.1, 2.2 Hz,
3H), 0.43 (dd, J = 6.1, 2.2 Hz, 3H). BC{'H} NMR (100 MHz, CDCl;) § 166.2, 165.5,
135.6, 132.0, 131.7, 131.7, 130.2, 129.5, 128.9, 128.6, 127.3, 126.0, 124.2, 123.6,
121.4, 109.5, 105.0, 69.6, 62.5, 21.1, 20.6. HRMS (ESI) m/z: [M+Na]* Calcd for
C,0H17NO3sNa, 342.1101; found, 342.1110.

Competition Experiments Between 1j and 1t: The reaction of
7-(4-methoxyphenyl)-1H-indole 1j (22.3 mg, 0.1 mmol), 7-(nitrophenyl)-1H-indole
1t (23.8 mg, 0.1 mmol) was run following the general procedure. After 12 h, the
reaction mixture was subjected to silica gel column chromatography [eluting with
petroleum ether/ethyl acetate=10:1] to provide the product including 4j (24.3 mg,
75.8% yield) and 4t (8.1 mg, 24.2% yield).

Experiments for intermolecular Kkinetic isotope effects: The reaction of
7-phenyl-1H-indole 1a (19.3 mg, 0.1 mmol), D5-7-phenyl-1H-indole 1a-D5 (19.8
mg, 0.1 mmol) was run for 2 h following the general procedure. After the reaction the
crude reaction mixture was subjected to silica gel column chromatography [eluting
with petroleum ether/ethyl acetate=10:1] to provide the product including 4a and
4a-D4 (16.8 mg, ~28% yield). This mixture was analyzed by 'H NMR to give the
relative ration of two isomers.

4a-D4: "H NMR (400 MHz, CDCl;) & 7.88 (d, J = 3.7 Hz, 1H), 7.73 (d, ] = 7.8
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Hz, 1H), 7.66 (d, ] = 7.8 Hz, 1H), 7.41 (td, J = 7.8, 0.5 Hz, 1H), 6.77 (d, J = 3.7 Hz,
1H), 5.08 (s, 1H), 3.26 (s, 3H).

Procedure for Synthesis of Benzo[4,5]azepino[3,2,1-hi]indol-4(SH)-one (5a):
Compound 4a (291.4 mg, 1 mmol) was dissolved in aqueous KOH (5%, 10 mL),and
the mixture was stirred at 20 °C for 2 h. HCI (10%) was then added dropwise at 0 °C
until pH 2.5 was reached. The resulting mixture was heated at 70 °C for 2 h, basified
with NH,OH (1 mL) and extracted with CH,Cl, (30 mL). The combined organic
layers were filtered, and the solvents were evaporated in vacuum to yield an oily
residue that was purified by flash-chromatograph on silica gel [PE/EA (10:1-20:1)].
This afforded benzo[4,5]azepino[3,2,1-Ai]indol-4(5H)-one 5a 140 mg, 0.61 mmol,
60% yield.

Benzo[4,5]azepino[3,2,1-Ai]indol-4(5H)-one (5a): 140 mg (60%); white oil;
Purification (Petroleum ether/ethyl acetate = 15/1). 'H NMR (400 MHz, CDCl;) &
7.83 (d,J=3.7 Hz, 1H), 7.76 (dd, 1H), 7.70 — 7.66 (m, 2H), 7.47 — 7.41 (m, 4H), 6.73
(d, J = 3.8 Hz, 1H), 3.93 (s, 2H). BC{'H} NMR (100 MHz, CDCl;) § 168.0, 135.9,
132.7, 132.1, 130.3, 130.1, 128.9, 128.5, 128.0, 126.3, 126.2, 123.9, 123.5, 121.3,
109.0, 45.5. HRMS (ESI) m/z: [M+H]" Caled for C;sH{,NO, 234.0913; found,
234.0926.

Procedure for Synthesis of (E)-Methyl
1-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-0x0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]in
dole-5-carboxylate (6a): Under argon atmosphere, 4a (0.3 mmol), ethyl acrylate

(0.36 mmol, 1.2 equiv.), Pd(OAc), (3.4 mg, 0.015 mmol, 5 mol%), AgOAc (100 mg,
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0.6 mmol, 2 equiv.), and acetone (2 mL) were placed in a 25 mL seal tube. The
reaction solution was degassed twice and refilled with Ar. The mixture was heated in
an oil bath at 80 °C for 24 h and then cooled to room temperature. The crude reaction
mixture was diluted with EtOAc to 5 mL, filtered through a celite pad, and then
washed with 10 mL EtOAc. The volatiles were removed under reduced pressure, and
the residue was subjected to silica gel column chromatography [eluting with
petroleum ether/ethyl acetate = 4/1] to afford (E)-methyl
1-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-ox0-4,5-dihydrobenzo[4,5]azepino[3,2,1-Ai]indol
e-5-carboxylate 6a (93.46 mg, 0.24 mmol ) in 80% yield.

(E)-1-(3-Ethoxy-3-oxoprop-1-en-1-yl)-4-oxo0-4,5-dihydrobenzo[4,5]azepino| 3,2,
1-hi]indole-5-carboxylate (6a): 94 mg (80%); white oil; Purification (Petroleum
ether/ethyl acetate = 4/1). '"H NMR (400 MHz, CDCl;) & 8.12 (s, 1H), 7.92 (dd, J =
7.9, 0.9 Hz, 1H), 7.85 (dd, J=16.2 Hz, 1H), 7.78 (d, J= 7.7 Hz, 1H), 7.72 (d, J= 7.4
Hz, 1H), 7.56 — 7.47 (m, 4H), 6.60 (d, J = 16.2 Hz, 1H), 5.09 (s, 1H), 4.30 (q, J = 7.1
Hz, 2H), 3.26 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). BC{'H} NMR (100 MHz, CDCl;) §
167.0, 164.6, 135.4, 135.3, 132.5, 131.6, 129.8, 129.3, 129.2, 129.2, 128.9, 128.9,
126.0, 124.9, 124.5, 120.8, 119.1, 118.9, 61.8, 60.6, 52.8, 14.3. HRMS (ESI) m/z:
[M+Na]* Calcd for C,3H19NOsNa, 412.1155; found, 412.1148.

Gram-Scale Experiment of 4a: Under argon atmosphere, 7-phenyl-1H-indoles
la (6 mmol), dimethyl 2-diazomalonate 2a (9 mmol, 1.5 equiv.), [Cp*RhCL;], (94
mg, 0.15 mmol, 2.5 mol%), AgOAc (150 mg, 0.9 mmol, 15 mol%), DBU (270 uL,

1.8 mmol, 30 mmol%) and EtOAc (35 mL) were placed in a 100 mL seal tube. The
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mixture was heated in oil bath at 60 °C for 24 h and then cooled to room temperature.
The crude reaction mixture was diluted with EtOAc to 50 mL, filtered through a celite
pad, and then washed with 20 mL EtOAc. The volatiles were removed under reduced
pressure, and the residue was subjected to silica gel column chromatography [eluting
with petroleum ether/ethyl acetate] to afford the corresponding product 4a (1.55 g,
89% yield).
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