KI-VO(acac)₂-H₂O₂-AcOH, A New Iodinating System for Selective Iodination at C-5 Position of Activated Pyrimidinediones: A Combined Experimental and Density Functional Study

Lakhinath Saikia, Dhrubajyoti Talukdar, Ramesh C. Deka, and Ashim J. Thakur*

Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784 028, Assam, India *E-mail: ashim@tezu.ernet.in Received August 25, 2011 DOI 10.1002/jhet.1575 Published online 00 Month 2013 in Wiley Online Library (wileyonlinelibrary.com).

 $KI-VO(acac)_2-H_2O_2$ in aqueous ethanolic medium with acetic acid as additive has been found to iodinate pyrimidinediones and aromatic amines. The methodology is mild, efficient, and environmentally benign. Density functional theory-based reactivity parameters support the experimentally observed reactivity of pyrimidinedione derivatives.

J. Heterocyclic Chem., 00, 00 (2013).

INTRODUCTION

The halogenation reaction has been getting much attention as the halogenated species are very useful in the preparation of organometallic compounds, metal-catalyzed cross coupling, and C-C and/or C-N bond-forming reactions [1]. Halogenation of pyrimidines is particularly important because of the potent activity of 5-halogenated pyrimidines as anticancer and antiviral agents [2] as well as their usefulness as intermediates for further synthetic manipulation [3]. However, halogenation reactions are associated with environmental hazards with respect to transport, handling, and storage [4]. So, efforts are on to minimize the hazards as well as the risk by replacing the halogens with halide salts as the later are comparatively safer commodities and can be oxidized to the corresponding positive halogen/hypohalous acids. Among the halogenation reactions, iodination is somewhat difficult because of the poor electrophilic nature of iodine compared with that of molecular bromine or chlorine and requires an oxidizing agent in to produce electrophilic I⁺ species. Among various oxidizing agents, hydrogen peroxide is considered to be the most preferable one because of its strong oxidizing ability and environment-friendly nature [5]. Iodination using hydrogen peroxide [6] or other oxidizing agents [7] to generate I^+ in situ is reported. Iodination of pyrimidines bears additional importance as the iodinated species are excellent precursors for radical reactions. Only few reports [8] described iodination of pyrimidine ring as compared with aromatic counterpart. To the best our knowledge, there has not been found any generalized procedure for iodination of pyrimidines. However, reports are available, which are limited to some selective pyrimidines only. That is why the search for an effective and generalized novel methodology for iodination is still relevant.

Meanwhile, peroxo complexes of vanadium, molybdenum, and tungsten have established their role as excellent oxidant *in situ* [9], especially in bromination reactions of organic compounds [10].

RESULTS AND DISCUSSION

Continuing our interest in the synthesis of pyrimidine derivative [11] and iodine-mediated reactions [11], herein, we want to divulge that KI-VO($(acac)_2$ -H₂O₂ is an effective reagent protocol for mono-iodination of activated pyrimidinediones **1** at C-5 (Scheme 1)

Entry	Substrate	Product	Time	Yield (%) ^a
1	N NH2 1a	N N NH2 2a	10 min	98 [8a]
2	of N 1b	of North	6 h	23
3		_	6 h	b
4	N Id	N N N 2d	20 min	94 [8d]
5	of N 1e		15 min	96 [12]
6			35 min	93
7			32 min	94
8		and the second s	40 min	92
9	of N H ^{NH2} 1i		10 min	95
10	NH 1j	or NH 2j	15 min	90
11			30 min	92

 Table 1

 Iodination of pyrimidinediones 1a-p according to Scheme 1.

(Continued)

(Continued)							
Entry	Substrate	Product	Time	Yield (%) ^a			
12			35 min	88			
13			30 min	89			
14			25 min	92			
15			25 min	90			
16	r r lp		25 min	92			

Table 1.

^aIsolated yield.

^bNo product found.

position selectively. A small amount of acetic acid as additive promotes the reaction. Here, potassium iodide is the iodine source, and hydrogen peroxide is the oxidant. DFT-based reactivity parameters were derived for some selected pyrimidines to support the experimentally observed reactivity.

The methodology is based on the activation of dioxygen by *in situ* generated peroxocomplex that oxidizes I^- to I^+ in acidic medium. As a test experiment, we examined the iodination reaction with pyrimidinedione **1a** (Table 1), and to our delight, we found complete conversion to provide the product **2a** in 98% isolated yield within 10 min. The amino group was found to be compatible.

To examine the regioselectivity of our methodology, we have applied the same procedure on pyrimidinediones 1d,f,k, and it has been found that our iodination protocol is exclusively regioselective at C-5 position. Encouraged by this result, we extended the reaction to other differently substituted at 6-position of pyrimidinediones, which were urgently required as precursors in one of our ongoing projects on intramolecular radical cyclisation reaction. The results are summarized in Table 1 (entries 1-16).

From Table 1, it is evident that our methodology is very selective for mono-iodination at C-5 position of pyrimidinedione ring irrespective of the presence of double bond in the side chain or aromatic ring in the substrate. Dissolution of vanadyl acetylacetonate in hydrogen peroxide makes the system acidic, and so, the reaction can also be conducted without using extra acid; however, conversion to product is rather slow and low yielding. In Table 2, we have made a comparison between the methodologies with and without using acetic acid as an additive with different catalyst loading. Table 2 clearly reveals that acetic acid promotes the catalytic activity of peroxovanadium complex formed in situ. Various conditions were examined and concluded that 1:0.05:1.2:5:0.5 (substrate: vanadyl acetylacetonate: potassium iodide: hydrogen peroxide: acetic acid) stoichiometry was the optimal. Notably, increase in potassium iodide amount did not lead to any loss in regioselectivity of the product. However, use of mineral acids such as hydrochloric acid, sulphuric acid, etc.

		Without additive ^{a,b}		With additive ^{a,c}		
Entry	Substrate	Time (catalyst %)	Yield (%)	Time (catalyst %)	Yield (%)	
1	0	2.5 h (5)	87	_	_	
		30 min (10)	92	_	_	
		30 min (15)	92	10 min (5)	98	
	$\sim 1^{1}$ $\sim 1a$	30 min (20)	94	_	_	
2	0	4 h (5)	56	_	_	
		2 h (10)	62	_		
	I.L.	2 h (15)	64	20 min (5)	94	
	o ^r N N ^r N 1d	2 h (15)	65		—	
3	0	6 h (5)	48	_	_	
		4.5 h (10)	50	_	_	
		4.5 h (15)	52	35 min (5)	93	
	^o ^N ^N 1f	4.5 h (20)	52		—	
4	<u>^</u>	4 h (5)	40	_		
	LI LI	4 h (10)	52	_		
	Ň J J	4 h (15)	54	_		
		4 h (20)	55	30 min (5)	92	

 Table 2

 Comparision of the iodination methodology (Scheme 1) using and without using the additive (AcOH).

^aCatalyst % was in comparison with substrate.

^bSubstrate to H_2O_2 ratio was taken as 1:10.

^cSubstrate to H_2O_2 ratio was taken as 1:5.

affects the selectivity, leading to more than one product. In a controlled experiment, no product formation was noticed in the absence of vanadyl acetylacetonate, thereby confirming the importance of it.

From Table 1, it can easily be seen that the presence of the group at C-6 position that can activate the C-5 position (electron rich) via +M, +I, or conjugation facilitates the reaction, whereas the case is found to be reversed when the groups at C-6 deactivate the C-5 position. The point that C-5 position is the activated one is clear from our recent work [11]. When the group at C-6 position is electron-withdrawing, for example, -Cl (**1c**, Table 1), it deactivates the C-5 position by its strong -I effect and so gives negative result toward the iodination reaction. In entries 1 and 4–16 (Table 1), the C-5 position is activated because of the presence of enaminone moiety involving C-6 position.

The same protocol was applied for iodination of aromatic amines **3**, and the results are summarized in Table 3. Table 3 reflects that the activated amine **3b** undergoes iodination more easily than the nonactivated **3a** or deactivated amines **3c** and **3d**. 4-Nitroaniline **3e** is found to be inert to the reaction condition as obvious. Diphenyl amine **3f** also shows tolerance to the reaction condition. The iodination generally occurs at the *para* position where available otherwise, results its *ortho* isomer. The protocol is found to be less effective for phenol resulting only 42% yield after overnight

reaction, whereas attempts for iodination of benzamide, *N*-phenylbenzamide, and benzoic acid failed.

We propose that the active catalyst that actually takes part is the *in situ* generated peroxovanadium complex that oxidizes I^- to I^+ . Activated pyrimidinediones have nucleophilic C-5 position that reacts with the active species, I^+ , to give the iodinated products. The formation of peroxovanadium complexes is an exothermic process, hence needs to be carried out at low temperature. To maintain the homogeneity of the solution, potassium iodide was made soluble in water, whereas the organic substrates were taken in ethanol.

From Table 1, it is seen that **1a** is the most reactive, and the barbituric acid 1b is the least reactive compound. Therefore, we performed DFT calculations on these two molecules. The reactivity of the molecules was derived by calculating local reactivity descriptors, the Fukui functions (f(r)) [17], which have attracted considerable interests to describe the relative reactivity and site selectivity in chemical reactions. It is seen that the C-5 carbon is the more reactive one in 1a than 1b as indicated by respective f^- values (0.077 and 0.037, respectively) (Table 4). Hence, an incoming electrophile can easily attack the C-5 position in **1a**. The reactivity of these two molecules can also be compared from the relative electrophilicity values [18] (f^{-}/f^{+}) of C-5 atoms which are 1.974 and 1.135 for **1a** and **1b**, respectively, which also supports the experimentally observed results.

	Ar NH	I-VO $(acac)_2/H_2O_2/AcOH$	nated product	
	3	H ₂ O/EtOH	4	
Entry	Substrate	Product	Time (h)	Yield (%) ^a
1	NH ₂ 3a	NH2 4a	2	92 [13]
2	NH ₂ 3b	NH ₂ 4b	1.5	96 [14]
3	ci NH ₂ 3c	ci NH ₂ 4c	2.5	92 [14]
4	HOOC NH ₂ 3d	HOOC HO	3	91 [15]
5	o ₂ N 3e	_	12	_
6		_	12	_
7	N 3g	4g	2	96 [16]

Table 3 Indination of aromatic amines 3

^aIsolated yield.

CONCLUSIONS

In conclusion, we have developed a very simple, selective, mild, environment-friendly, and effective method for mono-iodination of activated pyrimidinediones using KI-VO(acac)₂-H₂O₂-AcOH. The methodology is also equally useful for iodination of amines. Vanadyl acetylacetonate can be easily prepared [10], whereas potassium iodide and hydrogen peroxide are easily available and hence cost effective.

The Fukui function and relative electrophilicity values are in good agreement with the experimentally observed highest reactivity of 1a and least reactivity of 1b.

EXPERIMENTAL

Ethanol required to dissolve the organic starting materials was distilled prior to use. Ethyl acetate and hexane for column chromatography were distilled before use. Strength of hydrogen peroxide was determined freshly by titration method prior to experiment. Melting points were determined on a Büchi 504 apparatus (Flawil, Switzerland). IR spectra were recorded in potassium bromide pallets on a Nicolet (Impact 410) FTIR spectrophotometer (Wisconsin, USA). ¹H and ¹³C NMR spectra were recorded on a JNM ECS 400 MHz (JEOL) (Tokyo, Japan) NMR spectrophotometer with tetramethylsilane as the internal standard. All the chemicals were used as received without further purification. Mass spectra were recorded on a Waters Q-TOF Premier & Aquity UPLC spectrometer (Connecticut, USA). Reaction progress was monitored by TLC using Merck silica gel 60F254 (0.25 mm) (Mumbai, India) with detection by UV or iodine. Elemental analyses were carried out on a PerkinElmer 2400 (Massachusetts, USA) automatic carbon, hydrogen, nitrogen, and sulfur analyser. Column chromatography was performed on Silica (60-120 mesh).

Typical procedure for iodination. Vanadyl acetylacetonate (0.05 mmol) was added to an ice-cooled solution of 30% hydrogen peroxide (5 mmol). The solution became light green colored because of formation of peroxovanadium complex. Acetic acid (0.5 mmol) was added dropwise to the solution. A solution of potassium iodide (1.1 mmol) in 2 mL of water was added to the cooled solution followed by the substrate (1 mmol) in 2 mL of Fukui functions and relative nucleophilicity values calculated using Mulliken population scheme for each atom of barbituric acid 1b and 6-aminouracil 1a.

barbituric acid **1b** Barbituric acid **1b**

6-aminouracil 1a

Atom number	f+	f–	f—/f+	Atom number	f+	f–	f−/f+
N(1)	0.032	0.025	1.280	N(1)	0.02	0.035	0.571
C(2)	0.036	0.095	0.379	C(2)	0.028	0.029	0.966
N(3)	0.032	0.025	1.280	N(3)	0.048	0.035	1.371
C(4)	0.052	0.082	0.634	C(4)	0.063	0.13	0.485
C(5)	0.042	0.037	1.135	C(5)	0.152	0.077	1.974
O(6)	0.188	0.117	1.607	O(6)	0.152	0.124	1.226
C(7)	0.023	0.020	1.150	O(7)	0.093	0.073	1.274
O(8)	0.125	0.129	0.969	N(8)	0.078	0.078	1.000
C(9)	0.022	0.020	1.100	C(9)	0.021	0.024	0.875
O(10)	0.191	0.117	1.632	C(10)	0.024	0.022	1.091
H(11)	0.033	0.063	0.524	H(11)	0.034	0.042	0.810
H(12)	0.032	0.053	0.604	H(12)	0.039	0.05	0.780
H(13)	0.024	0.021	1.143	H(13)	0.024	0.029	0.828
H(14)	0.025	0.024	1.042	H(14)	0.019	0.02	0.950
H(15)	0.022	0.022	1.000	H(15)	0.023	0.026	0.885
H(16)	0.023	0.023	1.000	H(16)	0.026	0.024	1.083
H(17)	0.024	0.024	1.000	H(17)	0.023	0.024	0.958
H(18)	0.023	0.020	1.150	H(18)	0.027	0.025	1.080
C(19)	0.051	0.083	0.614	H(19)	0.055	0.044	1.250
- \ - /				C(20)	0.049	0.092	0.533

ethanol. Then, the reaction mixture was allowed to stir at RT for the required period of time. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was treated with sodium thiosulphate solution and extracted with ethyl acetate. The organic layer was dried over sodium sulfate, and finally, column chromatography was performed to afford the pure product.

Synthetic procedure for the compounds 1a-p. Compounds 1a,¹⁹ 1b,²⁰ 1c,i,j,²¹ 1d (using DMF–DMA), 1e (using DMA–DMA),²² 1f–h, and 1k–p²³ are synthesized as per literature procedures.

Spectral and physical data of selected compounds

5-Iodo-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (2b). Sticky solid; MS: m/z [M]⁺ Calcd for C₆H₇IN₂O₃: 281.95; found 281.90. IR: 1710, 1640 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 3.20 (s, 3H, CH₃), 3.43 (s, 3H, CH₃); ¹³C NMR (100 MHz, deuteriochloroform): δ 31.34, 34.97, 45.01, 152.09, 159.21, 165.21. *Anal.* Calcd for C₆H₇IN₂O₃: C, 25.55; H, 2.50; N, 9.93. Found: C, 25.58; H, 2.57; N, 9.96.

5-Iodo-1,3-dimethyl-6-(phenylamino)pyrimidine-2,4(1H,3H)dione (2f). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₂H₁₂IN₃O₂: 357.15; found 357.22. IR: 3464, 3300, 2926, 2376, 2279, 1701, 1633, 1538, 1458 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 3.23 (s, 3H, CH₃), 3.45 (s, 3H, CH₃), 6.21 (b, s, 1H, NH), 6.91–7.38 (m, 5H, Ph); ¹³C NMR (100 MHz, deuteriochloroform): δ 31.39, 35.17, 61.21, 119.01, 120.07, 124.97, 129.54, 130.07, 139.93, 151.18, 152.15, 160.22. Anal. Calcd for $C_{12}H_{12}IN_3O_2$: C, 40.36; H, 3.39; N, 11.77. Found: C, 40.38; H, 3.37; N, 11.78.

5-Iodo-1,3-dimethyl-6-(4-iodo-phenylamino)pyrimidine-2,4 (*IH,3H*)-*dione* (2g). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₃H₁₄IN₃O₂: 371.01; found 371.2. IR: 3460, 3297, 2922, 2371, 2280, 1706, 1636, 1450 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): $\delta = 1.45$ (s, 3H, CH₃), 3.25 (s, 3H, CH₃), 3.40 (s, 3H, CH₃), 6.31 (b, s, 1H, NH), 6.37–7.02 (m, 4H, Ph); ¹³C NMR (100 MHz, deuteriochloroform): δ 24.56, 31.46, 35.47, 61.18, 117.19, 121.10, 124.87, 129.34, 129.97, 140.03, 151.69, 152.32, 160.10. *Anal.* Calcd for C₁₃H₁₄IN₃O₂: C, 42.07; H, 3.80; N, 11.32. Found: C, 42.04; H, 3.84; N, 11.38.

5-Iodo-1,3-dimethyl-6-(4-chloro-phenylamino)pyrimidine-2,4(1H,3H)-dione (2h). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₂H₁₁ClIN₃O₂: 390.96; found 390.98. IR: 3470, 3311, 2920, 2380, 2290, 1715, 1639, 1542, 1450 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ =3.34 (s, 3H, CH₃), 3.51 (s, 3H, CH₃), 6.03 (b, s, 1H, NH), 6.41–7.89 (m, 4H, Ph); ¹³C NMR (100 MHz, deuteriochloroform): δ 31.32, 35.19, 61.42, 118.97, 120.12, 125.02, 129.32, 130.00, 140.01, 151.21, 152.19, 160.00. *Anal.* Calcd for C₁₂H₁₁ClIN₃O₂: C, 36.81; H, 2.83; N, 10.73. Found: C, 36.84; H, 2.87; N, 10.77. **5-Iodo-1,3-dimethyl-6-(hydrazino)pyrimidine-2,4(1H,3H)-dione** (**2i**). Sticky solid; MS: *m*/z [M]⁺ Calcd for C₉H₉IN₄O₂: 295.98; found 296.02. IR: 3452, 3302, 2928, 2385, 2278, 1706, 1626, 1548, 1447 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 3.07 (s, 3H, CH₃), 3.15 (s, 3H, CH₃), 3.43 (b, s, 2H, NH₂), 4.33 (b, s, 1H, NH); ¹³C NMR (100 MHz, deuteriodimethylsulphoxide): δ 27.32, 29.80, 52.21, 152.10, 156.90, 162.2. *Anal.* Calcd for C₉H₉IN₄O₂: C, 24.34; H, 3.06; N, 18.92. Found: C, 24.38; H, 3.07; N, 19.98.

6-(2-Phenylhydrazinyl)-5-iodo-1,3-dimethylpyrimidine-2,4 (1H,3H)-dione (2j). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₂H₁₃IN₄O₂: 372.16; found 372.10. IR: 3419, 3371, 3037, 2957, 1672, 1618, 1532, 1431 cm⁻¹ ¹H NMR (400 MHz, deuteriochloroform): δ =1.24 (b, s, 1H, NH), 3.48 (s, 3H, CH₃), 3.64 (s, 3H, CH₃), 6.9–7.5 (m, 5H, Ph), 8.24 (b, s, 1H, NH). ¹³C NMR (100 MHz, deuteriochloroform): δ 27.68, 30.75, 55.24, 111.24, 119.57, 121.97, 122.44, 123.91, 134.75, 145.07, 151.58, 159.07. Anal. Calcd for C₁₂H₁₃IN₄O₂: C, 38.73; H, 3.52; N, 15.05. Found: C, 38.75; H, 3.50; N, 15.03.

6-(*Benzylamino*)-5-*iodo*-1,3-*dimethylpyrimidine*-2,4(1H,3H)*dione* (2k). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₃H₁₄IN₃O₂: 371.17; found 371.15. IR: 3421, 3389, 3112, 2987, 1682, 1650, 1557, 1442 cm⁻¹ ⁻¹H NMR (400 MHz, deuteriochloroform): δ = 3.23 (s, 3H, CH₃), 3.45 (s, 3H, CH₃), 4.13 (s, 2H, CH₂), 4.73 (b, s, 1H, NH), 6.91–7.38 (m, 5H, Ph). ¹³C NMR (100 MHz, deuteriochloroform): δ 27.87, 28.79, 47.40, 127.63, 128.36, 129.15, 136.02, 151.94, 152.88, 163.07. *Anal.* Calcd for C₁₃H₁₄IN₃O₂: C, 42.07; H, 3.80; N, 11.32. Found: C, 42.05; H, 3.82; N, 11.35.

6-(4-Chlorobenzylamino)-5-iodo-1,3-dimethylpyrimidine-2,4 (**1H,3H)-dione** (**2l**). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₃H₁₃ClN₃O₂: 404.97; found 404.99. IR: 3460, 3307, 2930, 2372, 2279, 1710, 1635, 1541, 1452 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): $\delta = 3.33$ (s, 3H, CH₃), 3.41 (s, 3H, CH₃), 4.16 (s, 2H, CH₂), 4.70 (b, s, 1H, NH), 6.88–7.41 (m, 4H, Ph). ¹³C NMR (100 MHz, deuteriochloroform): δ 27.72, 28.81, 47.37, 127.56, 128.30, 129.22, 136.10, 151.88, 152.93, 167.12. *Anal.* Calcd for C₁₃H₁₃ClN₃O₂: C, 38.49; H, 3.23; N, 10.36. Found: C, 38.45; H, 3.21; N, 10.32.

6-(4-Methylbenzylamino)-5-iodo-1,3-dimethylpyrimidine-2,4 (1H,3H)-dione (2m). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₄H₁₆IN₃O₂: 385.03; found 385.03. IR: 3421, 3389, 3112, 2987, 1682, 1650, 1557, 1442 cm⁻¹ ⁻¹ ⁻H NMR (400 MHz, deuteriochloroform): $\delta = 1.35$ (s, 3H, CH₃), 3.28 (s, 3H, CH₃), 3.39 (s, 3H, CH₃), 4.68 (b, s, 1H, NH), 6.86–7.42 (m, 4H, Ph). ¹³C NMR (100 MHz, deuteriochloroform): $\delta = 7.69$, 28.84, 47.64, 127.71, 128.31, 129.23, 136.10, 152.01, 153.10, 158.11. Anal. Calcd for C₁₄H₁₆IN₃O₂: C, 43.65; H, 4.19; N, 10.91. Found: C, 43.62; H, 4.17; N, 10.95.

6-(*N*-Benzyl-*N*-methylamino)-5-iodo-1,3-dimethylpyrimidine-2,4 (1H,3H)-dione (2n). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₃H₁₄IN₃O₂: 385.03; found 385.06. IR: 3425, 3388, 3118, 2989, 1685, 1653, 1559, 1444 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 2.86 (s, 3H, CH₃), 3.25 (s, 3H, CH₃), 3.48 (s, 3H, CH₃), 4.11 (s, 2H, CH₂), 6.871–7.40 (m, 5H, Ph). ¹³C NMR (100 MHz, deuteriochloroform): δ 27.06, 27.76, 28.58, 46.98, 128.63, 128.976, 129.07, 136.29, 152.04, 152.56, 163.11. Anal. Calcd for C₁₄H₁₆IN₃O₂: C, 43.65; H, 4.19; N, 10.91. Found: C, 43.61; H, 4.22; N, 10.95.

6-(*N*-(4-Chlorobenzyl)-*N*-methylamino)-5-iodo-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (20). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₄H₁₅CIIN₃O₂: 418.99; found 419.01. IR: 3460, 3309, 2931, 2372, 2279, 1706, 1635, 1532, 1454 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 3.16 (s, 3H, CH₃), 3.25 (s, 3H, CH₃), 3.36 (s, 3H, CH₃), 6.96–7.45 (m, 4H, Ph); ¹³C NMR (100 MHz, deuteriochloroform): δ 31.45, 32.34, 34.74, 61.42, 119.14, 120.17, 125.03, 129.57, 129.11, 140.05, 151.10, 152.09, 164.05. *Anal.* Calcd for C₁₄H₁₅CIIN₃O₂: C, 40.07; H, 3.60; N, 10.01. Found: C, 40.08; H, 3.56; N, 10.04.

6-(*N*-(4-Methylbenzyl)-*N*-methylamino)-5-iodo-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (2p). Sticky solid; MS: m/z [M]⁺ Calcd for C₁₅H₁₈IN₃O₂: 399.04; found 399.09. IR: 3457, 3304, 2930, 2382, 2279, 1718, 1642, 1546, 1468 cm⁻¹. ¹H NMR (400 MHz, deuteriochloroform): δ = 1.96 (s, 3H, CH₃), 3.10 (s, 3H, CH₃), 3.35 (s, 3H, CH₃), 3.49 (s, 3H, CH₃), 6.99–7.50 (m, 4H, Ph); ¹³C NMR (100 MHz, deuteriochloroform): δ 24.35, 31.47, 32.89, 34.93, 60.89, 119.25, 120.10, 125.04, 129.29, 130.00, 140.02, 151.12, 152.19, 159.78. Anal. Calcd for C₁₅H₁₈IN₃O₂: C, 45.13; H, 4.54; N, 10.53. Found: C, 45.09; H, 4.50; N, 10.55.

Computational details. All the density functional calculations were carried out using the DMol³ program (California, USA) [24]. The selected molecules were subjected to full geometry optimization using double numerical with polarization basis set [25] in combination with three generalized gradient approximation exchange-correlation functionals BLYP. The double numerical with polarization basis is comparable with Gaussian $6-31G^{**}$ basis set. We calculated local reactivity descriptors such as Fukui functions and relative nucleophilicity values of each atom using Mulliken population scheme, details of which are discussed elsewhere [26,27].

The condensed Fukui functions (FF) are calculated as follows:

$$f_k^+ = \frac{1}{\Delta N} [q_k(N_0 + \Delta N) - q_k(N_0)] \text{(for nucleophilic attack)}$$

$$f_k^- = \frac{1}{\Delta N} [q_k(N_0) - q_k(N_0 - \Delta N)] \text{(for electrophilic attack)}$$

where q_k is the electronic population of atom k in a molecule. In conventional FF computations, a value of 1.0 is used for ΔN . In this case, calculations on the cationic and anionic species are required. In the present study, we have used a value of 0.1 for ΔN .

The stationary points are characterized by calculating vibrational frequencies for all the molecules. No imaginary vibrational frequency was found for any of the compound. Absence of imaginary frequency indicates that the optimized compounds are at their local or global minimum energy states.

Acknowledgments. This work was financially supported by Council of Scientific and Industrial Research (CSIR) (grant no. 01(2147)/07/EMR-II), New Delhi, India. DT is thankful to Tezpur University for an institutional fellowship. Authors are also highly thankful to Prof. Mihir K. Chaudhuri, FNA, and Vice Chancellor, Tezpur University for helpful discussions and suggestions.

REFERENCES AND NOTES

[1] (a) Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457; (b) Suzuki, A. Metal Catalysed Cross–Coupling Reactions, Diederich, F.; Stang, P. J.,eds.; Wiley-VCH: Weinheim, Germany, 1988.

[2] (a) Roy-Burman, P. Analogues of Nucleic Acid Components, Springer-Verlag: New York, 1970; (b) Lin, T. S.; Chen, M. S.; Mclaren, C.; Gao, Y. S.; Ghazzouli, I.; Prusoff, W. H. J Med Chem 1987, 30, 440. [3] (a) Bradshaw, T. K.; Hutchinson, D. W. Chem Soc Rev 1977, 6, 43; (b) Robins, M. J. P.; Barr, J. J Org Chem 1854, 48, 1083.

[4] Clark, J. H.; Ross, J. C.; Macquarrie, D. J.; Barlow, S. J.; Bastock, T. W. Chem Commun 1997, 13, 1203.

[5] (a) Jones, C. W. Applications of Hydrogen Peroxide and Derivatives, "RSC Clean Technology Monographs", Clark, J. H.,ed.; The Royal Society of Chemistry: Cambridge, UK, 1999; (b) Shi, F.; Tse, M. K.; Pohl, M. M.; Brückner, A.; Zhang, S.; Beller, M. Angew Chem Int Ed Engl 2007, 46, 8866; (c) Waldemar, A. Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer, Wiley-VCH: Weinheim, 2005.

[6] (a) Higgs, D. E.; Nelen, M. I.; Detty, M. R. Org Lett 2001, 3, 349; (b) Firouzabadi, V.; Iranpoor, N.; Kazemi, S.; Ghaderi, A.; Garzan, A. Adv Synth Catal 2009, 351, 1925; (c) Podgoršek, A.; Zupan, M.; Iskra, J. Angew Chem Int Ed Engl 2009, 48, 8424; (d) Iskra, J.; Stavber, S.; Zupan, M. Synthesis 2004, 11, 1869.

[7] (a) Das, B.; Krishnaiah, M.; Venkateswarlu, K.; Reddy, V. S. Tetrahedron Lett 2007, 48, 81; (b) Neumann, R.; Branytska, O. V. J Org Chem 2003, 68, 9510; (c) Khalilzadeh, M. A.; Hosseini, A.; Shokrollahzadeh, M.; Halvagar, M. R.; Ahmadi, D.; Mohannazadehb, F.; Tajbakhsha, M. Tetrahedron Lett 2006, 47, 3525; (d) Olah, G. A.; Wang, Q.; Sandford, G.; Prakash, G. K. S. J Org Chem 1993, 58, 3194; (e) Krassowska-Swiebocka, B.; Prokopienko, G.; Skulski, L. Molecules 2005, 10, 394.

[8] (a) Papoutsis, I.; Spyroudis, S.; Varvoglis, V. Tetrahedron Lett
1997, 38, 8401; (b) Kumar, R.; Wiebe, L. I.; Knaus, V. Can J Chem
1994, 72, 2005; (c) Hwang, V.; Park, J. S.; Won, J. H.; Kim, J. N.; Ryu,
E. K. Arch Pharm Res 1992, 15, 69; (d) Rho, K. Y.; Kim, J. H.; Kim, S.
H.; Yoon, C. M. Heterocycl 1998, 48, 2521; (e) Kozlowski, E. S.; Johnson,
G.; Dischino, D. D.; Dworetzky, S. I.; Boissard, C. G.; Gribkoff, V. K. Int J
Pep Protein Res 1996, 48, 194; (f) Irani, R. J.; SantaLucia Jr, J. Tetrahedron
Lett 1999, 40, 8961; (g) Tropp, J.; Sigler, P. B. Biochem 1979, 18, 5489.

[9] (a) Butler, A.; Clague, M. J.; Meister, G. E. Chem Rev 1994, 625;
(b) Conte, V.; Moro, S. J Phys Org Chem 1996, 9, 329; (c) Bortolini, O.; Conte, V. J Inorg Biochem 2005, 99, 1549; (d) Maurya, M. R.; Kumar, A.;

Ebel, M.; Rehder, V. Inorg Chem 2006, 45, 5924; (e) Maurya, M. R.; Agarwal, S.; Bader, C.; Ebel, M.; Rehder, V. Dalton Trans 2005, 537.

[10] (a) Rothenberg, G.; Clark, J. H. Org Proc Res Develop 2004, 4, 270; (b) Rothenberg, G.; Clark, J. H. Green Chem 2000, 2, 248; (c) Bora, U.; Chaudhuri, M. K.; Dey, D.; Dhar, S. S. Pure Appl Chem 2001, 73, 93; (d) Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan, A. T.; Patel, B. K. Org Lett 2000, 2, 247.

[11] (a) Das, S.; Thakur, A. J. Eur J Org Chem 2011, 2301; (b) Das, S.; Borah, R.; Devi, R. R.; Thakur, A. J. Synlett 2008, 2741.

[12] Roh, H.; Bae, J. W.; Nam, G. S.; Kim, J. H.; Kim, S. H.; Yoon, C. M. Synth Commun 2000, 30, 81.

[13] Keipour, H.; Khalizadeh, M. A.; Mohtat, B.; Hosseini, A.; Zareyee, D. Chinese Chem Lett 2011, 22, 1427.

[14] Mitra, S. S.; Sreekumar, K. React Funct Polym 1997, 32, 281.

[15] Junne, S. B.; Vibhute, A. Y.; Vibhute, Y. B.; Gurav, V. M. Int

J ChemTech Res 2009, 1, 1005.
 [16] Nara, S. J.; Jha, M.; Brinkhorst, J.; Zemanek, T. J.; Pratt, D. A.
 J Org Chem 2008, 73(23), 9326.

[17] Parr, R. G.; Yang, W. J Am Chem Soc 1984, 106, 4049.

[18] Roy, R. K.; Krishnamurti, S.; Geerlings, P.; Pal, S. J Phys Chem A 1998, 102, 3746.

[19] Papesch, V.; Schroeder, E. F. J Org Chem 1951, 16, 1879.

[20] Molina, P.; Vilaplana, M. J.; Pastor, A. Synthesis 1992, 827.

[21] Taylor, E. C.; Sowinski, F. J Org Chem 1974, 39(7), 907.

[22] Thakur, A. J.; Saikia, P.; Prajapati, D.; Sandhu, J. S. Synlett 2001, 8, 1299.

[23] Majumdar, K. C.; Sinha, B.; Maji, P. K.; Chattopadhyay, S. K. Tetrahedron 2009, 65, 2751.

[24] DMol³, Accelrys, Inc.: San Diego, CA.

[25] Delly, B. J Chem Phys 1990, 92, 508.

[26] Sarmah, P.; Deka, R. C. J Mol Model 2010, 16, 411.

[27] Deka, R. C.; Vetrivel, R.; Pal, S. J Phys Chem 1999, 103, 5978.