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4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols 
with Oxime Acetates toward Pyridine Derivatives
Jun-Long Zhan,† Meng-Wei Wu,† Dian Wei, Bang-Yi Wei, Yu Jiang, Wei Yu, and Bing Han*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 
Lanzhou, 730000, People’s Republic of China

ABSTRACT: A 4-HO-TEMPO-catalyzed redox strategy for the synthesis of pyridines through the annulation of cyclopropanols 
and oxime acetates has been developed. This protocol features good functional group tolerance, high chemoselectivity, and also 
promises to be efficient for the late-stage functionalization of skeletons of drugs and natural products. Mechanism studies indicate 
that the reaction involves the in-situ generated α,β-unsaturated ketones and imines as the key intermediates, which derived from 
cyclopropanols and oxime acetates via a TEMPO/TEMPOH redox cycle, respectively. The pyridine products are formed as a result 
of annulation of enones with imines followed by TEMPO-catalyzed oxidative aromatization by excess oxime acetates. This method 
not only realizes the TEMPO-catalyzed redox reaction, but also broadens the frontiers for TEMPO in catalysis.
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INTRODUCTION
TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl),1 a well-known 
persistent nitroxyl radical, has found extensive applications in 
organic synthesis,2 polymer chemistry,3 biochemistry,4 and 
material science5 in past decades. Due to its 
intermediate valence, TEMPO shows redox properties which 
could be further oxidized to the corresponding oxoammonium 
species TEMPO+ (cycle I) as well as undergoes a 1e−/1H+ 
reduction to hydroxylamine TEMPOH (cycle II) (Scheme 1). 
Consequently, TEMPO and TEMPO+ salts have been widely 
used as oxidants in organic reactions. Recently, more and 
more attention has been paid to the strategy of employing 
TEMPO as a catalyst in the oxidation reaction by using extra 
oxidants2k-u or electrooxidation2v-z to recycle TEMPO. 
However, most of those catalytic reactions rely on the 
oxidative property of TEMPO, the reduction of substrates by 
hydroxylamine TEMPOH has remained largely unappreciated. 
TEMPO-mediated redox reactions, where both TEMPOH and 
TEMPO are active catalysts to react with the substrates, have 
not been reported so far to our knowledge.

N
O

N
O

N
OH

+ e + e, + H+

- e, - H+- e

TEMPO+ TEMPO TEMPOH

redox cycle I redox cycle II

Scheme 1. Redox Cycles of TEMPO.
Pyridine scaffolds have attracted widespread attention 

because they are not only common moieties in natural 
products and drug molecules, but also play important roles in 
functional materials, coordination chemistry and 
organic catalysis.6 So far, various synthetic approaches have 
been developed to access pyridine scaffolds.7 Very recently, 
the [3+3]-type condensation reaction has been proved to be a 
practical strategy for constructing pyridine derivatives.7b,7e-

g,8,10a,10b Among them, oxime esters as the C2N1 synthons as 
well as the internal oxi-dants have been utilized for the 
synthesis of structurally di-verse pyridines skeletons. For 
example, in 2013 and 2017, Yoshikai reported two elegant 

works for the synthesis of polysubstituted pyridines from 
oxime esters and α,β-unsaturated aldehydes/ketimines under 
copper catalysis (Scheme 2a and 2b).8a,b In 2018, Li and co-
workers further investigated the Cu-catalyzed synthesis of 
fluoroalkylated pyridines from oxime acetates and β-CF3-
substituted α,β-unsaturated ketones (Scheme 2c).8c
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Scheme 2. Strategies for Pyridines Synthesis via [3+3] 
Annulation.

Cyclopropanols, due to their intrinsic strain energy and 
ready availability, serves as valuable C3 synthons in organic 
synthesis.9 During the last decades, many efforts have been 
made to synthesize β-functionalized carbonyl compounds from 
cyclopropanols10 via transition-metal mediated oxidative ring-
opening (Scheme 3). For instance, Chiba reported an 
impressive Mn(OAc)3-mediated [3+3] annulation for the 
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synthesis of pyridines using cyclopropanols and vinyl azides 
as the substrates (Scheme 2d).10a,10b The proposed reaction 
mechanism involves the formation of β-keto alkyl radical 
intermediates derived from Mn(OAc)3-mediated oxidative 
radical ring-opening of cyclopropanols, followed by radical 
addition to vinyl azides and annulation. Despite these 
achievements, however, transformations of cyclopropanols 
through new routes, such as the oxidative dehydrogenation to 
α,β-unsaturated ketones, has been rarely reported.11 During the 
course of our research on radical-promoted heterocycle 
synthesis,12 we found that TEMPO can promote the oxidative 
ring-opening of cyclopropanols to give α,β-unsaturated 
ketones, with TEMPO being reduced to TEMPOH. When an 
oxime ester was present in the reaction system, it can be 
reduced by the in situ generated TEMPOH to the 
corresponding imine. The thus formed imines then underwent 
[3+3] annulation with the ,β-unsaturated ketones generated 
in the previous step to afford dihydropyridines which were 
further oxidized to yield pyridine products (Scheme 2e). The 
whole process takes the form of oxidative annulation between 
cyclopropanols and oxime esters. As both TEMPO and its 
reduced form TEMPOH were involved in the process, only a 
catalytic amount of TEMPO is required to guarantee a 
complete conversion. To the best of our knowledge, this work 
represents the first example of the TEMPO-catalyzed redox 
reaction, where both TEMPOH and TEMPO are active 
catalysts. Moreover, although transition metal-mediated ring-
opening of cyclopropanols9a,10 and N-O bond cleavage of 
oxime esters13 have been well studied, realization of these 
reactions under metal-free conditions have been rarely 
reported.14 This reaction also represents the first example of 
TEMPO-promoted radical ring-opening of cyclopropanols as 
well as the first case of TEMPOH-induced N-O bond cleavage 
of oxime esters. As TEMPO is a nontoxic oxidant and readily 
available, this method is expected to find applications in the 
synthesis of pharmaceutically important pyridine compounds. 
Notably, the present method is suitable for the synthesis of 
2,6-disubstituted or 2,3,6-trisubstituted pyridines. These types 
of pyridines are not easily accessible via annulation of 
terminal enones and ketoxime esters.8a-d Herein we report 
these results.
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R

O MLn

R

O
orvia

homoenolates β-keto alkyl radical

Scheme 3. Transition Metal Mediated Ring-Opening 
Transformations of Cyclopropanol Derivatives.

RESULTS AND DISCUSSION
We initiated our investigation by stirring 1-phenylcyclo-

propanol (1a, 0.3 mmol) and acetophenone oxime acetate (2a, 
2.5 equiv) in the presence of 4-HO-TEMPO (20 mol %) in 
toluene under Ar at 120 oC. To our delight, the desired product 
2,6-diphenylpyridine 3a was produced in 29% yield (Table 1, 
entry 1). To enhance the reaction efficiency, other solvents 
such as 1,2-dichloroethane (DCE), 1,4-dioxane, N,N-
dimethylformide (DMF), N,N-dimethylacetamide (DMA) and 
dimethylsulfoxide (DMSO) were investigated (Table 1, entries 
2-6). Among them, DMSO proved to be superior to other 
solvents, and the yield of 3a in DMSO was raised to 78% 
(Table 1, entry 6). To further improve the yield of 3a, oxime 
esters with different electronic properties including pivaloyl 
(Piv), isobutyryl, benzoyl (Bz), 3,5-dinitro-benzoyl (3,5-
dinitro-Bz) were examined (Table 1, entries 7-10). However, 

no better result was obtained. In addition, the loading amount 
of catalyst was also explored. When the amount of 4-HO-
TEMPO was increased to 30 mol %, there is no significant 
improvement on the yield of 3a. When the amount of 4-HO-
TEMPO was decreased to 10 mol %, on the other hand, a 
slight decreasing in yield was observed (Table 1, entries 11 
and 12). No reaction took place in the absence of 4-HO-
TEMPO (Table 1, entry 13). When the protocol was 
performed under air, the reaction was obviously suppressed 
(Table 1, entry 14). TEMPO could also catalyze this reaction 
to give the desired 3a in comparable yield (Table 1, entry 15). 
However, 4-HO-TEMPO was a better option considering its 
low volatility and easy separability.

Table 1. Optimization of the Reaction Conditionsa

PhHO Ph

NOR 4-HO-TEMPO (x mol %)

solvent, Ar, 120 oC, 36 h NPh Ph
1a 2 (2.5 equiv) 3a

entry R 4-HO-TEMPO 
(x mol %)

solvent yield 

(%)b

1 Ac 20 toluene 29
2 Ac 20 DCE 42
3 Ac 20 1,4-dioxane 53
4 Ac 20 DMF 73
5 Ac 20 DMA 43
6 Ac 20 DMSO 78
7 Piv 20 DMSO 74
8 isobutyryl 20 DMSO 75
9 Bz 20 DMSO 50
10 3,5-dinitro-Bz 20 DMSO 43
11 Ac 30 DMSO 79
12 Ac 10 DMSO 70
13 Ac 0 DMSO 0
14c Ac 20 DMSO ＜10
15d Ac 20 DMSO 78

aAll reactions were carried out by stirring 1a (0.3 mmol), 2a (2.5 
equiv) and 4-HO-TEMPO (x mol %) in solvent (1.5 mL) for 36 h 
under Ar unless noted otherwise. bYield of isolated product. 
cReaction was carried out under air. dTEMPO (20 mol %) was 
used instead of 4-HO-TEMPO.

With the optimal conditions established, the synthetic scope 
of this reaction was investigated next. Variation on oxime 
acetates was first tested, and the results were summarized in 
Scheme 4. It can be seen that para-substituted acetophenone 
oxime acetates with a wide variety of electronic properties 
reacted very well with 1a under the indicated conditions to 
give the desired pyridines 3a-k in good to excellent yields, 
exhibiting good tolerance of functional groups such as fluoro, 
chloro, bromo, iodo, trifluoromethyl, nitro, and ether. When 
m-Me and o-Me substituted counterparts were used, the 
annulation products 3l and 3m were obtained in 73% and 35% 
yields, respectively, indicating an obvious steric effect. 3,4- 
Disubstituted aceto-phenone oxime acetate was also converted 
to the expected product 3n in 62% yield. In addition, 1-
naphthyl and 2-thienyl incorporated oxime acetates 
participated well in the reaction and gave the desired pyridines 
3o and 3p in good yields. Notably, oxime acetates involving 
α- or γ-keto ester were also compatible in the present protocol, 
affording the corresponding ester substituted pyridines 3q and 
3r in moderate yields. Moreover, oxime acetates derived from 
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both chain-like and cyclic ketones, such as undecan-6-one, 
cyclopentanone, cyclohexanone, cycloheptanone, and 
cyclopentadecanone, were all transformed smoothly in the 
reaction, delivering 2,3,6-trisubstituted pyridines 3s-w in 
medium yields. 3,4-Dihydronaphthalen-1(2H)-one and 6-
methyl-chroman-4-one oxime acetates were also good 
candidates for this tactic, providing the fused pyridines 3x and 
3y in 88% and 50% yields, respectively. Significantly, the 
annulation of nitrogen-containing endocyclic oxime acetate 
was also successful, as demonstrated by the formation of 3z in 
70 % yield.
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N
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Scheme 4. Scope of oxime acetatesa,b

aAll reactions were carried out by stirring 1a (0.5 mmol), 2 (2.5 
equiv) and 4-HO-TEMPO (20 mol %) in DMSO (2.5 mL) for 24-
36 h under Ar unless noted otherwise. bIsolated yield.

To further clarify the reactivity of oxime acetate, we 
employed asymmetric 2-heptanone oxime acetate which 
possesses two distinct enolizable α-positions to react with 1a. 
As shown in Scheme 5a, the reaction resulted in pyridine 3aa 
in 47% yield with another possible regioisomer 3ab 
undetected, reflecting the internal selectivity of enolizable α-
position rather than the distal selectivity. In addition, the 
intermolecular competitive reaction was also conducted as 
shown in Scheme 5b. When the mixture of same amount of 2a 
and 2x was allowed to react with 1a, the competitive reaction 
gave com pound 3x in 86% yield along with a trace amount of 
3a, indicating that cyclic oxime acetate 2x is more reactive 
than its acyclic counterparts.

+
n-Am NPh

1a

2aa, 2.5 equiv 3aa, 47%

NOAc n-Bu

+
Ph

NPh

2a, 2.5 equiv 3x, 86%

NOAc
+

NOAc

2x, 2.5 equiv

+
NPh Ph

3a, trace

(a)

(b)

1a

standard
conditions

NPh n-Am
+

3ab, undetected

standard
conditions

Scheme 5. Regioselective and Competitive Reactions of 
Oxime Acetates

Next, a series of cyclopropanol derivates were tested, and 
the result is shown in Scheme 6. Phenylcyclopropanols with 
different substituents on the phenyl ring, such as p-MeO, p-Ph, 
p-CF3, p-Cl, m-Cl, and 3,5-dimethoxyl, were transformed very 
well under the standard conditions, and the desired pyridines 
4b-g were obtained in good to excellent yields. Naphthalene-
2-cyclopropanol and thiophene-3-cyclopropanol also well 
participated in the reaction, giving rise to the corresponding 
pyridines 4h and 4i in 80% and 85% yield, respectively. Alkyl, 
cycloalkyl, and adamantyl substituted cyclopropanol 
derivatives were all good redox partners and generated the 
desired products 4j-o in 62-83% yields. In addition, piperidyl 
substituted cyclopropanol was compatible with this catalytic 
system as well and converted into the expected pyridines 4p in 
48% yield. Gratifyingly, when 2-ethyl-1-phenylcyclopropanol 
was involved in the reaction, 2,3,4,6-tetrasubstituted pyridine 
4q was produced in 43% yield.
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DMSO, 120 oC, Ar
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N

4e, 86%
Cl
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Cl

N

4k, 81%

N

4l, 70%

N
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Scheme 6. Substrate Scope of Cyclopropanolsa,b

aAll reactions were carried out by stirring 1 (0.5 mmol), 2x (2.5 
equiv) and 4-HO-TEMPO (20 mol %) in DMSO (2.5 mL) for 24-
36 h under Ar unless noted otherwise. bIsolated yield.

The present protocol is well suitable for late-stage 
functionalization of complex molecules derived from drugs 
and natural products (Scheme 7). For instance, cyclopropanols, 
which were derived from analgesic and anti-inflammatory 
drugs Naproxen and Ibuprofen participated smoothly in this 
transformation, yielding the desired products 4r and 4s in 
good yields. Product 4r was obtained with partial racemization 
when chiral cyclopropanol 1r was used. The racemization may 
be due to the fact that 1r was oxidized by 4-HO-TEMPO to 
form a chiral enone intermediate, which is easy to racemize at 
the α-carbonyl position via enolization, leading to the final 
annulation product 4r in partial racemization. Moreover, 
alkene-containing cyclopropanols derived from terpenes such 
as citronellal and abietic acid were also suitable for this 
strategy, affording the desired pyridines 4t and 4u in moderate 
yields. When steroid lithocholic acid derivative was allowed to 
react under the standard conditions, the corresponding 
cyclization product 4v was formed in 87% yield. 
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Scheme 7. Applications of Natural Products and Drug 
Moleculesa,b

aAll reactions were carried out by stirring 1 (0.5 mmol), 2x (2.5 
equiv), and 4-HO-TEMPO (20 mol %) in DMSO (2.5 mL) for 24-
36 h under Ar unless noted otherwise. bIsolated yield.

To further explore the practicability of the strategy, gram-
scale synthesis of 3x and its follow-up derivatizations were 
conducted. As shown in Scheme 8, the reaction of 1a and 2x 
on a gram scale gave 3x in a yield of 82% (1.055 g). Pyridine 
3x could be converted to benzo[h]quinoline 5 via oxidative 
dehydrogenation. In addition, oxygenation of 3x gave 2-
phenylbenzo[h]quinoline-5,6-dione 6, which could be further 
oxidized to dicarboxylic acid 7. Condensation of compound 6 
with 1,2-diaminoethane and triformol/NH4OAc yielded the 
bioactive fused heterocycles 8 and 9, respectively.15
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+

4-HO-TEMPO (20 mol %)
DMSO, 120 oC, 36 h
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2x
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THF, H2O, rt

Scheme 8. Gram-scale Synthesis of 3x and Its 
Derivatizations.

MECHANISTIC STUDIES
To gain insights into the reaction mechanism, a series of 

control experiments have been conducted as shown in 
equations 1-7. First, the oxidation of cyclopropanols by 4-HO-
TEMPO as the redox half reaction in the [3+3] annulation was 
investigated. When cyclopropanol 1c was treated with 
stoichiometric 4-HO-TEMPO under the standard conditions in 
18 h, the reaction gave enone 10 in 32% yield, accompanied 
by the generation of 4-HO-TEMPOH in 60% yield under 48% 
conversion. Besides, the 4-HO-TEMPO trapping product 11 
was also detected by ESI-HRMS (details, see SI). When the 
reaction was prolonged to 36 h till cyclopropanol 1c was 
completely consumed, the yield of enone 10 was reduced to 
10% due to its instability and polymerization in DMSO (eqs. 1 
and 2). However, when DCE was used instead of DMSO as 
the solvent, the enone 10 was obtained in 72% yield. These 

results demonstrate that 4-HO-TEMPO could oxidize 
cyclopropanol to produce enone, with itself being reduced to 
4-HO-TEMPOH (eq. 1). Notably, although the in-situ 
generated enones are unstable in DMSO, they could be further 
transformed to pyridines in the presence of ketoximes esters. 
In addition, cyclopropanol acetate 12 could neither be 
oxidized to produce enone by the treatment with 4-HO-
TEMPO, nor reacted with oxime acetate 2a to produce 
pyridine derivative, demonstrating that free hydroxyl group of 
cyclopropanol is essential for the reaction (eqs. 3 and 4). 
These results also indicate that a hydrogen atom transfer 
(HAT) process is involved in the oxidation of cyclopropanols 
by 4-HO-TEMPO. 
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DMSO, Ar, 120 oC, 36 h
10, 34% + complex mixtures (2)

+

4-HO-TEMPO (20 mol %)

To further elucidate the conversion of cyclopropanols to the 
corresponding enones by the oxidation of 4-HO-TEMPO 
under the current circumstances, DFT study (details, see SI) 
was conducted and the result is shown in Figure 1. The 
calculated O-H bond BDE of cyclopropanols 1a is 89.5 kcal 
mol-1 which is close to the reported O-H BDE of 4-HO-
TEMPOH (72.2 kcal mol-1)16, indicating that a HAT process 
between cyclopropanol 1a and 4-HO-TEMPOH is reasonable 
(ΔE, about 17.3 kcal mol-1). Indeed, according to the 
calculations, 1a first binds rapidly with 4-HO-TEMPO 
through hydrogen bonding to give intermediate INT1, which 
then undergoes rate-determining hydrogen atom transfer 
(HAT) to form INT2 via TS1. The energy barrier (27.7 kcal 
mol-1) for this step is not difficult to overcome at the present 
reaction temperature. After INT2 is formed, it would 
effortlessly be transformed in to β-keto alkyl radicals INT3 
(energy barrier: 1.1 kcal mol-1) via radical ring-opening. 

2.5

Ph O
H

Ph
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Grel/kcal mol-1

Reaction coordinate

30.2

O
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O
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‡
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Ph OH
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N OH
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Figure 1. DFT-Computed energy profiles for 4-HO-TEMPO 
mediated the generation of β-keto alkyl radical.
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Figure 2. Cyclic voltammograms recorded on a glassy carbon 
electrode (the diameter: 3 mm) in 0.1 M solution of n-Bu4NBF4 in 
CH3CN. (A) 5 mM 4-HO-TEMPO; (B) 5 mM acetophenone 
oxime acetate 2a.

Next, the reduction of oxime acetates by 4-HO-TEMPOH 
as another redox half reaction in the [3+3] annulation was 
investigated. By cyclic voltammetry experiments (Figure 2), 
the half peak reduction potentials of 4-HO-TEMPO and 
acetophenone oxime acetate 2a in CH3CN are -1.2 V vs. SCE 
(Figure 2A) and -1.9 V vs. SCE (Figure 2B), respectively, 
indicating that the direct single electron transfer (SET) 
between ketoxime acetate and 4-HO-TEMPOH might be 
endoergic. However, it has been well documented that in case 
that a SET process is followed or accompanied by a proton 
transfer, it can take place as long as the energy gap does not 
exceed 1.0 V.17

Subsequent control experiments also confirmed the above 
process. When γ,δ-unsaturated oxime acetate 13 was treated 
with stoichiometric 4-HO-TEMPOH, the 4-HO-TEMPO-
trapped dihydropyrrole 14 was favorably acquired in 66% 
yield (eq. 5). Compound 14 can only be formed via cyclization 
of an iminyl intermediate. 

(5)
Ph

NOAc 4-HO-TEMPOH (1 equiv)

13 14, 66%
DMSO, Ar, 120 oC, 18 h

N

Ph

OTEMP-4-OH

Thus, it can be concluded that the N-O bond cleavage of the 
oxime acetate in the reaction was effected via SET reduction 
by 4-HO-TEMPOH (Scheme 9). 

R R'

N
O

O

+
NO OH

R R'

N
+ HOAc + NO OH

H

R R'

N
O

O

+ NO OH
H

DMSO
120 oC

Scheme 9. SET Process between Ketoxime Acetates and 4-
HO-TEMPOH.

Significantly, the reaction of 1a with 2a could also take 
place under the catalysis of 4-HO-TEMPOH and gave the 
same product 3a in 70% yield, revealing that the reaction 
could also be initiated by the reduction of oxime acetate as 
well (eq. 6). 

(6)
Ph

NOAc
+

4-HO-TEMPOH (20 mol %)

DMSO, Ar, 120 oC, 36 h
2a (2.5 equiv)

Ph N Ph
3a, 70%

Ph OH

1a

Moreover, to confirm that enone was the reaction 
intermediate, enone 10 was allowed to react with 2x under the 
catalysis of 4-HO-TEMPOH. As expected, the reaction did 
take place, giving the corresponding product 4c in 73% yield 
(eq. 7). In contrast, the reaction could not take place under the 
catalysis of 4-HO-TEMPO.

(7)

NOAc

+10

2x, 1.2 equiv

4-HO-TEMPOH (20 mol %)
N

4c, 73%
Ph

DMSO, Ar, 120 oC, 24 h

This result not only indicates that enones could also be used 
as an alternative of cyclopropanols to react with ketoxime 
acetate for the synthesis of pyridines, but also provides a novel 
4-HO-TEMPOH catalyzed redox-neutral reaction. This 
modified protocol can be applied to variously substituted 
enones, with the pyridine products being generated in 
moderate to good yields (Scheme 10). As enones can be 
accessed from different precursors from those of 
cyclopropanols, this 4-HO-TEMPOH mediated protocol 
serves as the complement to that described above. However, 
as the terminal enones are liable to polymerize, using 
cyclopropanols as substrates is more suitable for the 
preparation of 4-unsubstituted pyridines which would 
otherwise involve the annulation of terminal enones with 
oxime acetates.18 

R1

O

R2
+

NOAc
4-HO-TEMPOH (20 mol %)

DMSO, Ar, 120 oC NR1

R2

15 2a or 2x (1.2 equiv) 16

NPh

16h, 93%

CF3

N PhPh

16g, 90%

CF3

NPh

16c, 60%

Ph

N

16d, 45%

Ph

NPh

16b, 46%

Ph

N

16f, 25%

Ph

N

16a, 73%

Ph

N

16e, 69%

Ph

Br

Scheme 10. 4-HO-TEMPOH Catalyzed [3+3] Annulationa,b

aAll reactions were carried out by stirring 15 (0.3 mmol), 2 (1.2 
equiv) and 4-HO-TEMPOH (20 mol %) in DMSO (1.5 mL) for 
24 h under Ar unless noted otherwise. bIsolated yield.

Based on the experimental results and DFT calculation, a 
plausible mechanism for the TEMPO-catalyzed redox 
annulation is proposed in Scheme 11. Initially, a hydrogen 
atom transfer (HAT) process occurs between cyclopropanols 1 
and 4-HO-TEMPO to produce the alkoxyl radical A and 4-
HO-TEMPOH.12a,12c The former species subsequently 
experiences radical ring-opening to form the carbon radical B, 
which is further dehydrogenated by 4-HO-TEMPO to yield 
α,β-unsaturated ketone C.2d,2j,12e Meanwhile, the N-O bond 
reductive cleavage of oxime acetates 2 occurs by the action of 
4-HO-TEMPOH through a SET process19 to give iminyl 
radical D, HOAc and 4-HO-TEMPO. D further abstracts H-
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atom from 4-HO-TEMPOH to yield imine E and 4-HO-
TEMPO. The former quickly tautomerizes to enamine F 
which then nucleophilically adds to enone C to yield the 
intermediate G. Annulation of G produces dihydropyridine H, 
which is finally oxidative aromatized by 4-HO-TEMPO to 
pyridine 3 or 4. Excess oxime acetate serves as a terminal 
oxidant to maintain the TEMPO-TEMPOH catalytic cycle. 

R3

NOAc

oxidation
1

R1HO

R4

R2

R3

N
R4

2

R1

O

NHR3

G
R2

A

reduction
D

annulation

4-HO-
TEMPO

4-HO-
TEMPOH

NHO OH

NHO OR1O

R2

R1

O

R2

B
R1

O

R2

C

E

R3

NH2
R4

F

H

- H2O

- HOAc

3 or 4

R4

R1

N

R3

R2

R4

4-HO-TEMPOH

4-HO-TEMPO

4-HO-TEMPO4-HO-TEMPOH

R3

NH
R4

FHAT SET

4-
H

O
-

TE
M

P
O

4-
H

O
-

TE
M

P
O

H

Scheme 11. Proposed Mechanism.

CONCLUSIONS
In summary, a novel and efficient 4-HO-TEMPO-catalyzed 

redox approach has been developed for the synthesis of 
pyridine derivatives through the [3+3] annulation of 
cyclopropanols and oxime acetates under metal-free 
conditions. The reaction utilizes the redox cycle of 4-HO-
TEMPO/4-HO-TEMPOH to realize the electron and proton 
transfer between cyclopropanols and oxime acetates. In this 
way, cyclopropanols and oxime acetates were converted to 
enones and imines, respectively, which then undergo cascade 
annulation and oxidative aromatization to yield pyridine 
derivatives. This tactic not only represents the first example 
for TEMPO-catalyzed redox reaction, where both TEMPOH 
and TEMPO are active catalysts, but also has the merits of 
excellent functional group tolerance, high chemoselectivity, 
broad substrate scope and good compatibility for the 
frameworks of natural products and pharmaceutical molecules. 
By using 4-HO-TEMPOH as the catalyst, the annulation 
between enones and oxime esters can take place as well to 
give pyridine products. Further studies on TEMPO-catalyzed 
redox reaction for the synthetic purpose are ongoing in our 
laboratory.
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