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ABSTRACT: We developed the hypoiodite-catalyzed tandem
dearomative peroxycyclization of homotryptamine derivatives to
peroxytetrahydropyridoindolenines under mild conditions. During
the course of a mechanistic study, we found that a tandem oxidative
cyclization/epoxidation as an unexpected reaction proceeded in the
presence of TEMPO as an additive. Intramolecular oxidative
aminocyclization of homotryptamines at the C-2 position would give tetrahydropyridoindole, a common intermediate for both
reactions. Control experiments suggested that while oxidative coupling with TBHP at the C-3 position might afford
peroxyindolenines, a preferential electrophilic addition of TEMPO+, which might be generated in situ by the hypoiodite-catalyzed
oxidation of TEMPO, at C-3 position followed by elimination and epoxidation might give epoxyindolenines. This serendipitous
finding prompted us to develop a chemoselective divergent synthesis of peroxy- and epoxyindolenines by simple modification of the
reaction conditions.

Indole alkaloids constitute one of the largest groups of
nitrogen-containing secondary metabolites, and more than

4000 indole alkaloids have already been found in nature.1

Because of their significant and wide range of biological
activities, the development of efficient methods for the
synthesis of indole alkaloids is one of the most important
topics in synthetic organic chemistry, especially for drug
discovery.1,2 Beside indole, the most common structural motifs
found in various indole-derived alkaloids are indolenine,
indoline, and oxindole.1 Oxidative dearomative functionaliza-
tion of indoles is one of the most important strategies for
construction of these structures.3 Various methods have been
developed for the dearomative functionalization of indoles.3

However, previous methods often rely on the use of precious
transition metal catalysts and/or potentially explosive
oxidants.3

We have developed the quaternary ammonium hypoiodite-
catalyzed4 oxidative dearomative coupling of arenols.5,6 In this
context, given the important biological activities (i.e.,
antitumor, antibacterial, etc.) of the peroxy functionality of
numerous pharmaceutical compounds,7 we have reported the
dearomative peroxidation of electron-rich arenols with tert-
butyl hydroperoxide (TBHP) as an oxidant and a coupling
partner (Scheme 1a).5 We envisioned that peroxyindolenines8

might be accessed from the oxidative dearomative coupling of
indoles with alkyl hydroperoxides via a similar umpolung
strategy of indoles. During our investigation of the oxidative
dearomative coupling of indoles,9,10 Zhong and colleagues
reported the oxidative dearomative peroxycyclization of
tryptamines 1 to peroxypyrroloindolenines 2 using a catalytic
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Scheme 1. Tandem Oxidative Dearomative Peroxidation
and Epoxidation of Indole Derivatives
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amount of n-tetrabutylammonium iodide (Bu4NI) in the
presence of TBHP as an oxidant and coupling reagent
(Scheme 1b).11 The reaction required high temperatures to
proceed, and the authors proposed an intermolecular radical
coupling mechanism to give peroxyindolenine intermediates 3
before the oxidative cyclization to 2. On the other hand, the
authors also investigated the biological activities, which
revealed a promising antitumor activity of these adducts, in
which, importantly, both the indolenine and the peroxy units
were found to be crucial for the antiproliferative activities.11a

Here, we report the hypoiodite-catalyzed tandem oxidative
dearomative peroxycyclization of homotryptamine derivatives
4 to the corresponding peroxytetrahydropyridoindolenines 5
(Scheme 1c). We found that, in contrast to 5-membered
peroxycyclization (Scheme 1b),11 6-membered intramolecular
cyclization proceeded to give a tetrahydropyridoindole
intermediates 712 before intermolecular oxidative coupling
with a peroxide to give peroxyindolenines 5. In addition, we
obtained epoxytetrahydropyridoindolenines 6 as unexpected
products during the course of mechanistic studies by using
TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl) as an additive.
This serendipitous finding prompted us to develop a
chemoselective divergent synthesis of peroxy- and epoxyindo-
lenines 5 and 6 by simple modification of the reaction
conditions. Moreover, we demonstrated the synthetic utility of
epoxyindolenines 6 to provide synthetically useful structures
such as oxindoles, iminoester, and 2-methyleneindolenine
derivative.
We began our investigation by examining the oxidative

coupling of homotryptamine derivative 4a using TBHP as an
oxidant and coupling partner in the presence of 10 mol % of
Bu4NI (Scheme 2).13 After an investigation of the reaction
parameters (i.e., solvents, amount of oxidant used, etc.),13 we

found that a clean reaction proceeded with the use of 3 equiv
of TBHP in toluene at room temperature to give the desired
peroxyindolenine 5a in 96% yield (Scheme 2a). When 2 equiv
of TBHP was used, tetrahydropyridoindole 7a was obtained in
45% yield along with 5a. The structure of 7a was confirmed by
X-ray analysis (Scheme 2c). A reaction kinetic profile analysis
using in situ 1H NMR monitoring of the reaction progress
revealed the rapid consumption of 4a to give 7a as an
intermediate, which was then converted to 5a via intermo-
lecular oxidative coupling with TBHP (Scheme 2b). The
intermediacy of 7a was also confirmed by a control experiment
using isolated 7a, which was reacted with 2 equiv of TBHP
under identical conditions to give 5a in 89% yield (Scheme
2d). These results indicated that, in contrast to Zhong’s
oxidative 5-membered peroxycyclization under high-temper-
ature conditions,11 our 6-membered oxidative cyclization
proceeded preferentially before intermolecular coupling with
TBHP. In addition, no reactions were observed in the absence
of Bu4NI for either the aminocyclization of 4a to 7a or the
oxidative peroxidation of 7a to 5a.
Because our initial findings suggested that our reaction

mechanism might differ from that of Zhong et al.,11 we further
investigated the reaction mechanism of oxidative 6-membered
peroxycyclization in detail. As in our previous oxidative
coupling reactions,4a,b,5,6 control experiments revealed that
hypoiodite might be a catalytic active species for both the
oxidative cyclization of 4a to 7a and the peroxidation of 7a to
5a.13 In addition, to evaluate the roles of indole and
sulfonamide N-H groups for the oxidation reactions, N-Me
indole 8a and N-Me sulfonamide 8b were prepared and
examined under the standard conditions (Scheme 2e). While,
the reaction of 8a gave no detectable products and most of the
starting material 8a was recovered, the reaction of N-Me
sulfonamide 8b proceeded to consuming starting materials
completely, albeit to give a complex mixture of unidentified
products. Therefore, similar to the previous oxidative coupling
of arenols in which umpolung of arenols proceeded,5,6

umpolung of the indole moiety through the generation of N-
I indole intermediate might be crucial for the oxidation
reaction process.
Next, we questioned whether our 6-membered peroxycyc-

lization proceeded via a radical mechanism, as in Zhong’s 5-
membered radical peroxycyclization.11 Oxidative cyclization of
4a proceeded to give 7a in similar yields in the presence of
either 1,1-diphenylethylene (DPE) or TEMPO as a radical
scavenger (Scheme 3a). On the other hand, while the use of
DPE did not influence the outcome of the oxidative
peroxidation of 7a to 5a, the use of TEMPO suppressed
peroxidation but gave an unexpected product, which was
determined to be epoxyindolenine 6a (Scheme 3b). Notably,
epoxyindolenine 6a was not obtained from peroxyindolenine
5a under identical conditions in the presence of TEMPO
(Scheme 3c), suggesting that a different route may be followed
from common intermediate 7a to epoxide 6a.
We were interested in this unexpected new reaction, and

especially investigated the role of TEMPO for the epoxidation
of tetrahydropyridoindole 7a (Scheme 3d). Again, no reaction
proceeded in the absence of iodide or TBHP, suggesting that
both are required for oxidative epoxidation, as in peroxidation
(entries 3 and 4 versus entries 1 and 2). Given the results in
Scheme 3b that another radical scavenger (i.e., DPE) did not
suppress the peroxidation reaction, we speculated that
TEMPO might not suppress peroxidation by the scavenging

Scheme 2. Tandem Oxidative Cyclization/Peroxidation of
4a
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of radical species but rather might mediate epoxidation
through the preferential reaction of TEMPO or its derivatives
with indole 7a. Because TEMPO could be oxidized under
oxidative conditions,14 we next investigated TEMPO+BF4

−, an
oxoammonium cation, as an additive, and 6a was obtained in
50% yield (entry 5). Notably, in sharp contrast to the result in
entry 3, which confirmed the indispensability of iodide when
TEMPO was used as an additive, the epoxidation of 7a
proceeded in similar efficiency in the absence of iodide catalyst
when TEMPO+ was used as an additive in the presence of
TBHP (entry 6). These results suggested that hypoiodite
might catalyze the oxidation of TEMPO to TEMPO+, but is
not required for the epoxidation process. In addition, the
reaction of 7a with only TEMPO+ in the absence of TBHP
gave a complex reaction mixture of many unidentified products
and the formation of epoxide 6a was not observed (entry 7),
indicating that TBHP should be required as an oxidant for
epoxidation of an unstable intermediate, which might be
generated from the reaction of 7a with TEMPO+.
On the basis of the above observations and previous

findings,5,6 a proposed reaction mechanism is depicted in
Scheme 4. A reversible dehydration of substrate 4 with in situ-
generated ammonium hypoiodite catalytic active species might
afford the indolyl hypoiodite 9 intermediate,15,16 which might
then give tetrahydropyridoindole 7 through intramolecular
aminocyclization at the C-2 position.12c Peroxidative dear-
omatization might proceed via an indolyl hypoiodite species
10,15 which gave peroxyindolenines 5 via intermolecular SN2′
addition of ammonium tert-butylperoxide at the C-3 position.6

Due to the dual role of TBHP, 3 equiv of TBHP should be
required to complete the two-step reaction sequence 4 to 5

(i.e., 2 equiv for oxidative transformation as an oxidant and 1
equiv as a peroxide source), and notably, an excellent
productive usage ratio (∼96%) of TBHP was observed
under our mild conditions (Scheme 2a). On the other hand,
in the presence of TEMPO+, which would be generated in situ
from the oxidation of TEMPO with hypoiodite species,
electrophilic addition to 7 at the C-3 position17 might proceed
preferentially to give aminooxyindolenine 11.15 Elimination of
TEMPOH18 might proceed to give 3-alkylideneindolenine
1215 as an unstable and highly reactive intermediate,19 which
might then react with TBHP to give epoxyindolenine 6.
An investigation of the reaction parameters for the tandem

oxidative cyclization/epoxidation of 4a to 6a revealed that, in
the presence of 1.1 equiv of TEMPO, competitive peroxidation
was suppressed completely with the use of cumene hydro-
peroxide (CHP) as a sterically more hindered oxidant, and 6a
was obtained in 81% isolated yield (Scheme 5).13 Importantly,

the amount of TEMPO could be reduced to the catalytic
quantities (20 mol %) to give 6a in 67% yield (see Scheme 4
for mechanistic consideration, in which TEMPOH might be
oxidized to TEMPO+),14,18 albeit with the generation of
peroxyindolenine in 15% yield. Considering the chemo-
selectivity and efficiency, we used 1.1 equiv of TEMPO for
further study. On the other hand, the use of other
commercially available nitroxyl radicals such as 4-oxo-
TEMPO, keto-ANBO,20 or nor-AZADO21 gave inferior
results.13

Scheme 3. Control Experiments and Serendipitous Findings Scheme 4. Proposed Reaction Mechanism

Scheme 5. Tandem Oxidative Cyclization/Epoxidation of 4a
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Several homotryptamine derivatives 4 were examined for
tandem oxidative cyclization/peroxidation or epoxidation
under the optimized conditions (Table 1).22 Beside the 4-

nosyl group as a protecting group for the amine tether, other
sulfonyl groups such as tosyl (Ts) and methanesulfonyl (Ms)
groups could also be used to afford the desired peroxides 5b
and 5c or epoxides 6b and 6c, respectively (entries 2 and 3).
However, peroxycyclization of 4c yielded 5c in only moderate
yield, and several unidentified side products were also
obtained. The reason for this result is not yet clear. Several
electron-donating or -withdrawing group substituted indoles
4d−g tethered to a 4-nosylamino group gave the correspond-
ing peroxides 5 or epoxides 6 in good to high yields (entries
4−9). Notably, we confirmed the structures of two
representative products 5h and 6d by X-ray crystallographic
analysis (Figure 1).

The 4-nosyl group of the peroxide adduct 5h could be easily
removed under standard deprotection conditions (Scheme 6a).
The synthetic utility of peroxyindolenines and their indoline
derivatives has been previously demonstrated.11b Here, we
specifically would like to demonstrate the synthetic utility of
epoxyindolenines 6 (Scheme 6b). Brønsted acid-catalyzed
chemoselective opening of the tetrahydropyrido ring was
accomplished under aqueous conditions to give spiroepoxyox-
indole 14 as a synthetically highly useful compound.23 In

addition, tandem ring-opening/recyclization of tetrahydropyr-
ido and oxirane rings proceeded to give a diastereomeric
mixture of 3,3-spiropyrrolooxindole 15 in good yield when
Sc(OTf)3 was used as a Lewis acid catalyst. On the other hand,
opening of the tetrahydropyrido ring also proceeded smoothly
with an alkoxide to give iminoester 16. Moreover, C−C bond
formation with malonate under basic conditions could also
trigger ring-opening to give spiroepoxyindoline-2-ylidenemal-
onate 17 in good yield.
In summary, we developed the hypoiodite-catalyzed tandem

oxidative dearomative peroxycyclization of homotryptamine
derivatives to the corresponding peroxytetrahydropyridoindo-
lenines. We found that, in contrast to the previously reported
5-membered peroxycyclization,11 6-membered intramolecular
cyclization proceeded to give tetrahydropyridoindole inter-
mediates before intermolecular oxidative coupling with a
peroxide to give peroxyindolenines. More importantly, we
obtained epoxytetrahydropyridoindolenines as unexpected but
synthetically useful products during the course of mechanistic
studies using TEMPO as an additive. While oxidative coupling
with TBHP at C-3 position might afford peroxyindolenines, a
preferential electrophilic addition of TEMPO+, which might be
generated in situ by the hypoiodite-catalyzed oxidation of
TEMPO, at C-3 position followed by elimination and
epoxidation might give epoxyindolenines. This serendipitous
finding prompted us to develop a chemoselective divergent
synthesis of peroxy- and epoxyindolenines and by simple
modification of the reaction conditions.
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Table 1. Chemoselective Divergent Oxidation to Peroxy-
and Epoxyindolenines 5 and 6a

entry 4 PG R yield, 5b (%) yield, 6b (%)

1 4a 4Ns H 96 81

2 4b Ts H 97 89
3 4c Ms H 56 74
4 4d 4Ns 5-MeO 84 70

5 4e 4Ns 5-Me 88 78

6 4f 4Ns 7-Me 81 78

7 4g 4Ns 4,6-Me2 53 83

8 4h 4Ns 5-Br 92 (92)c 84 (83)c

9 4i 4Ns 5,7-F2 86 82
aUnless otherwise noted, 0.2 mmol of 4 was used. bIsolated yield. c1
mmol of 4h was used.

Figure 1. X-ray structures of peroxide 5h and epoxide 6d.

Scheme 6. Transformation of Peroxy- and Epoxyindolenines
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