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ABSTRACT: An electrocatalytic method has been developed to oxidize primary alcohols and 

aldehydes to the corresponding carboxylic acids, using 4-acetamido-2,2,6,6-tetramethylpiperidine 

1-oxyl (ACT) as a mediator. The method successfully converts benzylic, aliphatic, heterocyclic 

and other heteroatom-containing substrates to the corresponding carboxylic acids in aqueous 

solution at room temperature. The mild conditions enable retention of stereochemistry adjacent to 
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the site of oxidation, as demonstrated in a 40 g-scale synthesis of a precursor to levetiracetam, a 

medication used to treat epilepsy. 

KEYWORDS: alcohols, aldehydes, carboxylic acids, oxidation, electrocatalysis, 

electrochemistry, nitroxyl, aminoxyl 

Introduction  

Oxidations of alcohols and aldehydes to carboxylic acids are widely used transformations in 

organic chemistry.1-4 They are commonly featured in the synthesis of pharmaceuticals and other 

industrial chemicals,5-8 and they are the focus of considerable attention for the conversion of 

carbohydrates, sugars, and other biomass-derived feedstocks to value-added products.9-14 Classical 

oxidation methods feature chromium and manganese oxide reagents;2,5 however, methods 

employing organic aminoxyls in catalytic reactions used extensively,15-18 including applications to 

the synthesis of complex molecules, such as natural products and pharmaceuticals. Methods 

employing bleach (NaOCl) and TEMPO (2,2,6,6-tetramethylpiperidine N-oxyl) are especially 

effective for alcohol oxidation, and a prominent example is the biphasic Anelli-Montonari 

oxidation method that uses TEMPO and bromide as cocatalysts (Scheme 1A).19-25 Most of the 

latter applications focus on production of aldehydes and ketones, but they have also been used to 

prepare carboxylic acids.26-30 Sodium chlorite (NaClO2) has been shown to be an especially 

effective oxidant for conversion of aldehydes to carboxylic acids.2 One of the most prominent 

examples of this reactivity is the so-called "Pinnick oxidation",31 which adapted from earlier 

precedents by Kraus32 and Lindgren and Nilsson33 (Scheme 1B).34-37 A sacrificial alkene is often 

included in these reactions to scavenge the hypochlorite byproduct of the reaction.  
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Scheme 1. Common protocols for oxidation of aldehyde to carboxylic acid (1) and alcohol to aldehyde.   

 

Electrochemical alcohol oxidation methods using organic aminoxyl mediators (i.e., 

electrocatalysts) have advanced considerably in recent years, and they provide a compelling 

alternative to the more-traditional chemical methods.38 These methods are appealing, in part, 

because they generate hydrogen gas as the sole byproduct of the reaction (eq 1).39 Electrochemical 

methods for the oxidation of primary alcohols to carboxylic acids have been investigated primarily 

for the conversion of mono/polysaccharides and other biomass-derived precursors.40-47 To our 

knowledge, there are no reports of electrochemical aminoxyl-mediated methods for oxidation of 

aldehydes. Moreover, preparative-scale oxidation of alcohols and aldehydes to carboxylic acids 

with substrates bearing heterocycles and adjacent stereocenters that are commonly encountered in 

pharmaceutical applications have not been investigated.  

 

 
    (1)

 

 

In a recent study, we demonstrated that the electrocatalytic activity of aminoxyl radicals is 

more strongly affected by the redox potential of the aminoxyl than by its steric properties.48 

Specifically, higher catalytic activity was observed for aminoxyls with higher potentials, and this 

trend was evident even when comparing sterically hindered TEMPO derivatives to less-hindered 
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aminoxyls such as ABNO (9-azabicyclo[3.3.1]nonane N-oxyl) and AZADO (2-azaadamantane N-

oxyl).49 In electrocatalytic applications, the electrode potential may be tuned to match the redox 

potential of the aminoxyl mediator, and the catalytic rate is controlled solely by the reactivity of 

the oxoammonium species with the substrate. With chemical oxidants, such as bleach, the catalytic 

rate is often controlled by the rate of catalyst reoxidation.48 The low-cost aminoxyl, 4-acetamido-

TEMPO (ACT) was found to be a highly effective mediator for electrocatalytic oxidation of a 

various simple alcohols. In the present study, we expand on these fundamental observations and 

demonstrate the preparative-scale utility of ACT-mediated oxidation of primary alcohols and 

aldehydes to carboxylic acids. Noteworthy outcomes include demonstration of the compatibility 

of the reaction with pyridine-containing substrates and retention of stereochemical configuration 

adjacent to an alcohol in the oxidation of a chiral alcohol to a carboxylic acid. The latter reactivity 

is showcased in the oxidation of a key intermediate in the generic drug, levetiracetam.  

 

Results and Discussion  

For electrochemical oxidation by ACT and other aminoxyl radicals, aqueous carbonate buffer 

(pH 8 to 11) is a suitable reaction medium that avoids the need for more-costly organic electrolytes 

and makes the solution sufficiently basic to allow for fast oxidation of alcohols.48 In an effort to 

explore an electrochemical aldehyde oxidation, we considered ACT under the same conditions. 

Cyclic voltammetry and chronoamperometry methods were used for the initial evaluation of the 

catalytic activity. Figure 1 shows the cyclic voltammograms (CVs) and chronoamperograms of 

ACT in the absence and presence of 4-pyridinecarboxaldehyde (1b). In the absence of 1b, the CV 

of ACT exhibits one anodic peak and a related cathodic peak (Figure 1, black trace a). The anodic 

peak corresponds to the one-electron oxidation of ACT to the oxoammonium species ACT+, while 
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the cathodic peak corresponds to the one-electron reduction of the electrochemically generated 

ACT+ to ACT. The ratios of the cathodic-to-anodic peak currents are near unity, consistent with 

the good stability of the ACT+ under these conditions.48 In the presence of 1b, ACT+ mediates 

catalytic oxidation of the aldehyde substrate to the corresponding carboxylic acid 1c (Figure 1, 

blue trace b), resulting in a significant increase in the anodic peak current and a disappearance of 

the cathodic peak. Complementary data were obtained by chronoamerometry. A 

chronoamperogram of ACT in the absence of 1b (Figure 1, black trace c) shows a diffusion-

controlled oxidation current corresponding to the oxidation of ACT to ACT+ at the electrode. The 

presence of 1b leads to a >10-fold increase in the oxidation current (Figure 1, blue trace d) due to 

the catalytic turnover of ACT.50 

 

 

Figure 1.  ACT-catalyzed electrochemical oxidation of 1b (top), cyclic voltammograms (left) and 

chronoamperograms (right) of 1 mM ACT in the absence (a and c) and presence (b and d) of 20 mM 1b. 

Scan rate is 10 mVs–1 for cyclic voltammetry and applied potential is 0.70 V vs. Ag/AgCl for 

chronoamperometry. Reaction conditions: aqueous carbonate buffer, NaHCO3:Na2CO3
 (0.1 M each), pH 

10. 
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The area under the chronoamperogram traces corresponds to the charge consumed during the 

experiment, as depicted by the shaded regions in Figure 1, and the turnover frequency of the 

reaction (TOF = 1770) was derived from the ratio of consumed charge in the absence and presence 

of 1b.51 This analysis accounts for the fact that oxidation of ACT in the absence of aldehyde is a 

one-electron process, while ACT-mediated aldehyde oxidation is a two-electron process, 

corresponding to oxidation of the hydroxylamine to the oxoammonium (cf. Figure 1). A similar 

approach was then applied to various other alcohols and aldehydes (Figure 2). The relative 

reactivity of alcohols and aldehydes is different for different substrates. For example, as shown in 

Figure 2a, the catalytic activity of ACT is lower for the oxidation of the solketal (2a) than for 

oxidation of the corresponding aldehyde 2b. The relative reactivity of 2a and 2b is manifested in 

the time course of a bulk electrolysis reaction (Figure 3), which shows formation of the carboxylic 

acid product even at early time periods, with only a small build-up of the aldehyde during the 

reaction. In contrast, ACT shows considerably higher activity with cyclopentanemethanol (3a) 

than with the corresponding aldehyde 3b (Figure 2b). A quantitative comparison of several 

substrate pairs analyzed in this manner is presented in Figure 2c.  
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Figure 2. Cyclic voltammograms of 1 mM ACT in the absence (dotted line) and presence of 20 mM 2a (a, 

dashed line), 20 mM 3a (b, dashed line), 20 mM 2b (a, solid line) and 20 mM 3b (b, solid line), scan rate 

10 mVs–1. TOF of ACT toward oxidation of alcohols and aldehydes (c), applied potential 0.7 V vs. 

Ag/AgCl. Reaction conditions: H2O/CH3CN (50:50) 0.05 NaHCO3, 0.05 M Na2CO3. 

 

 
Figure 3. Concentration profiles of alcohol, aldehyde and carboxylic acid in the course bulk electrolysis 

of 2a. Reaction Conditions: 1.5 1mmol and 5mol% ACT in aqueous carbonate buffer (15 mL), NaHCO3
 

(0.1 M) Na2CO3 electrolyte (0.1 M), pH 10, applied potential is 0.75 V vs. Ag/AgCl. 
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There is no clear trend for electronic effects on the rate of alcohol oxidation. For example, 4-

hydroxymethylpyridine 1a is less reactive than benzyl alcohol 4a, thus favoring the more electron-

rich alcohol. The opposite trend is observed with solketal/cyclopentanemethanol (2a/3a), for 

which the electron-deficient derivative 2a is more reactive. This discrepancy may be rationalized 

by the multi-step mechanism involved in oxoammonium-mediated alcohol oxidation (Scheme 2), 

in which electron-deficient substitutions should facilitate alcohol deprotonation during adduct 

formation with the oxoammonium species, while the same substituents should have the opposite 

effect on the hydride transfer step.2,52,53 For the aldehyde substrates, however, both substrate pairs, 

1b/4b and 2b/3b, show a higher rate with the more electron-deficient derivative (1b and 2b). These 

observations are readily rationalized by the need to generate the aldehyde hydrate in order to 

oxidize the aldehyde to the carboxylic acid. The hydration equilibrium is strongly favored by the 

presence of electron-withdrawing substituents.54 For example, hydration constants for aldehydes 

1b and 4b have been reported to be 50 and 0.01, respectively, under neutral conditions.55 To probe 

the latter effect further, electrochemical oxidation of 1b and 4b were compared at different pH 

values. High catalytic TOFs were observed for ACT-catalyzed oxidation of 1b, with the electron-

withdrawing pyridyl group (Figure 4a). On the other hand, little catalytic activity was observed for 

oxidation of 4b at pH 8.4 and 10. Only upon increasing the solution pH to 11.5 was significant 

catalytic current observed (Figure 4b), albeit still much lower than that observed with 1b at similar 

pH (Figure 4c). 

 

 
Scheme 2. Oxidation of primary alcohol and aldehyde hydrate by oxoammonium.   
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Figure 4.  Cyclic voltammograms of ACT in the absence (dotted line) and presence of 20 mM 1b (a) and 

20 mM 4b (b) at different pH values. The TOF of ACT for oxidation of 1b and 4b as a function of pH (c). 

Solution conditions: CH3CN/H2O (70:30), change in pH was obtained by varying the ratio of the NaHCO3 

to Na2CO3 electrolyte (total concentration 0.14 M). Scan rate is 10 mVs–1. 

 

These voltammetric studies were then extended to bulk electrochemical oxidation of a variety 

of other alcohols and aldehydes, using ACT as the catalyst (2.5 or 5 mol% loading) (Table 1). The 

optimized conditions employ aqueous bicarbonate/carbonate solution, avoiding the need for 

tetraalkylamonium salts or related less desirable electrolytes. A number of different benzylic and 

aliphatic alcohols and aldehydes were converted to the corresponding carboxylic acids, including 

a number of examples containing pyridine or quinoline units. For water-insoluble substrates, a 

mixture of acetonitrile/water was used (entries 7 and 8). The only undesirable byproduct observed 

from these reactions was a small amount of benzil (approx. 10% yield) in the oxidation 
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Table 1. The substrate scope for ACT mediated formation of carboxylic acids.a 

  
a Conditions: 1 mmol alcohol with 5 mol % ACT or 2 mmol aldehyde with 2.5% ACT, in 10 mL aqueous 

carbonate buffer 0.1 M NaHCO3, 0.1 M Na2CO3, pH 9.8-10.1, electrolysis at 0.7 V vs. Ag/AgCl. b 

Isolated yield. c 0.2 M Na2CO3, pH 11.5; 6% diketone (dimer) observed. d 40% acetonitrile was used for 

substrate solubility. e 0.2 M Na2CO3, pH 11.5; 6% benzil observed. 
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benzaldehyde and the analogous diketone in the oxidation of 3-pyridinecarboxaldehyde. By 

running the reaction at higher pH, for example, using only Na2CO3 as the electrolyte (pH 11.5), 

the yield of these dimeric side products decreased to approximately 6% (entries 4 and 8; see 

Section 4 of the Supporting Information for details).  

The effect of pH on electrochemical aminoxyl-mediated alcohol oxidation has been 

investigated in previous voltammetric studies,48,56,57 and faster rates are typically observed at 

higher pH. Similar behavior was observed in the present reactions, as revealed by voltammetric 

and chromonamperometric analysis of the pH dependence of ACT-mediated oxidation of 

substrates 1a, 1b, 4a, and 4b (see Figure 4 and Figures S11 and S12 in the Supporting Information). 

More thorough analysis of ACT-mediated oxidation of S-2a reveals the pH effects under bulk 

electrolysis conditions (Figure 5). Higher current and more-rapid conversion of the substrate were 

observed at pH 9.8 relative to the reaction conducted at pH 8.5; however, both experiments led to 

high yields of product (97% and 99% at pH 8.5 and 9.8, respectively) and complete retention of 

enantioselectivity (>99% ee). The latter observation is rationalized by the relatively short lifetime 

and/or build-up of the aldehyde intermediate during the reaction (cf. Figure 3).  
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Figure 5. Current traces observed (a and c) and associated charge consumed (b and d) during the bulk 

electrolysis of solketal at pH 9.8 (0.1 M NaHCO3, 0.1 M Na2CO3 for a) and 8.5 (0.2 M NaHCO3 for 

c). Reaction condition: 1 mmol solketal with 5 mol% ACT in 10 mL aqueous solution, applied potential 

0.7 V vs. Ag/AgCl. 

In order to demonstrate the synthetic utility and larger-scale viability of this approach, we 

targeted the preparation of the carboxylic acid precursor to levetiracetam [(2S)-2-(2-oxo-1-

pyrrolidinyl)butanamide], a generic drug commonly used to treat epilepsy and potentially 

beneficial for other central nervous system disorders like Alzheimer’s and autism.58 The chiral 

alcohol 12a is readily obtained via condensation of the corresponding aminoalcohol and 

butyrolactone, and oxidation of 12a to carboxylic acid 12c is one of several efficient routes that 

has been demonstrated for the synthesis of levetiracetam.59-61 Under the pH 9.8 conditions 

identified for the oxidation of solketal, voltammetric studies of 12a showed that ACT exhibits high 

catalytic activity (Figure 6, trace b), and the carboxylic acid 12c was obtained in 87% isolated 

yield and 87% ee following a 2 h bulk electrolysis (Figure 6, traces c and d). 

 

 

Figure 6. Possible synthetic route for the synthesis of levetiracetam and cyclic voltammograms of ACT in 

the absence (a) and presence of 13a (b). Conditions:  1 mM ACT, 20 mM substrate, scan rate 10 mV s–1. 
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13 

The current (c) and consumed charge (d) for the ACT catalyzed electrochemical oxidation. Reaction 

condition: 1 mmol 12a, 5 mol% ACT in 10 mL aqueous solution, applied potential 0.7 V vs. Ag/AgCl. 

Aqueous carbonate buffer, 0.1 M NaHCO3 and 0.1 M Na2CO3 (pH 9.8), was used for both voltammetric 

and electrolysis experiments. 

The reaction was then tested under different conditions and reaction scales (Table 2). Changes 

to the electrolyte concentration and reaction scale (1–14 mmol; entries 1–8) led to some variation 

in the reaction time, but quantitative conversion of alcohol to carboxylic acid was observed in all 

reactions. The alcohol 12a has good solubility in aqueous solution, allowing the concentration to 

be increased up to 0.6 M (@ 10 wt%) (entry 4). Both controlled current and controlled potential 

electrolysis were effective, and the reaction completion was indicated by either a sharp drop in the 

current during controlled potential operation (cf. Figure 6, trace c) or a jump in the potential during 

controlled current operation (see Figure S14 in Supporting Information). The reaction was also 

effective using the commercially available ElectraSyn 2.0 apparatus (entry 6).62 At pH 9.8, with a 

1:1 ratio of NaHCO3 and 0.1 M Na2CO3 (0.1 M each) as the electrolyte, a small drop in 

enantioselectivity was observed during oxidation of the substrate 12a (95% ee) to the product 12c 

(87% ee). Therefore, the reaction was re-optimized by using 1.1 equiv of NaHCO3 as the 

electrolyte (pH 8.5). (Note: Oxidation of H+ to H2 at the cathode counter electrode maintains the 

pH during the reactions.) This less basic medium led to higher retention of enantioselectivity, and 

oxidation of 12a on 40 g scale led to formation of 12c in 91% yield and 92% ee (Table 2, entry 

9).51  
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Table 2. Different reaction conditions for the oxidation of 13a to 13c. 

 
a NMR yield, trimethoxybenzene was used as internal standard. b The reaction was performed using 

ElectraSyn 2.0. c Isolated yield, d enantiomeric excess was determined using chiral HPLC. 

 

Conclusion 

The results described herein show that ACT-mediated electrochemical oxidation of alcohols and 

aldehydes provides an effective and scalable route to generate carboxylic acids, including 

substrates that contain heterocycles and stereocenters adjacent to the alcohol. The protocol is quite 

practical, as it uses aqueous reaction media, carbonate/bicarbonate base as the electrolyte, proceeds 

at room temperature, uses an inexpensive catalyst, and is amenable to larger scale applications. 

These features, combined with the environmentally benign nature of electrosynthesis, make it 

highly appealing approach for the preparation of carboxylic acids, for example, in the 

pharmaceutical industry. This feature is evident in the 40 g scale oxidation of 1-[(2S)-1-hydroxy-

2-butanyl]-2-pyrrolidinone. 

 

N O + NaHCO3 + H2O 5% ACT N
OH

O + CO2 + 2H2
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t (h) yielda
(ee)

1

2

3

4

5

7

8

9

1

3

3

6

14

1

3

245

10

10

10

10

10

10

70

1000

HCO3
– (1), CO3

2– (1)

HCO3
– (1), CO3

2– (1)

HCO3
– (0.33), CO3

2– (0.33)

HCO3
– (0.5), CO3

2– (0.5)

HCO3
– (1.1)

HCO3
– (1.1)

HCO3
– (1.1)

HCO3
– (1.1)

2.5

5.5

8.5

14

4

11

14

29

87%
(87%)

91%

93%

96%

88%

94%

93%

91%c

(92%)d

O
OH

12a (95% ee) 12c

6 1 10 HCO3
– (1.1) 4 91%b
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