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A novel method for the synthesis of 1,2,4-trisubstituted- or 1,2,3,4-tetrasubstituted-1,2,5,6-tetrahydro-
pyridine is presented. The process was carried out by the bromomethoxylation of 4-substituted-
1,2,5,6-tetrahydropyridines 1 with N-bromosuccinimide (NBS) in methanol, dehydrobromination with
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and boron trifluoride etherate (BF3-OEt2)-catalyzed cross cou-
pling of the corresponding enamine with trimethylsilyl-based nucleophiles. Homokainoid analogs were
also synthesized via the protocol.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionalized piperidines are prevalent scaffolds that serve as
crucial building blocks for numerous syntheses of natural products
and nitrogen heterocycles and have been previously reviewed.1

The syntheses of these types of compounds have been studied
extensively as the development of new drugs containing six-mem-
bered ring heterocycles becomes more and more common.2 It is
necessary to develop new routes for this class of compounds. The
substituted pipecolic acid or a related derivative (e.g., a-amino
nitrile) is a key ingredient in many therapeutic agents with pipe-
ridinyl substituent, as an important bioactive component in phar-
maceutical research.3 For example, 4-methylpipecolic acid is a
constituent of argatroban (MD-805), a potent inhibitor of the en-
zyme thrombin,4 and 4-phenylpipecolic acid is a component of
selective trypsin inhibitor MNAPPA (Fig. 1).5 In the general prepa-
ration of the pipecolic acid skeleton, the common synthetic
methods include intramolecular cyclization6 or a ring-closing
metathesis reaction of diallylamine.7

In preliminary studies,8 reactions were investigated regarding
the structural framework of 4-substituted-1,2,5,6-tetrahydropyri-
dine 1 that occurred during the preparation of other frameworks,
including benzonaphthyridine,8a 3-aryl-3-formylpyrrolidine,8b,c

b-aminoarylketone,8d benzo[f]isoquinoline,8e 4-aryl-3-fluoropi-
peridine,8f and others, as shown in Figure 2. Given the synthetic
advantages of this initial material, a strategy was developed for
the synthesis of 1,2,4-trisubstituted- or 1,2,3,4-tetrasubstituted-
1,2,5,6-tetrahydropyridines. An easy three-step synthetic
ll rights reserved.
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transformation of 4-aryl-2-cyano-1-sulfonyl-1,2,5,6-tetrahydro-
pyridines 2 or 2-allyl-4-aryl-1-sulfonyl-1,2,5,6-tetrahydropyri-
dines 3 from 4-aryl-1,2,5,6-tetrahydropyridines 1 involves: (1)
bromomethoxylation of skeleton 1 with NBS in methanol; (2)
dehydrobromination of 4-aryl-3-bromo-4-methyoxy-1,2,5,6-tet-
rahydropyridines 4 with DBU in tetrahydrofuran; and (3) a
BF3-OEt2-promoted reaction of the corresponding enamine with
trimethylsilyl-based nucleophiles.

2. Results and discussion

For the NBS-mediated bromomethoxylation of 4-aryl-1,2,5,6-
tetrahydropyridine 1, olefin 1a was initially chosen as the model
substrate, as shown in Table 1 and Scheme 1. Treatment of com-
pound 1a with NBS in methanol produced trans-1,2-methoxybro-
mide 4a. Then, some commercial tertiary amines were examined
in the dehydrobromination under a number of conditions, such
as prolonged reaction time, elevated temperature, and different
solvents. When the treatment of compound 4a involved aromatic
H3C

argatroban4 MNAPPA5

Figure 1. Structures of argatroban and MNAPPA.
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Table 1
Synthesis of compounds 2, 3, and 4a,b

NBS, MeOH, 

reflux, 2~3hN
R

21 , Y = CN
3, Y = Allyl

Ar

N
R

Ar

Y

1) DBU, THF, 
reflux, 10~14h

2) BF3-OEt2, TMSY, 
DCM, rt, 15min

4

N
R

Ar
Br

OMe

Entry 1 (Ar, R) 4, Yield 2, Yield 3, Yield

1 1a, Ph, Bs 4a, 72% 2a, 72% 3a, 74%
2 1b, 4-FPh, Bs 4b, 63% 2b, 78% 3b, 70%
3 1c, 3-CF3Ph, Bs 4c, 51% 2c, 70% 3c, 72%
4 1d 3-CF3–4ClPh, Bs 4d, 50% 2d, 72% 3d, 69%
5 1e, Ph, Bz 4e, 69% 2e, 60% 3e, 61%
6 1f, Ph, 4-MeOPhCO 4f, 62% 2f, 65% 3f, 61%
7 1g, Ph, (1S)-SO2Camphor 4g, 60% 2g, 70% 3g, 68%

a For the best reaction conditions: (1) olefins 1 (1.0 equiv), NBS (1.1 equiv), MeOH
(10 mL), reflux, 2–3 h, (2) methoxybromides 4 (1.0 equiv), DBU (10.0 equiv), THF
(10 mL), reflux, 10–14 h, (3) the resulting enamine, BF3-OEt2 (1 mL), TMSY (1 mL),
DCM (10 mL), RT, 15 min.

b The isolated products were >95% pure as determined by 1H NMR analysis.
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Scheme 1. The three-step reaction mechanisms from compound 1g to compound
2g or 3g.

Diagram 1. X-ray structure of compound 2g.

N

Ar

RN
R

Ar

H

Ar1

N
R

Ar
CHO

3-aryl-3-formylpyrrolidine

ref. 8a

ref. 8b-c

N
R

N

4-aryl-3-fluoropiperidine

benzo[f ]isoquinoline ref. 8d

NH

O

Ar

R
β-aminoarylketone

ref. 8e

this work

N

Ar

R
YN

R

ref. 8f

Ar

Ph

benzonaphthyridine

1,2,5,6-tetrahydropyridine

H

H

XF

1

Figure 2. Synthetic approaches to 4-Substituted-1,2,5,6-tetrahydropyridine.
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amine (4-dimethylaminopyridine or pyridine) in tetrahydrofuran
at reflux, 4-phenylpyridine was isolated as the major product
among the product mixture. For the treatment of compound 4a
with aliphatic amine (1,4-diazabicyclo[2.2.0]octane, diisopropy-
lethylemine or triethylamine) in tetrahydrofuran or dichlorometh-
ane at reflux, the starting material was recovered as the major
product. During the experimental dehydrobromination process,
when the treatment of compound 4a produced an excess amount
of amidine base (DBU) in tetrahydrofuran (at reflux for 10 h), the
corresponding 4-methoxy-4-phenyl-1,2,3,4-tetrahydropyridine
with enamino functional group produced a high yield.9 Noticeably,
this enamine was unstable.

Next, 2-cyano-4-phenyl-1,2,5,6-tetrahydropyridine 2a resulted
in a sole isomer through the coupling reaction of the enamine with
BF3-OEt2 in the co-solvent of trimethylsilyl cyanide (3 mL) and
dichloromethane (10 mL) at rt for 15 min.9 Attempts to perform
the reaction with the other trimethylsilyl-based nucleophiles
(i.e., the vinyl, phenyl, and 2-thienyl group) failed. The total syn-
thetic procedure was monitored through a thin layer chromatogra-
phy until the reaction was complete. This study showed a concise
and efficient synthetic approach to construct 2a from 4a with 72%
yield from the overall two-step protocol. With the above results in
mind, treatment of olefins 1a–g produced methoxybromides 4a–g
with 50–72% yields. Then, cyanides 2a–g were yielded with 60–
78% overall yields using the two-step protocol. The structural
framework of compound 2g was determined using single-crystal
X-ray analysis (Diagram 1).10 After changing the trimethylsilyl-
based nucleophile from cyano group to allyl group, 2-allyl-4-aryl-
1,2,5,6-tetrahydropyridines 3a–g were also isolated in 61–74%
yields by the above protocols. In particular, (10S,2S)-2g and
(10S,2R)-3g were isolated with a 70% yield (96% de) and a 68% yield
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Scheme 3. Synthesis of compound 9.
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Scheme 4. Synthesis of phenylhomokainoid 11a.
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(95% de) from olefin 4g, shown in entry 7. During the purification
process, the other isomer was not isolated under this condition. It
has been confirmed that the most likely explanation (see Scheme
1) was that the chelated boron intermediate A between the 10-car-
bonyl and sulfonyl group generated the chair-like conformation
affecting the enatioselective introduction of the trimethylsilyl-
based nucleophiles at the 2-position of piperidine ring system.
Our typical experimental procedure suggested a general and effi-
cient alternative to the preparation of chiral 2-substitued 4-phe-
nyl-1,2,5,6-tetrahydropyridines via the chiral camphorsulfone
auxiliary.

But, when BF3-OEt2-promoted coupling reaction of the enamine
group was treated without the addition of trimethylsilyl-based
nucleophiles (Equation 1), methyl 4-methoxybenzoate or benzo-
ate, and 4-phenylpyridine were isolated. The expected tricyclic
ring framework of pyridoisoindolone was not observed during
the process.

To further explore the application of skeletons 2 and 3, com-
pounds 2d and 3d were chosen as a model substrate to synthesize
methyl pipecolinate6,7 and coniine11 with 4-aryl substitutent, as
shown in Scheme 2. Under acidic hydrolysis, ester 5 was obtained
through the treatment of cyanide 2d with sulphuric acid in meth-
anol in65% yield. Hydrogenation of olefin 3d with hydrogen in the
presence of palladium produced 78% yield of compound 6. It pre-
sented a new method for preparing methyl 4-arylpipecolate and
4-arylconiine derivatives.

On the basis of the above mentioned two-step protocol, methyl
3-pipecolinoglutamate was chosen as the next target.12 Precursor 7
was provided from 3-hydroxypiperidine via N-protection, PCC-oxi-
dation, Wittig olefination, and DBU-mediated deconjugation
(Scheme 3).13 The overall yields of compounds 7a and 7b were
about 55% and 42%, respectively, from the 3-hydroxypiperidine.
BF3-OEt2-promoted, intermolecular reaction of the enamine 7a
and 7b with NBS or PhSeCl in the presence of trimethylsilyl cya-
nide was further transformed into tertiary bromide 8a or phenyl-
selenide 8b with 55% or 79% yield. Finally, diester 9 was
produced by the debromination of compound 8a and hydrolysis
of the resulting cyanoester with a 32% two-step yield.14 Interest-
ingly, the treatment of compound 8b in the above reaction condi-
tions resulted in compound 7b via reductive decyanation.15

Notably, this strategy was a reversible process between com-
pounds 7b and 8b.
BF3-OEt2, DCM, 

rt, 15 minN

Ph OMe

O

P

NP = H, OMe

O

P

Ph OMe

+

P = H, 36% / 40%
P = OMe, 41% / 43%

N

O
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Equation 1. BF3-OEt2-mediated reaction of enamines.
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Scheme 2. Synthesis of compounds 5 and 6.
Furthermore, treatment of compound 10 using the two-step
protocol converted it into 1,2,3,4-tetrasubstituted-1,2,5,6-tetrahy-
dropyridine 11a and 11b, as shown in Scheme 4. Compound 10
was previously synthesized by selenium dioxide-mediated trans-
methoxyhydroxylation of olefin 1 and was subsequently followed
by Jones oxidation and Wittig olefination.16 Skeleton 11 was simi-
lar to homokainoid.12 The two structures of phenylselenide 8b and
cyanoester 11a were determined using single-crystal X-ray
analysis.17

3. Conclusion

A synthetic methodology for producing a series of 1,2,4-trisub-
stituted- or 1,2,3,4-tetrasubstituted-4-aryl-1,2,5,6-tetrahydropyri-
dines has been successfully presented using NBS-mediated allylic
bromination, dehydrobromination with DBU, and BF3-OEt2-pro-
moted cross coupling involving trimethylsilyl-based nucleophiles.
Under the two-step protocol, homokainoids 9 and 11a were also
synthesized. Several structures of the target products were con-
firmed by X-ray crystal analysis. Further studies on the biological
evaluation of the desulfonated homokainoids are actively under-
way in laboratories.
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