

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com/loi/gpss20

Titanium-catalyzed hydrosilylation of olefins: A comparison study on Cp₂TiCl₂/Sm and Cp₂TiCl₂/ LiAlH₄ catalyst system

Xiaoling Yang, Ying Bai, Jiayun Li, Yu Liu, Jiajian Peng, Tianbo Li, Rui Lang & Botao Qiao

To cite this article: Xiaoling Yang, Ying Bai, Jiayun Li, Yu Liu, Jiajian Peng, Tianbo Li, Rui Lang & Botao Qiao (2018): Titanium-catalyzed hydrosilylation of olefins: A comparison study on Cp₂TiCl₂/Sm and Cp₂TiCl₂/LiAlH₄ catalyst system, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: 10.1080/10426507.2018.1487440

To link to this article: https://doi.org/10.1080/10426507.2018.1487440

View supplementary material 🕝

4	0
Ħ	H

Accepted author version posted online: 16 Jul 2018.

Submit your article to this journal 🕑

Article views: 2

View Crossmark data 🗹

Titanium-catalyzed hydrosilylation of olefins: A comparison study on Cp₂TiCl₂/Sm and Cp₂TiCl₂/LiAlH₄ catalyst system

Xiaoling Yang^a, Ying Bai^a*, Jiayun Li^a, Yu Liu^a, Jiajian Peng^a*, Tianbo

Li^b, Rui Lang^b and Botao Qiao^b

^aKey Laboratory of Organosilicon Chemistry and Material Technology of Ministry of

Education, Hangzhou Normal University, Hangzhou 311121, China

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011,

China

* E-mail: ybai@hznu.edu.cn (Y. Bai), jjpeng@hznu.edu.cn (J.J. Peng)

Abstract Hydrosilylation of olefins catalyzed by Cp_2TiCl_2/Sm (Cp = cyclopentadienyl) under solvent free conditions have been investigated. By using Cp_2TiCl_2/Sm as catalyst system, β -adducts and hydrogenation products were detected. Hydrosilylation of olefins catalyzed by $Cp_2TiCl_2/LiAlH_4$ under room temperature has also been studied. The influence of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) on Cp_2TiCl_2/Sm and $Cp_2TiCl_2/LiAlH_4$, respectively, indicated that hydrosilylation of olefins catalyzed with Cp_2TiCl_2/Sm went through a free radical reaction pathway while a coordination mechanism was applied for $Cp_2TiCl_2/LiAlH_4$ catalyst system. **Keywords** Hydrosilylation; Titanocene; Samarium; LiAlH_4; Mechanism; TEMPO

1. INTRODUCTION

Hydrosilylation of olefins is a superior method for preparing alkylsilanes and other organsilicon polymers, which is particularly useful for the construction of C-Si bond [1]. Hydrosilylation of olefins was effectively promoted by transition metal complexes. Among of the metal complexes used, noble metal complexes, e.g. Karstedt's catalyst (Pt complex with 1,3-divinyltetramethyldisiloxane) and Speier's catalyst (H₂PtCl₆ in *i*-PrOH solution) often exhibit high catalytic activity. However, low selectivity of the product as well as limitation for the substrates was observed. Additionally, the high cost of these noble metal complexes also limits their application in the industry process. Hence, the development of low-cost metal catalyst systems including an iron complex [2] and a cobalt complex [3] for hydrosilylation is highly desired but remains an ongoing challenge. Although these iron or cobalt catalysts exhibit excellent catalytic activity and/or regioselectivity, these complexes exhibit one or more limitations with regard to preparation and operational convenience. The group 4 transition metal complexes, used as hydrosilvlation catalysts, have been reported. Meyer et al [4] reported that a one-pot synthesis of functional polysilanes could be achieved through the dehydrogenative coupling of hydrosilanes and hydrosilylation reaction by using Cp₂Ti(OPh)₂ as catalyst. Gendre et al [5] reported that 1,4-hydrosilylation of dienes to allysilanes could be catalyzed by cheap and stable Cp₂TiF₂ complex, and Cp₂TiH(SiH₂Ph) generated from Cp₂TiF₂/PhSiH₃ and regenerated from titanocene "Cp₂Ti" oxidative addition with PhSiH₃ as the active catalytic center was assumed, thus low-valent titanium complex

plays an important role in the catalytic cycle. Silytitanocene complexes [6] and metallocene-type Ti(III) complexes [7] were synthesized and used as catalysts for the hydrosilylation of olefins. As is well-known, low-valent organotitanium complexes play a key role in the development of both synthetic organometallic and catalytic chemistry, and among the applications of low-valent titanium in organic synthesis, the reductive coupling of carbonyl compounds to produce alkenes (the McMurry reaction) is particularly prominent [8, 9]. As a simple low-valent titanium complex system, Cp₂TiCl₂/M (M=Zn [10], Al [11], Mg [12] and Sm [13-15]) has been applied as reduction system for several organic syntheses.

The catalytic hydroalumination of olefins made it possible to synthesize organoaluminum compounds following to find new promising approaches to the synthesis of alcohols, terminal acetylenes and other functional organic compounds [16-18]. Otsuji *et al* reported that titanium-aluminium complex $Cp_2Ti(AlH_3)_2$ generated from titanocene dichloride and excess LiAlH₄ promoted the catalytic hydroalumination of olefins with LiAlH₄ to give lithium alkylhydroaluminates [19]. The study on the synthesis of organoaluminum compounds indicated that Ti and Zr complexes were usually considered as catalysts [20]. On the other hand, the hydrosilylation of olefins with monosilane in the presence of LiAlH₄ had been reported [21].

Here we describe the hydrosilylation of olefins can be processed with catalytic amount of Cp_2TiCl_2/M (M = Zn, Al, Mg, Fe, Co, In, Mn, Ni and Sm) or $Cp_2TiCl_2/LiAlH_4$ (Scheme 1). The comparison of these two kinds of catalyst system

was studied.

[Insert Schemed 1]

2. RESULTS AND DISCUSSION

2.1 Cp₂TiCl₂/metal system for the catalytic hydrosilylation of 1-octene

In first experiments, the hydrosilylation of 1-octene with diphenylsilane catalyzed with Cp_2TiCl_2 /metal as a model reaction was studied. Initially the catalytic properties of Cp_2TiCl_2 , in the presence of a different metal powder for the hydrosilylation of 1-octene, were compared (Table 1). The results showed that Cp_2TiCl_2 /Sm exhibit the highest catalytic activity among Cp_2TiCl_2 /metals tested though all the Cp_2TiCl_2 /metal tested exhibit some catalytic activity. Both β -adduct **1** and hydrogenation product **3** were obtained by using Cp_2TiCl_2 /metal as catalyst, while neither α -adduct **2** nor dehydrosilylation product **4** was detected.

[Insert Table 1]

2.2 Influence of mole ratio of Cp₂TiCl₂/Sm on the catalytic hydrosilylation

Next, the influence of the mole ratio of Cp_2TiCl_2/Sm on the catalytic hydrosilylation has been investigated, and the results were summarized in Table 2. The results listed in Table 2 indicated that both the amount of catalyst and the mole ratio of Cp_2TiCl_2/Sm have influence on the catalytic activity. The hydrosilylation

reaction couldn't be conducted when only Cp_2TiCl_2 was used as catalyst (Entry 1, Table 2). Low conversion was obtained when the reaction was conducted in the presence of samarium (Entry 2, Table 2). When the amount of Cp_2TiCl_2 was 3 mol % based on 1-octene, catalytic activity was increased along with the increasing amount of samarium used from 1.5 mol % to 6 mol % (Entries 3-5, Table 2), however, further increasing the amount of samarium used resulted in the decreasing of the conversion (Entry 6, Table 2). When the amount of Cp_2TiCl_2 was 6 mol % based on 1-octene, conversion of 1-octene was decreased from 85.5 % to 65.9 % (Entry 4 *vs* Entry 7, Table 2).

[Insert Table 2]

2.3 Influence of reaction temperature on Cp2TiCl2/Sm catalyzed hydrosilylation

The influence of reaction temperature on hydrosilylation had been investigated, and the results were summarized in Table 3. It indicated that conversion of 1-octene increased along with the reaction temperature raising from room temperature to 120 °C. The reaction couldn't conducted at room temperature (Entry 1, Table 3). 27.7% conversion of 1-octene was obtained at 50 °C, and the conversion was increasing along with higher the reaction temperature. However, the best selectivity was obtained when the reaction was conducted at 100 °C (Entry 6, Table 3).

[Insert Table 3]

2.4 Scope of the substrates examination

By using Cp₂TiCl₂ /Sm as a catalyst, the scope of the substrates for the hydrosilylation was studied (Table 4). When Ph₂SiH₂ was used as hydrosilane, both straight chain fatty and aromatic olefins could conducted hydrosilylation reaction (Entries 1-3, Table 4), however, the addition of Ph₂SiH₂ with cyclohexene couldn't be conducted under the same conditions (Entry 4, Table 4). The steric hindrance of internal olefin should result in the lower reactive activity of cyclohexene. When (EtO)₃SiH and Ph₂MeSiH was used as hydrosilane, respectively, excellent conversion of 1-octene was obtained (Entries 5-6, Table 4). No reaction occurs with Et₃SiH as hydrosilane (Entry 7, Table 4). It indicated that some silane -dependence was observed for Cp₂TiCl₂/Sm catalyzed hydrosilylation of olefins.

[Insert Table 4]

2.5 Cp₂TiCl₂/LiAlH₄ catalyzed hydrosilylation of olefins

The hydrosilylation of olefins catalyzed with $Cp_2TiCl_2/LiAlH_4$ was studied (Table 5). 43.5% conversion of 1-octene was obtained by using LiAlH₄ (10 mol %) as catalyst at room temperature (Entry 1, Table 5). Improving the catalytic activity can be obtained by using $Cp_2TiCl_2/LiAlH_4$ as catalyst (Entries 2-7, Table 5). Among the olefins tested, both straight chain and aromatic olefins showed higher reactive for the hydrosilylation with diphenylsilane.

[Insert Table 5]

2.6 Mechanistic proposal

Related to the titanium-catalyzed hydrosilylation of olefins, two different mechanisms were proposed (Scheme 2) [1(a)]. The influence of charging sequence on ISCI the reaction had been investigated.

[Insert Scheme 2]

When the Cp₂TiCl₂/Sm was mixed with 1-octene and stirred at 100 °C for 6 h, and then hydrosilane was added and stirred for another 6 h, no product was detected, while 71.5% conversion was obtained when the Cp₂TiCl₂/Sm was initially mixed with diphenylsilane and stirred at 100 °C for 6 h, then 1-octene was added and continued to stirred for another 6 h. Therefore, it indicated that the formation of [Cp₂Ti]-SiR₃ through path (B) rather than the formation of olefin complex or alkyl complex through path (A) as the intermediate was proposed. Furthermore, the influence of TEMPO on the hydrosilylation by using Cp₂TiCl₂/Sm and Cp₂TiCl₂/LiAlH₄ as catalyst, respectively, had been investigated (Table 6). 76.8% conversion of 1-octene was obtained when 0.5 mol % TEMPO was added to the reaction mixtures (Entry 1, Table 6), and the reaction was completely suppressed when 3 mol % TEMPO was added (Entry 3, Table 6). In contrast, TEMPO can produce some positive effect on the hydrosilylation when Cp₂TiCl₂/LiAlH₄ was used as catalyst (Entries 4-6, Table 6). Thus a free radical mechanism was proposed for Cp_2TiCl_2/Sm catalyzed hydrosilylation (Scheme 3), while coordination catalytic pathway was proposed for $Cp_2TiCl_2/LiAlH_4$ catalyzed hydrosilylation (Scheme 4). The hydrogenation products may arise from direct transfer of H from an Si-H or Ti-H moity.

[Insert Scheme 3]

[Insert Scheme 4]

[Insert Table 6]

cilli

3. CONCLUSION

The hydrosilylation of olefins can be catalyzed by $Cp_2TiCl_2/metal$ (metal = Mg, Al, Zn, Sm, Fe, Mn, In, Co, Ni, etc.). And Cp₂TiCl₂/Sm exhibited excellent catalytic activity as well as selectivity. The hydrosilylation of olefins can also be carried out by using Cp₂TiCl₂/LiAlH₄ as catalyst. The difference of Cp₂TiCl₂/Sm and Cp₂TiCl₂/LiAlH₄ catalyst system had been examined. Though some silane -dependence was observed for both Cp2TiCl2 /Sm and Cp2TiCl2/LiAlH4 catalyzed hydrosilylation of olefins, the reaction could be conducted under milder conditions by Cp₂TiCl₂/LiAlH₄ catalyst. The negative effect **TEMPO** using as of (2,2,6,6-tetramethylpiperidine-1-oxyl) on the Cp₂TiCl₂/Sm catalyst system and some postive effect on the Cp₂TiCl₂/LiAlH₄ catalyst system, respectively, had been observed. The free radical pathway of hydrosilylation of olefins catalyzed with Cp₂TiCl₂/Sm was proposed, while the hydrosilylation of olefins through a coordination pathway by using Cp₂TiCl₂/LiAlH₄ as catalyst system.

4. EXPERIMENTAL

4.1 General information

Cp₂TiCl₂, zinc, aluminum, magnesium, iron, manganese, indium, cobalt, samarium, nickel powder, 1-octene, diphenylsilane, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), and other reagents were commercially available and were used without further purification.

Gas Chromatography: Trace DSQ GC Column = DB-5 30 m×2.5 mm×0.25 μ m, split = 50:1, flow = 1 mL min⁻¹ constant flow, inlet temperature = 260 °C, column temperature = 50 °C (hold 1 min) then 15 °C min⁻¹ up to 260 °C (hold 10 min). The Supplemental Materials contains sample ¹H and ¹³C NMR spectra of the known products (Figures S 1 – S 10)

4.2 General procedure for the catalytic hydrosilylation of olefins with Cp₂TiCl₂/metal

Cp₂TiCl₂ and metal powder were placed into a 10 mL round-bottomed flask equipped with a magnetic stir bar and flushed with nitrogen, and then olefin (4.0 mmol) and hydrosilane (4.4 mmol) were charged into the flask, and the resulting mixture was stirred at desired temperature for desired time. At the end of the reaction, the products were determined by GC/MS, and the conversion of alkene as well as the selectivity of products was determined by GC.

4.3 General procedure for the catalytic hydrosilylation of olefins with

Cp2TiCl2/LiAlH4

Cp₂TiCl₂ and LiAlH₄ were placed into a 10 mL round-bottomed flask equipped with a magnetic stir bar and flushed with nitrogen, and then 1.0 mL diethyl ether was added, the mixture was stirred for 30 min, then olefin (4.0 mmol) and hydrosilane (4.4 mmol) were charged into the flask, and the resulting mixture was stirred at room temperature for 1 h. The products were determined by GC/MS, and the conversion of alkene as well as the selectivity of products was determined by GC.

ACKNOWLEDGMENTS

This work was supported by Natural Science Foundation of Zhejiang Province (LY18B020012) and Zhejiang Provincial Technologies R&D Program of China (grant no. 2017C31105).

REFERENCES

- For reviews see: (a) Nakajima, Y. and Shimada, S. Hydrosilylation reaction of olefins: recent advances and perspectives, *RSC Adv.* 2015, *5*, 20603-20616; (b) Peng, J.J.; Bai, Y.; Li, J.Y.; Lai, G.Q. Recent Progress in Transition Metal Complexes Catalyzed Hydrosilylation of Carbon-Carbon Multiple Bonds, *Current Org. Chem.* 2011, *15*, 2802-2815; (c) Du, X.; Huang, Z. Advances in Base-Metal-Catalyzed Alkene Hydrosilylation, *ACS Catal.* 2017, *7*, 1227-1243.
- [2] (a) Tondreau, A.M.; Altienza, C. C. H.; Weller, K.J.; Nye, S.A.; Lewis, K.M.; Delis, J.G.P; Chirik, P.J. Iron Catalysts for Selective Anti-Markovnikov Alkene

Hydrosilylation Using Tertiary Silanes, *Science* **2012**, *335*, 567-570; (b) Noda, D.; Tahara, A.; Sunada, Y. and Nagashima, H. Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes, *J. Am. Chem. Soc.* **2016**, *138*, 2480-2483; (c) Greenhalgh, M.D.; Frank, D.J.; Thomas, S.P. Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron (II) Pre-Catalyst, *Adv. Synth. Catal.* **2014**, *356*, 584-590

- [3] (a) Sun, J.; Deng, L. Cobalt complex-catalyzed hydrosilylation of alkenes and alkynes, ACS Catal. 2016, 6, 290-300; (b) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J. and Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst, J. Am. Chem. Soc. 2015, 137, 13244-13247
- [4] Garcia, J.; Meyer, D.J.M.; Guillaneux, D.; Moreau, J.J.E.; Man, M.W.C. Investigation of titanium-catalysed dehydrogenative coupling and hydrosilylation of phenylhydrogenosilanes in a one-pot process, *J. Organomet. Chem.* 2009, 694, 2427-2433
- [5] Bareille, L.; Becht, S.; Cui, J. L.; Gendre, P. L.; Moïse, C. First Titanium-Catalyzed *anti*-1,4-Hydrosilylation of Dienes, *Organometallics* 2005, 24, 5802-5806

- [6] Harrod, J. F.; Yun, S. S. Silyltitanocene complexes as catalysts for the hydrogenation, isomerization, and hydrosilylation of olefins, *Organometallics* 1987, 6, 1381-1387
- [7] Eguchi, K.; Aoyagi, K.; Nakajima, Y.; Ando, W.; Sato, K.; Shimada, S.
 Synthesis and Structure of Metallocene-type Ti(III) Complexes, and Their
 Catalytic Activity towards Olefin Hydrosilylation Reactions, *Chem. Lett.* 2017, 46, 1262-1264
- [8] For reviews see: (a) McMurry, J.E. Carbonyl-coupling reactions using low-valent titanium, *Chem. Rev.* 1989, 89, 1513-1524; (b) Sato, F.; Okamoto, S. The divalent titanium complex Ti (Oi-Pr) 4/2 *i*-PrMgX as an efficient and practical reagent for fine chemical synthesis, *Adv. Synth. Catal.* 2001, *343*, 759-784; (c) Fürstner, A.; Bogdanović, B. New Developments in the Chemistry of Low-Valent Titanium, *Angew. Chem. Int. Ed.* 1996, *35*, 2442-2469
- [9] (a) Hick, F. A.; Berk, S. C.; Buchwald, S. L. A practical titanium-catalyzed synthesis of bicyclic cyclopentenones and allylic amines, *J. Org. Chem.* 1996, *61*, 2713-2718; (b) Otten, E.; Batinas, A.A.; Meetsma, A.; Hessen, B. Versatile coordination of cyclopentadienyl-arene ligands and its role in titanium-catalyzed ethylene trimerization, *J. Am. Chem. Soc.* 2009, *131*, 5298-5312
- [10] Green, M.L.H.; Lucas, C.R. Some d bis-π-cyclopentadienyl titanium complexes with nitrogen or phosphorus ligands, J. Chem. Soc., Dalton. Trans. 1972, 1000-1003

- [11] Coutts, R.S.P.; Wailes, P.C.; Martin, R.L. Dimeric dicyclopentadienyltitanium(III) halides, J. Organomet. Chem. 1973, 47, 375-382
- [12] Nelsen, T.R.; Tufariello, J.J. Reduction of organic halides by the system titanocene dichloride-magnesium, *J. Org. Chem.* **1975**, *40*, 3159-3160
- [13] Huang, Y.; Liao, P.; Zhang, Y. A Facile Reduction Procedure for Nitroarenes with Cp₂TiCl₂/Sm System, Synth. Commun. 1997, 27, 1059-1063
- [14] Huang, Y.; Guo, H.; Zhang, Y. Wang, Y. Reduction of arylsulfonyl derivatives with the Sm/Cp₂TiCl₂ system. A novel method for preparation of disulfides, J. *Chem. Res.(S)* 1999, 214-215
- [15] Zhang, Y.; Yu, Y.; Bao, W. The Reduction of Sulfoxides and Active Halides with Cp₂TiCl₂/Sm System, Synth. Commun. 1995, 25, 1825-1830
- [16] Sato, F.; Kodama, H.; Sato, M. A convenient route from 1-alkenes to terminal acetylenes via hydroalumination reactions, *Chem. Lett.* **1978**, *7*, 789-790
- [17] Isagawa, K.; Sano, H.; Hattori, M.; Otsuji, Y. Catalytic hydroboration of olefins by use of titanium complex as catalyst, *Chem. Lett.* **1979**, *8*, 1069-1072
- [18] Maruoka, K.; Sano, H.; Shinoda, K.; Nakai, S.; Yamamoto, H. Organoborane-catalyzed hydroalumination of olefins, J. Am. Chem. Soc. 1986, 108, 6036-6038
- [19] (a) Isagawa, K.; Tatsumi, K. and Otsuji, Y. Hydrometalation and isomerization of olefins by the titanium complex, *Chem. Lett.* **1976**, *5*, 1145-1148; (b)

Isagawa, K.; Tatsumi, K.; Kosugi H. and Otsuji, Y. Roles of titanium complex in the catalytic hydrometalation and isomerization of olefins, *Chem. Lett.* **1977**, *6*, 1017-1020

- [20] Dzhemilev, U. M.; Ibraqimov, A. G. Metal complex catalysis in the synthesis of organoaluminium compounds, *Russ. Chem. Rev.* **2000**, *69*, 121-135
- [21] Kobayashi, M.; Itoh, M. Hydrosilylation of olefins with monosilane in the

Scheme 1 Hydrosilylation of olefins catalyzed with $Cp_2 TiCl_2\!/M$ or $LiAlH_4$

Scheme 2 Proposed mechanism of titanium-catalyzed hydrosilylation of olefin

Scheme 3 Proposal mechanism for Cp₂TiCl₂/Sm catalyzed hydrosilylation

Scheme 4 Proposal mechanism for Cp2TiCl2/LiAlH4 catalyzed hydrosilylation

Accepted Manuschi

Enters	Matal	Conv.		Selectivity (%)				
Entry	Metal	(%)	1	2	3	4		
1	Mg	80.1	88.1	/	11.9	/		
2	Al	5.4	100	/	/	/		
3	Zn	57.4	67.1	/	32.9	/		
4	Sm	89.0	87.6	/	12.4	/		
5	Fe	65.0	83.5	/	16.5	1		
6	Mn	78.9	88.5	/	11.5			
7	In	70.5	86.0	1	14.0	1		
8	Co	32.9	77.2		22.8	/		
9	Ni	76.5	89.0	φ	11.0	/		

Table 1 Hydrosilylation of 1-octene catalyzed with Cp₂TiCl₂/metal

 $\label{eq:Reaction conditions: 1-octene 4.0 mmol, $Ph_2SiH_24.4 mmol, $Cp_2TiCl_23mol\%, $Cp_2TiCl_23mol\%, $Ph_2SiH_24.4 mmol, $Cp_2TiCl_23mol\%, $Ph_2SiH_24.4 mmol}$ }$

Metal 6 mol %, 100 °C, 12h,

Accek

Entry	Cp ₂ TiCl ₂ (Sm	Conv.		Selec	tivity(%)	
	mol%)	(mol%)	(%)	1	2	3	4
1	3	/	/	/	/	/	/
2	/	3	8.2	100	/	/	/
3	3	1.5	77.7	88.4	/	11.6	/
4	3	3	85.5	87.5	/	12.5	\sim
5	3	6	89.0	87.6	/	12.4	
6	3	9	88.6	86.1	1	13.9	/
7	6	3	65.9	75.1	/	24.9	/

Table 2 Influence of mole ratio of Cp₂TiCl₂/Sm on the catalytic hydrosilylation

Reaction conditions: 1-octene 4.0 mmol, Ph₂SiH₂ 4.4 mmol, 100 °C, 12h

Receied

Enter	Temp.	Conv.		Selectivity (%)			
Entry	(°C)	(%)	1	2	3	4	
1	rt	/	/	/	/	/	
2	50	27.7	67.9	/	32.1	/	
3	70	32.7	70.0	/	30.0	/	
4	80	75.9	77.7	/	22.3		
5	90	78.5	87.2	/	12.8		
6	100	89.0	87.6	/	12.4		
7	110	91.0	85.2		14.8	/	
8	120	93.5	84.3	ρ	15.7	/	

Table 3 Influence of reaction temperature on Cp_2TiCl_2/Sm catalyzed hydrosilylation

Reaction conditions: 1-octene 4.0 mmol, $Ph_2SiH_2 4.4 \text{ mmol}$, $Cp_2TiCl_2 3 \text{ mol} \%$, Sm

6 mol %, 12h

%, 12h

Table 4 Substrates screened examination

Entry		Silane	Conv. Selectivity (%)				
	Olehin		(%)	1	2	3	4
1^{a}	1-hexene	Ph ₂ SiH ₂	96.5	89.8	/	10.2	/
2 ^a	styrene	Ph ₂ SiH ₂	100	73.5	/	26.5	/
3	1-dodecene	Ph ₂ SiH ₂	69.0	82.5	/	17.5	/
4	cyclohexene	Ph ₂ SiH ₂	/	/	/		Ĭ
5	1-octene	(EtO) ₃ SiH	76.9	41.1	1	58.9	/
6	1-octene	Ph ₂ MeSiH	76.8	84.1	G	15.9	/
7	1-octene	Et ₃ SiH	/		5	/	/

^a Reaction temperature: 90 °C

Accepter

Reaction conditions: olefin 4.0 mmol, silane 4.4 mmol, Cp₂TiCl₂ 3 mol %, Sm 6

mol %, 100 °C, 12h

Entire	Cp ₂ TiCl ₂	LiAlH ₄	Olefin	Olefin Silane		Selectivity (%)			
Lifti y	(mol%)	(mol%)	Olenn	Shane	(%)	1	2	3	4
1	/	10	1-octene	Ph ₂ SiH ₂	43.5	87.4	/	12.6	/
2	2	4	1-octene	Ph_2SiH_2	44.0	87.5	/	12.5	/
3	3	6	1-octene	Ph ₂ SiH ₂	84.4	85.1	/	14.9	
4	4	8	1-octene	Ph ₂ SiH ₂	92.3	79.0	/	13.3	
5	5	10	1-octene	Ph ₂ SiH ₂	99.2	85.3		13.9	/
6	5	10	1-hexene	Ph_2SiH_2	100	90.6		9.4	/
7	5	10	1-dodecene	Ph ₂ SiH ₂	45.7	76.4	/	23.6	/
8	5	10	styrene	Ph ₂ SiH ₂	100	47.0	/	12.3	40.7
9	5	10	cyclohexene	Ph ₂ SiH ₂	/	/	/	/	/
10	5	10	1-octene	Ph ₂ MeSiH	76.8	84.1	/	15.9	/
11	5	10	1-octene	(EtO) ₃ SiH	37.3	65.5	/	34.5	/
12	5	10	1-octene	Et ₃ SiH	/	/	/	/	/

Table 5 $Cp_2TiCl_2/LiAlH_4$ catalyzed hydrosilylation of olefins

Reaction conditions: olefin 4.0 mmol, hydrosilane 4.4 mmol, Et_2O 1.0 mL, rt, 1 h

Entry Conditions	Conditions	TEMPO	Conv.	Selectivity (%)				
	Conditions	(mol %)	(%)	1	2	3	4	
1	Cp ₂ TiCl ₂ 3	0.5	76.8	84.9	/	15.1	/	
2	mol %, Sm 6	2	73.8	85.0	/	15.0	/	
	mol %,							
3	100°C,12h	3	/	/	/	/		
						Ś	R	
4	Cp ₂ TiCl ₂ 5	3	90.4	82.8	1	17.2	/	
5	mol %, LiAlH ₄	5	91.5	85.7	/	14.3	/	
- 3	10 mol %,	10	0.7.4			11.0	,	
6"	r.t.,1h	10	97.1	88.1		11.9	/	

Table 6 Influence of TEMPO on the catalytic hydrosilylation

Reaction conditions: 1-octene 4.0 mmol, Ph₂SiH₂ 4.4 mmol,

^{*a*}12h.

Accepter

Accepted Manuschi