Accepted Manuscript

 I_2O_5 /DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates leading to α -hydroxyketone phosphates

Chunli Liu, Wei Wei, Daoshan Yang, Yuanyuan Zheng, Yanshuai Bi, Min Chen, Hua Wang

PII: S0040-4020(15)01054-6

DOI: 10.1016/j.tet.2015.07.017

Reference: TET 26962

To appear in: *Tetrahedron*

Received Date: 18 May 2015

Revised Date: 2 July 2015

Accepted Date: 5 July 2015

Please cite this article as: Liu C, Wei W, Yang D, Zheng Y, Bi Y, Chen M, Wang H, I_2O_5 /DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates leading to α -hydroxyketone phosphates, *Tetrahedron* (2015), doi: 10.1016/j.tet.2015.07.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

I_2O_5/DBU mediated direct α - phosphoryloxylation of ketones with H- phosphonates leading to α -hydroxyketone phosphates	Leave this area blank for abstract info.			
Chunli Liu, Wei Wei, Daoshan Yang, Yuanyuan Zheng, Yanshuai Bi, Min Chen, Hua Wang				
A simple and convenient procedure has been developed for the construction of α -hydroxyketone phosphates via I ₂ O ₅ /DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates.				
$\begin{array}{c} 0 \\ R^{1} \\ H \\ R^{2} \end{array} + \begin{array}{c} 0 \\ H \\ H \\ R^{3} \end{array} + \begin{array}{c} 0 \\ H_{2}O_{5} \\ H_{3}CN, 80\% \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ R^2 \\ R^3 \end{array}$			
	20 examples up to 80% yields			

Tetrahedron journal homepage: www.elsevier.com

I_2O_5 /DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates leading to α -hydroxyketone phosphates

Chunli Liu^a, Wei Wei^a,* Daoshan Yang^a, Yuanyuan Zheng^a, Yanshuai Bi^a, Min Chen^a, Hua Wang^{a,*}

^a The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: α-Phosphoryloxylation Ketones H-Phosphonates α-hydroxyketone phosphates Iodine pentoxide A simple and convenient procedure has been developed for the construction of α -hydroxyketone phosphates via I₂O₅/DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates. This new reaction proceeds through three steps involving α -iodination of ketones, oxidation of H-phosphonates, and nucleophilic substitution of α -iodo ketones to access a series of α -hydroxyketone phosphates of biological importance.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Organophosphates are key structural motifs in living organisms such as DNA, RNA, ATP, and cell membranes.¹ They are also the important elements in drug discovery² and many agrochemicals such as insecticides and herbicides.³ Moreover, some biologically active phosphates analog can be employed as the extremely useful tools in investigating mechanistic details of various enzymatic systems.⁴ In particular, α -hydroxyketone phosphates have attracted great interest of chemists serving as sugar analogues⁵ and the key intermediates in the synthesis of phospholipid and oligonucleotide⁶ due to the selective hydrolytic removal of the ketoxide motif can be achieved under mildly basic conditions.⁷ Generally, α -hydroxyketone phosphates are prepared by the treatment of 2,2,2-trialkoxy-1,3,2-dioxaphospholen with hydrogen chloride⁸ or the *a*-phosphoryloxylation of ketones with the preformed [hydroxy(phosphoryloxy)iodo]arenes.9 Alternative procedures have also been developed such as the conversion of alkynes terminal to ketol phosphates with idolbenzene,10 [hydroxy((bis(pheny1oxy)phosphory1)oxy) oxyphosphorylation of silyl enol ethers with phosphoric acid and *p*-(dif1uoroiodo)toluene,¹¹ and iodobenzene promoted aphosphoryloxylation of ketones with (RO)₂PO₂H in the presence of stoichiometric amounts of m-chloroperbenzoic acid (m-CPBA¹². However, most of these methods could suffer from some limitations such as extra steps for preparation of active precursors, low atom economy, the poor substrate scope, potentially dangerous peroxide oxidants, toxic chemical wastes,

or low yields. Therefore, the development of simple, convenient and efficient methods for preparing ketol phosphates is still highly desirable in synthetic and pharmaceutical chemistry.

Iodine pentoxide (I₂O₅, IP), which are safe, reliable and promising single-electron oxidative surrogates for organic hypervalent iodines, have been recently employed for various organic transformations due to their particular stability, ready availability, and cost-effectiveness.¹³ As part of our continuous interest in metal-free synthetic transformations,¹⁴ here, we wish to report a new I₂O₅/DBU-mediated one-pot protocol for the synthesis of α -hydroxyketone phosphates via direct α phosphoryloxylation reaction of ketones with H-phosphonates (Eq. 1). The present methodology provides a convenient and highly attractive approach to a variety of α -hydroxyketone phosphates in moderate to good yields under the metal and peroxide-free conditions.

2. Results and discussion

Initially, the model reaction of propiophenone **1a** with $(EtO)_2P(O)H$ **2a** was performed aiming to screen various iodine reagents in the presence of DABCO (1,4-Diazabicyclo[2.2.2]octane) in CH₃CN at 80°C. Gratifyingly, the desired ketol phosphate **3aa** was obtained in 33% yield when I₂O₅ was tested (Table 1, entry 5). Other iodine reagents such as

^{*} Corresponding author. Tel.:+86 537 4458317; fax:+86 537 4458317;

E-mail: weiweiqfnu@163.com; huawang_qfnu@126.com

Table 1.

Tetrahedron

Optimization of the reaction conditions^a

O Ia	0, 0, + H ^{.P} 0,	lodine reag Base, solve	ent O ant 3aa	
Entry	Iodine reagent	Base	Solvent	Yield (%) ^b
1	I_2	DABCO	CH ₃ CN	0
2	KI	DABCO	CH ₃ CN	0
3	NaI	DABCO	CH ₃ CN	0
4	TBAI	DABCO	CH ₃ CN	0
5	I_2O_5	DABCO	CH ₃ CN	33
6	I_2O_5	DBU	CH ₃ CN	80
7	I_2O_5	Et ₃ N	CH ₃ CN	0
8	I_2O_5	KOH	CH ₃ CN	trace
9	I_2O_5	Na ₂ CO ₃	CH ₃ CN	0
10	I_2O_5	Cs_2CO_3	CH ₃ CN	0
11	I_2O_5	DBU	THF(reflux)	51
12	I_2O_5	DBU	1,4-dioxane	58
13	I_2O_5	DBU	DCE	63
14	I_2O_5	DBU	DME	68
15	I_2O_5	DBU	Toluene	55
16	I_2O_5	DBU	EtOH	0
17	I_2O_5	DBU	DMF	0
18	I_2O_5	DBU	DMSO	0
19	I_2O_5	DBU	H_2O	0
20	I_2O_5	DBU	CH ₃ CN	0^c
21	I_2O_5	DBU	CH ₃ CN	52^d
22		DBU	CH ₃ CN	0
23	I_2O_5		CH₃CN	0

^a Reaction conditions: **1a** (0.25 mmol), **2a** (0.75 mmol), iodine reagent (1 equiv), base (1 equiv), solvent (2 mL), 80°C, 48 h. TBAI=(n-Bu)₄NI; DME: 1,2-Dimethoxyethane, DCE: 1,2-Dichloroethane.

^b Isolated yields based on **1a**.

° 25°C

^d 60°C.

I₂, KI, NaI, and TBAI did not promote the formation of product 3aa (Table 1, entries 1-4). Further optimization of bases suggested that DBU (1,8-diazabicycloundec-7-ene) stood out to be the best choice, while the others such as Et₃N, KOH, Na₂CO₃, Cs_2CO_3 and DABCO were less effective (Table 1, entries 6-10). Also, the effects of various solvents were investigated. Among a range of solvents examined, CH₃CN was found to be the optimized reaction medium for this transformation, while THF, DME, 1,4-dioxane, DCE, and toluene performed with moderate efficiency (Table 1, entries 11-15). The reaction did not occur in EtOH, DMF, DMSO, and H₂O (Table 1, entries 16-19). Moreover, none of the desired product 3aa was obtained when the reaction was performed at room temperature (Table 1, entry 20). The reaction efficiency was obviously improved with increasing of the reaction temperature and the best yield (80%) was achieved when the reaction proceeded at 80°C (Table 1, entries 6, 20-21). Additionally, no product was detected when the

Results for I₂O₅/DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates^{*ab*},

 a Reaction conditions: 1a (0.25 mmol), 2a (0.75 mmol), I_2O_5 (0.25 mmol), DBU (0.25 mmol), CH_3CN (2 mL), 80°C, 48 h.

^b Isolated yields based on 1.

reaction was conducted in the absence of I_2O_5 or DBU (Table 1, entries 22 and 23).

With the optimized conditions in hand, we next explored the scope and generality of this α -phosphoryloxylation reaction (Table 2). In general, propiophenone derivatives with both electron-donating and electron-withdrawing substituents on the benzene ring could be smoothly transformed into the desired products in moderate to good yields (**3aa-3fa**). Notably, halo substituents including F, Cl, and Br could be tolerated in this procedure, thus providing chances for further modification of these compounds (**3da-3fa**). Heteroaromatic ketone such as 1-(thiophen-2-yl)propan-1-one was also suitable for this process, with the corresponding product in 64% yield (**3ga**). Moreover, long chain alkyl substituted aromatic ketone did not hinder the reaction, affording the desired products in good yields (**3ha-3ja**).

Nevertheless, none of the desired product was obtained when dialkyl substituted aromatic ketone such as 2-methyl-1phenylpropan-1-one was used as the substrate, which might be caused by the steric effect. Unfortunately, when 1,2diphenylethanone and acetophenone were used as the substrates, the corresponding products were obtained in relatively low yields (**3ka** and **3la**). With respect to the H-phosphonates, dimethyl, diisopropyl, dibutyl, and dibenzyl phosphonates were discovered to be suitable substrates in addition to **2a**, which delivered the desired α -phosphoryloxylation products in moderate to good yields. In addition, this synthetic methodology was extended to Ph₂P(O)H, showing the corresponding products in good yields (**3af-3ff**).

In order to understand the detailed reaction mechanism, several control experiments were performed as shown in Eq. 2-5. When propiophenone **1a** independently reacted with I₂O₅, the 2-iodo-1-phenylpropan-1-one **4a** could be obtained in 85% yield (Eq. 2). On the other hand, the diethyl hydrogen phosphate **5a** was isolated in 82% yield when the reaction of diethyl phosphonate **2a** with I₂O₅ was performed in CH₃CN at 80°C (Eq. 3). Furthermore, treatment of 2-iodo-1-phenylpropan-1-one **4a** with diethyl hydrogen phosphate **5a** led to the formation of desired product **3aa** in the presence of DBU (Eq. 4). Nevertheless, the direct reaction of propiophenone **1a** with diethyl hydrogen phosphate **5a** did not give the desired α -phosphoryloxylation product **3aa** (Eq. 5). The above results indicated **4a** and **5a** might be two key intermediates in the present reaction system.

On the basis of the above results and previous reports,^{13,15} a tentative reaction pathway was proposed in Scheme 1. Initially, α -iodination of propiophenone **1** with I₂O₅ formed the key intermediate α -iodo ketone **4a**, and the oxidation of diethyl phosphonate **2a** with I₂O₅ produced the corresponding diethyl

Scheme 1. Tentative reaction pathway

3. Conclusions

In conclusion, a novel and convenient synthesis method has been developed for the one-pot construction of α -hydroxyketone phosphates via direct α -phosphoryloxylation of ketones with Hphosphonates simply by using I₂O₅/DBU system. This reaction was constituted by three steps involving α -iodination of ketones, oxidation of H-phosphonates, and nucleophilic substitution of α iodo ketones. A series of biologically important ketol phosphates could be conveniently and efficiently obtained in moderate to good yields from readily-available starting materials. The present protocol is expected to expand the potential applications of α hydroxyketone phosphatess in the pharmaceutical and synthetic chemistry.

4. Experimental section

4.1. General remarks

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Alfa Aesar and Beijing Ouhe Chemical Company and used as received without further purification unless otherwise stated. ¹H NMR, ¹³C NMR and ³¹P NMR were recorded in CDCl₃ on a Bruker Avance III 400 spectrometer with TMS as internal standard (400 MHz¹H, 100 MHz¹³C, 162 MHz³¹P) at room temperature, the chemical shifts $\left(\delta\right)$ were expressed in ppm and J values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh).

4.2. Experimental Procedures:

General procedure for I_2O_5/DBU mediated direct α -phosphoryloxylation of ketones with H-phosphonates.

In a sealed tube (25 mL), ketones **1** (0.25 mmol), Hphosphonates **2** (0.75 mmol), I_2O_5 (0.25 mmol), DBU (0.25 mmol), and CH₃CN (2 mL) were added. The reaction vessel was allowed to stir at 80 °C for 48 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **3**.

The reaction of propiophenone 1a with I_2O_5 .

In a sealed tube (25 mL), propiophenone **1a** (0.25 mmol), I_2O_5 (0.25 mmol), and CH_3CN (2 mL) were added. The reaction vessel was allowed to stir at 80 °C for 48 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired 2-iodo-1-phenylpropan-1-one **4a** in 85% yield.

The reaction of diethyl phosphonate 2a with I_2O_5 .

In a sealed tube (25 mL), diethyl phosphonate **2a** (0.25 mmol), M I_2O_5 (0.25 mmol), and CH₃CN (2 mL) were added. The reaction vessel was allowed to stir at 80 °C for 12 h. After the reaction, the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired diethyl hydrogen phosphate **5a** in 82% yield.

The reaction of 4a and 5a in the presence of DBU.

To a mixture of 2-iodo-1-phenylpropan-1-one **4a** (0.25 mmol), diethyl hydrogen phosphate **5a** (0.75 mmol) and DBU (0.25 mmol) in a 25 mL round-bottomed flack at room temperature, was added the CH₃CN (2 mL). The reaction vessel was allowed to stir at 80 °C for 12 h. After the reaction, the solution was concentrated in vacuum, the desired product **3aa** was obtained in 83% yield.

The reaction of 1a and 5a in the presence of DBU.

To a mixture of propiophenone **1a** (0.25 mmol), diethyl hydrogen phosphate **5a** (0.75 mmol) and DBU (0.25 mmol) in a 25 mL round-bottomed flack at room temperature, was added the CH₃CN (2 mL). The reaction vessel was allowed to stir at 80°C for 12 h. After the reaction, the solution was concentrated in vacuum, none of the desired product **3aa** was detected.

Diethyl 1-oxo-1-phenylpropan-2-yl phosphate, compound **3aa** was obtained in 80% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.99 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.9 Hz, 2H), 5.80-5.73 (m, 1H), 4.16-4.09 (m, 4H), 1.63 (d, J = 6.8 Hz, 3H), 1.35 (dt, $J_I = 7.1$ Hz, $J_2 = 0.9$ Hz, 3H), 1.28 (dt, $J_I = 7.1$ Hz, $J_2 = 0.9$ Hz, 3H); 1³C NMR (CDCl₃, 100 MHz, ppm): δ 196.4 (d, J = 4.8 Hz), 134.3, 133.7, 130.9, 128.8, 74.6 (d, J = 5.4 Hz), 64.1 (q, J = 6.0 Hz), 19.4 (d, J = 5.0 Hz), 16.0 (t, J = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.88; HRMS calc. for C₁₃H₁₉O₅PNa (M+Na)⁺, 309.0868; found, 309.0871.

Diethyl 1-oxo-1-p-tolylpropan-2-yl phosphate, compound **3ba** was obtained in 70% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.88 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.78-5.70 (m, 1H), 4.16-4.07 (m, 4H), 2.42 (s, 3H), 1.61 (d, J = 6.8 Hz, 3H), 1.33 (dt, $J_1 = 7.1$ Hz, $J_2 = 0.8$ Hz, 3H), 1.28 (dt, $J_1 = 7.1$ Hz, $J_2 = 0.8$ Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 195.8 (d, J = 4.8 Hz), 144.6, 131.6, 129.4, 128.9, 74.5 (d, J = 5.4 Hz), 64.1 (q, J = 6.0 Hz), 21.7, 19.5 (d, J = 5.1 Hz), 16.0 (t, J = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.91; HRMS calc. for C₁₄H₂₁O₅PNa (M+Na)⁺, 323.1024; found, 323.1028.

Diethyl 1-(4-methoxyphenyl)-1-oxopropan-2-yl phosphate, compound **3ca** was obtained in 68% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): *δ* 7.98 (d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 5.75-5.68 (m, 1H), 4.15-4.07 (m, 4H), 3.88 (s, 3H), 1.61 (d, J = 6.8 Hz, 3H), 1.33 (dt, $J_1 = 7.0$ Hz, $J_2 = 0.8$ Hz 3H), 1.27 (dt, $J_1 = 7.0$ Hz, $J_2 = 0.8$ Hz 3H), 1.27 (dt, $J_1 = 7.0$ Hz, $J_2 = 0.8$ Hz 3H), 1.27 (dt, $J_1 = 7.0$ Hz, $J_2 = 0.8$ Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): *δ* 194.6 (d, J = 4.8 Hz), 163.9, 131.1, 127.0, 114.0, 74.3 (d, J = 5.4 Hz), 64.0 (q, J = 6.0 Hz), 55.5, 19.5 (d, J = 5.0 Hz), 16.0 (t, J = 6.5 Hz); ³¹P NMR (162 MHz, CDCl₃): *δ* -2.01; HRMS calc. for C₁₄H₂₁O₆PNa (M+Na)⁺, 339.0973; found, 33.9.0977.

Diethyl 1-(4-fluorophenyl)-1-oxopropan-2-yl phosphate, compound 3da was obtained in 66% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.06-8.03 (m, 2H), 7.17 (m, 2H), 5.73-5.66 (m, 1H), 4.16-4.07 (m, 4H), 1.62 (d, J = 6.8 Hz, 3H), 1.34 (dt, $J_I = 7.1$ Hz, $J_2 = 1.0$ Hz, 3H), 1.28 (dt, $J_I = 7.1$ Hz, $J_2 = 1.0$ Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 194.8 (d, J = 5.0 Hz), 166.0 (d, J = 254.5 Hz), 431.6 (d, J = 9.4 Hz), 130.6 (d, J = 3.0 Hz), 115.9 (d, J = 21.8 Hz), 74.5 (d, J = 5.4 Hz), 64.1 (q, J = 6.0 Hz), 19.2 (d, J = 5.0 Hz), 16.0 (t, J = 6.7 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.88; HRMS calc. for C₁₃H₁₈FO₅PNa (M+Na)⁺, 327.0774; found, 327.0770.

1-(4-Chlorophenyl)-1-oxopropan-2-yl diethyl phosphate, compound **3ea** was obtained in 65% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.96 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 5.72-5.65 (m, 1H), 4.16-4.09 (m, 4H), 1.62 (d, J = 6.8 Hz, 3H), 1.35 (dt, $J_I =$ 7.1 Hz, $J_2 = 0.7$ Hz, 3H), 1.29 (dt, $J_I =$ 7.1 Hz, $J_2 = 0.7$ Hz, 3H); 1.3° (NMR (CDCl₃, 100 MHz, ppm): δ 195.2 (d, J = 4.9 Hz), 140.2, 132.5, 130.3, 129.1, 74.6 (d, J = 5.4 Hz), 64.2 (q, J = 6.0 Hz), 19.2 (d, J = 5.1 Hz), 16.0 (t, J = 6.5 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.92; HRMS calc. for C₁₃H₁₉ClO₅P (M+H)⁺, 321.0659; found, 321.0656.

1-(4-Bromophenyl)-1-oxopropan-2-yl diethyl phosphate, compound **3fa** was obtained in 58% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.88 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 5.72-5.65 (m, 1H), 4.16-4.10 (m, 4H), 1.62 (d, J = 6.8 Hz, 3H), 1.35 (dt, $J_I =$ 7.1 Hz, $J_2 = 1.0$ Hz, 3H), 1.30 (dt, $J_I = 7.1$ Hz, $J_2 = 1.0$ Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 195.5 (d, J = 5.0 Hz), 133.0, 132.1, 130.3, 128.9, 74.6 (d, J = 5.5 Hz), 64.2 (q, J = 6.1 Hz), 19.2 (d, J = 4.7 Hz), 16.0 (t, J = 6.5 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.95; HRMS calc. for C₁₃H₁₈BrO₅PNa (M+Na)⁺, 386.9973; found, 386.9974.

Diethyl 1-oxo-1-(thiophen-2-yl)propan-2-yl phosphate, compound 3ga was obtained in 64% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.93 (d, *J* = 3.8 Hz, 1H), 7.73 (d, *J* = 4.9 Hz, 1H), 7.18 (t, *J* = 4.2 Hz, 1H), 5.52-5.45 (m, 1H), 4.16-4.09 (m, 4H), 1.66 (d, *J* = 6.8 Hz, 3H), 1.34 (d, *J* = 7.0 Hz, 3H), 1.29 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 189.5 (d, *J* = 5.1 Hz), 140.3, 135.0, 133.6, 128.4, 75.7 (d, *J* = 5.5 Hz), 64.2 (t, *J* = 6.4 Hz), 19.9 (d, *J* = 5.1 Hz), 16.1 (d, *J* = 4.6 Hz), 16.0 (d, *J* = 4.6 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -2.13; HRMS calc. for C₁₁H₁₇O₅PSNa (M+Na)⁺, 315.0432; found, 315.0428.

Diethyl 1-oxo-1-phenylbutan-2-yl phosphate, compound **3ha** was obtained in 68% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): *δ* 7.97 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 5.63-5.58 (m, 1H), 4.17-4.09 (m, 4H), 2.06-1.99 (m, 1H), 1.96-1.89 (m, 1H), 1.34 (dt, *J*₁ = 7.0 Hz, *J*₂ = 0.9 Hz, 3H), 1.29 (dt, *J*₁ = 7.1 Hz, *J*₂ = 0.9 Hz, 3H), 1.05 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): *δ* 196.4 (d, *J* = 2.7 Hz), 134.7, 133.6, 128.8, 128.6, 79.5 (d, *J* = 5.6 Hz), 64.1 (q, *J* = 6.0 Hz), 26.8 (d, *J* = 6.3 Hz), 16.0 (t, *J* = 6.8 Hz), 9.3; ³¹P NMR (162 MHz, CDCl₃): *δ* -1.64; HRMS calc. for C₁₄H₂₁O₅PNa (M+Na)⁺, 323.1024; found, 323.1019.

Diethyl 1-oxo-1-phenylpentan-2-yl phosphate, compound **3ia** was obtained in 75% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.96 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 5.64 (q, J = 7.1 Hz, 1H), 4.16-4.08 (m, 4H), 1.90-1.85(m, 2H), 1.55-1.49 (m, 2H), 1.32 (dt, J_1 = 7.0 Hz, J_2 = 0.7 Hz, 3H), 1.28 (dt, J_1 = 7.1 Hz, J_2 = 0.8 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.5 (d, J = 2.4 Hz), 134.7, 133.6, 128.8, 128.6, 78.3 (d, J = 5.6 Hz), 64.0 (q, J = 6.0 Hz), 35.5 (d, J = 6.5 Hz), 18.3, 16.0 (t, J = 6.7 Hz), 13.6; ³¹P NMR (162 MHz, CDCl₃): δ - 1.67; HRMS calc. for C₁₅H₂₄O₅P (M+H)⁺, 315.1361; found, 315.1364.

5

Diethyl 1-oxo-1-phenylhexan-2-yl phosphate, compound 3ja was obtained in 76% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.97 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 5.67-5.62 (m, 1H), 4.19-4.10 (m, 4H), 1.94-1.86 (m, 2H), 1.51-1.46 (m, 2H), 1.38-1.27 (m, 8H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.6 (d, J = 2.4 Hz), 134.6, 133.6, 128.8, 128.6, 78.5 (d, J = 5.6 Hz), 64.1 (q, J = 6.0 Hz), 33.2 (d, J = 6.5 Hz), 27.1, 22.2, 16.0 (t, J = 6.6 Hz), 13.8; ³¹P NMR (162 MHz, CDCl₃): δ -1.67; HRMS calc. for C₁₆H₂₅O₅PNa (M+Na)⁺, 351.1337; found, 351.1339.

Diethyl 2-oxo-1,2-diphenylethyl phosphate, compound **3ka** was obtained in 24% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.95 (d, J = 7.2 Hz, 2H), 7.54-7.50 (m, 3H), 7.43-7.34 (m, 5H), 6.67 (d, J = 8.0 Hz, 1H), 4.24-4.18(m, 2H), 3.96-3.89 (m, 2H), 1.34 (dt, J_1 = 7.1 Hz, J_2 = 0.9 Hz, 3H), 1.15 (dt, J_1 = 7.1 Hz, J_2 = 0.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 193.6 (d, J = 4.6 Hz), 134.9 (d, J = 5.3 Hz), 134.3, 133.6, 129.3, 129.1, 129.0, 128.6, 128.1, 80.1 (d, J = 4.8 Hz), 64.4 (d, J = 5.9 Hz), 64.0 (d, J = 6.1 Hz), 16.0 (d, J = 7.0 Hz), 15.8 (d, J = 7.1 Hz); ³¹P NMR (162 MHz, CDCl₃): δ - 1.92; HRMS calc. for C₁₈H₂₂O₅P (M+H)⁺, 349.1205; found, 349.1204.

Diethyl 2-oxo-2-phenylethyl phosphate

Compound **3la** was obtained in 26% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.91 (d, *J* = 7.3 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 5.34 (d, *J* = 9.9Hz, 2H), 4.28-4.20 (m, 4H), 1.38 (dt, 6H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 192.3 (d, *J* = 5.2 Hz), 134.0, 133.9, 128.9, 127.8, 68.7 (d, *J* = 5.2 Hz), 64.4 (d, *J* = 6.0 Hz), 16.1 (d, *J* = 6.9 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -0.91; HRMS calc. for C₁₂H₁₇O₅PNa (M+Na)⁺, 295.0711; found, 295.0775.

Dimethyl 1-oxo-1-phenylpropan-2-yl phosphate, compound **3ab** was obtained in 70% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 2H), 5.84-5.77 (m, 1H), 3.79 (t, *J* = 11.3 Hz, 6H), 1.64 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.2 (d, *J* = 4.7 Hz), 134.1, 133.8, 128.8, 128.7, 74.8 (d, *J* = 5.3 Hz), 54.5 (q, *J* = 6.1 Hz), 19.4 (d, *J* = 5.2 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 0.33; HRMS calc. for C₁₁H₁₅O₅PNa (M+Na)⁺, 281.0555; found, 281.0556.

Diisopropyl 1-oxo-1-phenylpropan-2-yl phosphate, compound **3ac** was obtained in 67% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.00 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 5.75-5.68 (m, 1H), 4.69-4.60 (m, 2H), 1.62 (d, *J* = 6.8 Hz, 3H), 1.33 (q, *J* = 6.2 Hz, 6H), 1.27 (t, *J* = 6.0 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.6 (d, *J* = 5.1 Hz), 134.3, 133.6, 128.8, 128.7, 74.5 (d, *J* = 5.5 Hz), 72.9 (q, *J* = 3.0 Hz), 23.6 (d, *J* = 4.8 Hz), 23.4 (d, *J* = 5.1 Hz), 19.4 (d, *J* = 4.8 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -3.48; HRMS calc. for C₁₅H₂₃O₅PNa (M+Na)⁺, 337.1181; found, 337.1176.

Dibutyl 1-oxo-1-phenylpropan-2-yl phosphate, compound **3ad** was obtained in 76% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.00 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 5.80-5.73 (m, 1H), 4.08-4.01 (m, 4H), 1.69-1.58 (m, 7H), 1.44-1.39 (m, 2H), 1.37-1.31 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.4 (d, J = 5.1 Hz), 134.2, 133.6, 128.8 128.7, 74.6 (d, J = 5.4 Hz), 67.8 (t, J = 6.3 Hz), 32.2 (dd, $J_1 = 5.5$ Hz, $J_2 = 7.0$ Hz), 19.3 (d, J = 4.9 Hz), 18.6

(d, J = 5.8 Hz), 13.6 (d, J = 3.8 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.74; ¹HRMS calc. for C₁₇H₂₇O₅PNa (M+Na)⁺, 365.1494; found, 365.1495.

Dibenzyl 1-oxo-1-phenylpropan-2-yl phosphate, compound **3ae** was obtained in 60% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.36 (s, 5H), 7.32 (s, 5H), 5.78-5.71 (m, 1H), 5.12-5.03 (m, 4H), 1.57 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.2 (d, *J* = 4.6 Hz), 135.7 (dd, *J*₁ = 1.8 Hz, *J*₂ = 7.3 Hz), 134.1, 133.7, 128.8 (d, *J* = 1.7 Hz), 128.6 (d, *J* = 4.6 Hz), 128.6, 128.5, 128.0 (d, *J* = 5.3 Hz); ³¹P NMR (162 MHz, CDCl₃): δ -1.92; ¹HRMS calc. for C₂₃H₂₄O₅P (M+H)⁺, 411.1361; found, 411.1364.

Dibutyl 1-oxo-1-phenylhexan-2-yl phosphate, compound **3jd** was obtained in 57% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): *δ* 7.98 (d, *J* = 7.1 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 5.67-5.62 (m, 1H), 4.09-4.04 (m, 4H), 1.93-1.87 (m, 2H), 1.67-1.57 (m, 4H), 1.50-1.30 (m, 8H), 0.95-0.87 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz, ppm): *δ* 196.2 (d, *J* = 2.5 Hz), 134.6, 133.6, 128.8, 128.7, 78.6 (d, *J* = 5.7 Hz), 67.8 (t, *J* = 6.1 Hz), 33.2 (d, *J* = 6.4 Hz), 32.2 (d, *J* = 5.1 Hz), 32.1 (d, *J* = 5.1 Hz), 27.1, 22.2, 18.6 (d, *J* = 3.8 Hz), 13.8, 13.6 (d, *J* = 1.9 Hz); ³¹P NMR (162 MHz, CDCl₃): *δ* -1.55; HRMS calc. for C₂₀H₃₃O₅PNa (M+Na)⁺, 407.1963; found, 407.1966.

1-Oxo-1-phenylpropan-2-yl diphenylphosphinate, compound **3af** was obtained in 74% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.95-7.87 (m, 4H), 7.79-7.74 (m, 2H), 7.59-7.54 (m, 2H), 7.52-7.47 (m, 2H), 7.45-7.41 (m, 3H), 7.39-7.35 (m, 2H), 5.92-5.84 (m, 1H), 1.63 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 196.7 (d, *J* = 4.8 Hz), 134.3, 133.5, 132.3 (d, *J* = 2.8 Hz), 132.2 (d, *J* = 2.9 Hz), 132.1 (d, *J* = 65.1 Hz), 131.8 (d, *J* = 7.9 Hz), 131.6 (d, *J* = 7.6 Hz), 130.8 (d, *J* = 62.9 Hz), 128.7 (d, *J* = 1.8 Hz), 128.6, 128.5 (d, *J* = 3.3 Hz), 128.4, 72.0 (d, *J* = 5.7 Hz), 20.2 (d, *J* = 3.2 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 33.12; HRMS calc. for C₂₁H₁₉O₃PNa (M+Na)⁺, 373.0970; found, 373.0971.

1-(4-Methoxyphenyl)-1-oxopropan-2-yl diphenylphosphinate, compound **3cf** was obtained in 67% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.96-7.89 (m, 4H), 7.80-7.74 (m, 2H), 7.59-7.55 (m, 1H), 7.52-7.43 (m, 3H), 7.39-7.36 (m, 2H), 6.90 (d, J = 9.0 Hz, 2H), 5.89-5.81 (m, 1H), 3.87 (s, 3H), 1.62 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 195.0 (d, J = 4.8 Hz), 163.9, 132.3 (d, J = 2.8 Hz), 132.2 (d, J = 68.3 Hz), 132.2 (d, J = 68.3 Hz), 131.1, 130.8 (d, J = 64.7 Hz), 128.6 (d, J = 8.5 Hz), 128.4 (d, J = 9.5 Hz), 127.0, 113.9, 71.8 (d, J = 5.7 Hz), 55.5, 20.4 (d, J = 3.1 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 33.01; HRMS calc. for C₂₂H₂₁O₄PNa (M+Na)⁺, 403.1075; found, 403.1077.

1-(4-Chlorophenyl)-1-oxopropan-2-yl diphenylphosphinate, compound **3ef** was obtained in 72% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.93-7.88 (m, 2H), 7.87-7.84 (m, 2H), 7.77-7.71 (m, 2H), 7.59-7.55 (m, 1H), 7.51-7.45 (m, 3H), 7.40-7.35 (m, 4H), 5.87-5.80 (m, 1H), 1.60 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 195.6 (d, J = 4.7 Hz), 140.1, 132.6, 132.5 (d, J = 2.8 Hz), 132.4 (d, J = 2.8 Hz), 131.9 (d, J = 55.1 Hz), 131.7 (d, J = 1.6 Hz), 131.6 (d, J = 1.4 Hz), 130.5(d, J = 52.6 Hz), 130.2, 129.0, 128.7 (d, J = 11.6 Hz), 128.6 (d, J = 11.6 Hz), 72.0 (d, J = 5.7 Hz), 20.0 (d, J = 3.2 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 33.54;

407.0584. 1-(4-Bromophenyl)-1-oxopropan-2-yl diphenylphosphinate, compound 3ff was obtained in 66% yield according to the general procedure (48 h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.93-7.87 (m, 2H), 7.78-7.71 (m, 4H), 7.60-7.55 (m, 3H), 7.52-7.45 (m, 3H), 7.40-7.35 (m, 2H), 5.87-5.79 (m, 1H), 1.60 (d, J = 6.8 Hz, 3H); $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz, ppm): δ 195.8 (d, J = 4.8 Hz), 133.0, 132.5 (d, J = 2.8 Hz), 132.4 (d, J = 2.8 Hz), 132.0, 131.9 (d, J = 55.6 Hz), 131.7 (d, J = 1.9 Hz), 131.6 (d, J = 1.7Hz), 130.5 (d, J = 53.2 Hz), 130.2, 128.8, 128.7 (d, J = 11.2 Hz), 128.5 (d, J = 11.2 Hz), 72.0 (d, J = 5.7 Hz), 20.0 (d, J = 3.3 Hz); ^{31}P NMR (162 MHz, CDCl₃): δ 33.55; HRMS calc. for $C_{21}H_{19}O_{3}BrP(M+H)^{+}$, 429.0255; found, 429.0257.

2-Iodo-1-phenylpropan-1-one, compound 4a was obtained in 85% yield from the reaction of propiophenone **1a** with I_2O_5 (48) h). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.04-8.02 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.9 Hz, 2H), 5.52 (q, J = 6.7 Hz, 1H), 2.10 (d, J = 6.7 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 194.8, 133.7, 133.5, 128.7, 128.7, 22.0, 18.1; HRMS calc. for C₉H₁₀OI (M+H)⁺, 260.9776; found, 260.9771.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21302109, 21302110, and 21375075), the Taishan Scholar Foundation of Shandong Province, the Excellent Middle-Aged and Young Scientist Award Foundation of Shandong Province (BS2013YY019), and the Scientific Research Foundation of Qufu Normal University (BSQD 2012020).

References and notes

- Bowler, M. W.; Cliff, M. J.; Waltho, J. P.; Blackburn, G. M. New. 1 J. Chem. 2010, 34, 784.
- 2 (a) Schultz, C. Bioorg. Med. Chem. 2003, 11, 885; (b) Anastasi, C.; Quelever, G.; Burlet, S.; Garino, C.; Souard, F.; Kraus, J. L. Curr. Med. Chem. 2003, 10, 1825; (c) Ducho, C.; Görbig, U.; Jessel, S.; Gisch, N.; Balzarini, J.; Meier, C. J. Med. Chem. 2007, 50, 1335; (d) Hecker, S. J.; Erion, M. D. J. Med. Chem. 2008, 51, 2328; (e) Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev., 2014, 114, 9154.
- 3 (a) Neumann, R.; Peter, H. H. Experientia 1987, 43, 1235; (b) He, W. H. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 266; (c) Wink, J.; Schmidt, F. R.; Seibert, G.; Aretz, W. J. Antibiot. 2002, 55, 472; (d) Virtesy, L.; Beck, B.; Bro"nstrup, M.; Ehrlich, K.; Kurz, M.; Mûller, G.; Schummer, D.; Seibert, G. J. Antibiot. 2002, 55, 480; (e) Kiely, T.; Donaldson, D.; Grube, A. EPA-733-R-04-001; Washington, DC: Office of Pesticide Programs, U.S. Environmental Protection Agency, 2004.
- (a) Bandyopadhyay, S.; Dutta, S.; Spilling, C. D.; Dupureur, C. M.; 4 Rath, N. P. J. Org. Chem. 2008, 73, 8386; (b) Dutta, S.; Malla, R. K.; Bandyopadhyay, S.; Spilling, C. D.; Dupureur, C. M. Bioorg. Med. Chem. 2010, 18, 2265; (c) Point, V.; Malla, R. K.; Diomande, S.; Martin, B. P.; Delorme, V.; Carriere, F.; Canaan, S.; Rath, N. P.; Spilling, C. D.; Cavalier, J.-F. J. Med. Chem. 2012, 55, 10204.
- 5 Ramirez, F.; Bauer, J.; Telefus, C. D. J. Am. Chem. Soc. 1970, 92, 6935; see p. 6937 and references cited therein.
- Ramirez, F.; Narecek, J. F. synthesis 1985, 449. 6
- (a) Ramirez, F.; Hansen, B.; Desai, N. B. J. Am. Chem. Soc. 1962, 7 84, 4588; (b) Witzel, H.; Botta, A.; Dimroth, K. Chem. Ber., 1965, 98, 1465; (c) Kluger, R.; Taylor, S. D. J. Am. Chem. Soc. 1991, 113, 996.
- Ramirez, F.; Bauer, J.; Telefus, C. D. J. Am. Chem. Soc. 1970, 92, 8 6935.
- 9 (a) Ramires, F.; Mitra, R. B.; Desai, N. B. J. Am. Chem. Soc.

1960, 82, 2652; (b) Ramirez, F.; Glaser, S. L.; Bigler, A. J.; Pilot, J. F. J. Am. Chem. Soc. 1969, 91, 496; (c)Ramirez, F.; Bhatia, S. B.; Bigler, A. J.; Smith, C. P. J. Org. Chem. 1968, 33, 1192; (d) Ramirez, F.; Bauer, J.; Telefus, C. D. J. Am. Chem. Soc. 1970, 92, 6935; (e) Koser, G. F.; Lodaya, J. S.; Ray, D. G.; Kokil, P. B. J. Am. Chem. Soc. 1988, 110, 2987; (f) Nabana, T.; Togo, H. J. Org. Chem. 2002, 67, 4362

- 10 Koser, G. F.; Chen, X.; Chen, K.; Sun, G. Tetrahedron Lett, 1993, 34. 779.
- 11 Koser, G. F.; Chen, K.; Huang, Y.; Summers, C. A. J. Chem. Soc., Perkin Trans. 1 1994, 1375.
- Pu, Y.; Gao, L. M.; Liu, H. J.; Yan, J. Synthesis, 2012, 44, 99. 12
- (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., 13 Int. Ed. 2002, 41, 1386; (b) Chai, L.; Zhao, Y.; Sheng, Q.; Liu, Z.-Q. Tetrahedron Lett. 2006, 47, 9283; (c) Liu, Z.-Q.; Zhao, Y.; Luo, H.; Chai, L.; Sheng, Q. Tetrahedron Lett. 2007, 48, 3017; (d) Hang, Z.; Li, Z.; Liu, Z-Q. Org. Lett. 2014, 16, 3648; (e) Zhang, L.; Li, Z.; Liu, Z-Q. Org. Lett. 2014, 16, 3688.
- (a) Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Green 14 Chem., 2014, 16, 2988; (b) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Chem. Commun., 2015, 51, 768; (c) Wei, W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225; (d) Wei, W.; Wen, J.; Yang, D.; Jing, H.; You, J.; Wang, H. RSC Adv., 2015, 5, 4416; (e) Wei, W.; Liu, X.; Yang, D.; Dong, R.; Cui, Y.; Yuan, F.; Wang, H. Tetrahedron Lett 2015, 56, 1808.
- (a) Guha, S.; Rajeshkumar, V.; Kotha, S. S.; Sekar, G. Org. Lett. 15 2015, 17, 406; (b) Liang, Y.-F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N.Org. Lett. 2015, 17, 876.

Supplementary Information

I₂O₅/DBU mediated direct α-phosphoryloxylation of ketones with H-phosphonates leading to α-hydroxyketone phosphates

Chunli Liu^a, Wei Wei^{*a}, Daoshan Yang^a, Yuanyuan Zheng^a, Yanshuai Bi^a, Min Chen^a, Hua Wang^{*a}

The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China

*Phone:+86 537 4458317; Fax:+86 537 4458317.

. E-mail: weiweiqfnu@163.com; huawang_qfnu@126.com

Contents

Copies of NMR spectra for 3aa-3ff, 4a

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

7, 2, 9448 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 9428 7, 2, 111 1, 111

73 73 73 73 73 74<

:10 110 100 f1 (ppm) Ó

 $<^{1.6081}_{1.5910}$

7, 20237 7, 20267 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 20268 7, 2026 7, 7, 75 7

 $<^{1.6082}_{1.5911}$

