View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: W. Liu, H. Min, X. Zhu, G. Deng and Y. Liang *, Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB02585H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Published on 13 November 2017. Downloaded by University of Newcastle on 14/11/2017 03:05:09

Journal Name

COMMUNICATION

Copper-catalyzed high selectively synthesis of 2-benzyl- and 2benzylidene-substituted benzo[b]thiazinones from 2-iodophenyl cinnamamides and potassium sulfide

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

Wenjuan Liu, Hao Min, Xiaoming Zhu, Guobo Deng* and Yun Liang*

www.rsc.org/

An efficient and practical procedure for the synthesis of 2-benzyland 2-benzylidene-substituted benzo[b]thiazinones from easily available 2-iodophenylcinnamamides and potassium sulfide has been developed. In the presence of DBU, the reaction proceeds *via* electrophilic addition, followed dehydrogenation, and reduction to give 2-benzyl benzo[b]thiazinones. Furthermore, 2benzylidenebenzo[b]thiazinones were obtained in moderate to good yields without addition of DBU.

Benzothiazines are a key functional molecules, and widely present in a myriad of natural products and biologically active compounds.¹ As an important derivative of benzothiazines, benzothiazinones show their good biological activities, such as antiarrhythmic,² antidiabetic,³ anticonvulsant/antifungal,⁴ antifungal activities, antituberculosis activities (Figure 1). Accordingly, much effort has been made towards the synthetic development of diverse methods for benzothiazinones. Conventional methods for the construction of benzothiazinones framework focus on (1) the condensation of 2-aminothiophenols with α , β -unsaturated carboxylic acids, β - ketoesters or epoxides;⁷ (2) 2-chlorothiophenol reacted with chloroacetyl chloride and primary amines or mercaptoamides reacted with 2-halonitrobenzene via Smiles rearrangement; (3) transition-metal-catalyzed C-S coupling reaction of thiols with 2-halonitrobenzene, chloroacetyl chloride, or 2iodoaniline." However, these methods suffer from difficulties in the preparation of readily oxidized thiophenols and thiols. So as to find some easily available materials and to develop simple and efficient methods for the synthesis benzothiazinones are of great value.

In recent years, inorganic sulfides, as the stable and easily available sulfur source, have been widely used for the synthesis of sulfur-

Figure 1. Bioactive 1,4-benzothiazine derivatives

heterocycle compounds via the formation of double C-S bonds.¹⁰ Among them, the construction of double C-S bonds via in situ generation of thiolate followed the addition of olefins is one of important strategies.¹¹ For example, Sekar and co-workers reported that 2-arylthiochromanones¹² and 2-acylbenzothiophene¹³ have been synthesized from 2-halochalcones with xanthate via in situ incorporation of sulfur followed by copper-catalyzed addition cyclization. Meantime, our work indicated that benzothiophenes could be gained via direct $S_{\rm N} Ar\text{-type}$ reaction, cyclization, and dehydrogenation process.¹⁴ Recently, Ji group found that this strategy was used to obtain benzothiazines via a radical process.¹ Due to our continuous work to the synthesis of the sulfurcontaining heterocyclic compounds using metal sulfides as sulfuration reagents,¹⁶ we thought this strategy would apply to the synthesis of benzothiazinones from 2-iodophenyl cinnamamides and metal sulphide (Scheme 1). Herein, we wish to detail our results.

 $[\]mbox{Scheme 1}.$ Selectively synthesis of 2-benzyl- and 2-benzylidene-substituted $\mbox{benzo}[b]\mbox{thiazinones}$

National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratoryof Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules, Hunan Normal

Ine Assembly and Application of Organic Functional Molecules, Hunar University, Changsha, Hunan 410081, China.

^{*}E-mail: gbdeng@hunnu.edu.cn; yliang@hunnu.edu.cn.

⁺ Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Initially, N-(2-iodophenyl)-N-methylcinnamamide (1a) and K₂S were selected as a model reaction to optimize the reaction conditions, and the results are summarized in Table 1. At first, 1a reacted with K_2S in the presence of Cu_2O , 1,10-phenanthroline, and DBU in DMF at 100 °C for 6 h, to our delight, the desired product 2-benzyl-4methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (2a) could be obtained in 83% vield (entry 1). Several copper salts including CuCl. CuBr. Cul. CuOAc, CuCl₂, and Cu(OAc)₂ were examined (entries 2-7). The results indicated that the catalytic efficiency of monovalent copper salts were better than bivalent copper salts, and Cu₂O was still the best catalyst for this cycliation reaction. Subsequently, a series of ligands (including TEMED, L-proline, and DMEDA) were examined to improve the catalyst performance (entries 9-11), and 1,10phenanthroline was found to be the best ligand, meanwhile, the yield of 2a was also decreased when the reaction was performed in the absence of ligand (entry 8). However, trace amounts of product 2a was observed when no base involved in this reaction and small amounts of 3a was gained (entry 12), and the other bases, such as Et₃N, DMAP, and Cs₂CO₃, all gave lower yields of 2a than DBU (entries 13-15), the results revealed that DBU played a significant role making for the formation of 2a. In the examination of the solvents including DMF, DMSO, NMP, and DMAc, DMAc was proved to be the best solvent (entries 16-18). Finally, in order to improve the yield, the reaction temperature was evaluated, the yield of 2a was increased along with the rise of the temperature. Thus, the optimized reaction conditions were as follows: 1a (0.2 mmol), K₂S (0.6 mmol), Cu₂O (10 mol %), 1,10-phenanthroline (20 mol %), DBU (0.6 mmol), in DMAc (2 mL) under air atmosphere at 140 °C.

Table 1. Optimization of reaction condition

Published on 13 November 2017. Downloaded by University of Newcastle on 14/11/2017 03:05:09

	Ph + K ₂ S-	[Cu] Ligand, Base	↓ N→O S→P 2a	h +	Ph
Entry	Catalyst	Ligand	Base	Yield 2a ^b (%)	Yield 3a^b(%)
1	Cu ₂ O	1,10-Phen	DBU	83	0
2	CuCl	1,10-Phen	DBU	78	0
3	CuBr	1,10-Phen	DBU	82	0
4	Cul	1,10-Phen	DBU	72	0
5	CuOAc	1,10-Phen	DBU	53	0
6	CuCl ₂	1,10-Phen	DBU	65	0
7	Cu(OAc)₂	1,10-Phen	DBU	58	0
8	Cu ₂ O	-	DBU	71	0
9	Cu ₂ O	TEMED	DBU	52	0
10	Cu ₂ O	L-proline	DBU	68	0
11	Cu ₂ O	DMEDA	DBU	53	0
12	Cu ₂ O	1,10-Phen	-	Trace	14
13	Cu ₂ O	1,10-Phen	Et₃N	4	55
14	Cu ₂ O	1,10-Phen	DMAP	Trace	48
15	Cu ₂ O	1,10-Phen	Cs_2CO_3	Trace	36
16 ^c	Cu ₂ O	1,10-Phen	DBU	74	0
17 ^d	Cu ₂ O	1,10-Phen	DBU	86	0
18 ^e	Cu ₂ O	1,10-Phen	DBU	82	0
19 ^{<i>d,f</i>}	Cu ₂ O	1,10-Phen	DBU	89	0
20 ^{<i>d,g</i>}	Cu ₂ O	1,10-Phen	DBU	93	0

^{*a*} Conditions: **1a** (0.20 mmol), K₂S (0.60 mmol), Cu catlyst (10 mol %), ligand (20 mol %), base (0.60 mmol), DMF (2 mL), air, at 100 °C for 6 h. ^{*b*} Isolated yield. ^{*c*} DMSO. ^{*d*} DMAc. ^{*e*} NMP. ^{*f*} 120 °C. ^{*g*} 140 °C.

2 | *J. Name.*, 2012, **00**, 1-3

With optimized reaction conditions in hand, we proceeded to investigate the substrate scope of the reaction. As shown in **Scheme 2**, the substrated that both electron-donating groups such as methyl and methoxyl and electronic-withdrawing groups such halogen atoms (F, Cl, and Br), trifluoromethyl, and nitryl substituted cinnamamide could be smoothly transformed into the desired products. Especially, the steric effect of the substituents was not obvious to this reaction. For example, bearing of methyl and fluorine atom on the benzene ring at different positions of the cinnamamide (ortho-, meta-, and para-positions) showed almost equal efficiency (**2b-2d**, **2f-2h**). Unfortunately, nitryl-substituted 2-benzylbenzo[*b*]thiazinones **2I** was obtained in 27% yield only. Subsequently, we found that N-(2-iodophenyl)acrylamide could not give the target product.

To further examine the scope and limitation of the reaction, we tested the affects of substituents on the benzene ring of 2iodoaniline. Different functional groups, including electronic-rich groups such as CH₃ and OCH₃ and electronic-deficient groups such as F and Cl on the benzene ring all tolerated well under the standard reaction conditions and achieved a moderate to good vields. For instance, N-(2-iodo-4-methylphenyl)cinnamamide can gave 88% yield of 2n. On the other hand, the different substituents on the nitrogen atom were screened also. From the results showing, the electron-donating groups could promote the cyclization reaction, whereas the electron-withdrawing could inhibit the reaction. It is noteworthy that N-free 2-benzylbenzo[b]thiazinone 2t was afforded in 85% yield, which could be used for further modification through amination reaction. Furthermore, the structure of 2v was also unambiguously confirmed by single-crystal XRD analysis. However, when N-benzoyl substituted substrate was reacted with K₂S at optimized reaction conditions, the desired product could not be detected, and deacylated product 2t was obtained with 32% yield. Finally, we also investigated the reactivity of N-(2-bromophenyl)-N-methylcinnamamide, but we only obtained 2a in 43% vield.

___ During the optimizing the reaction conditions of synthesis of benzo[b]thiazinones, except 2-benzylbenzo[b]thiazinones, the product of 2-benzylidenebenzo[b]thiazinones were obtained. In product order to achieve the single of 2benzylidenebenzo[b]thiazinones, we attempted to optimize the reaction conditions using N-(2-iodophenyl)cinnamamide (1t) with K₂S as the model reaction (see the SI for more details). After screening the reaction from copper-catalyst, ligands, and solvents, the optimized reaction condition were achieved as follows: 1t (0.2 mmol), K₂S (0.6 mmol), Cu₂O (10 mol %), neocuproine (20 mol %), in DMF (2 mL) under nitrogen atmosphere at 80 °C, and the desired product 3t was isolated in 91% yield. Furthermore, the structure of **3t** was also unambiguously confirmed by single-crystal XRD analysis. Subsequently, the substrate scope to the substituent of cinnamoyl were examined, as shown in Scheme 3, including the electrondonating groups such as -Me, -OMe and electron-donating groups such as fluorine atom were tolerated well and given the desired products in moderate to good yields. Similarly, the electronic effect of the substituents on the benzene ring of o-iodoaniline was also investigated, 4-methyl and 4-fluoro substituted substrate were provided the corresponding product 3tf and 3tg in 82% and 50% yield, respectively. At last, the N-methyl substituted 3a was obtained in 58% yield with a slight condition change.

DOI: 10.1039/C7OB02585H

Journal Name

Published on 13 November 2017. Downloaded by University of Newcastle on 14/11/2017 03:05:09.

^a Conditions: 1 (0.20 mmol), K₂S (0.60 mmol), Cu₂O (10 mol %), 1,10-Phen (20 mol %), DBU (0.6 mmol), DMAc (2 mL), air, at 140 °C for 6 h. ^b Isolated yield. ^c N-cinnamoyl-N-(2-iodophenyl)benzamide.
Molecular description of the second s

Scheme 2. Synthesis of 2-benzylbenzo[b]thiazinones^{a,b}

To shed light on the mechanism of this reaction, several control experiments were carried out, as shown in Scheme 4. First of all, N-(2-iodophenyl)-N-methylcinnamamide (1t) was treated with K₂S under nitrogen atmosphere, and the desired product 2t was afforded in 28% yield only (eq. 1). This result indicated the reaction underwent an oxidative process. Meantime, the model reaction was performed in the absence of DBU, to our surprise, 70% of 3t was obtained and trace amounts of 2t was observed (eq. 2). Then, we found that 3t could transform into the desired product 2t in 67% yield under standard reaction conditions (eq. 3). This significant result indicated that 3t was an important precursor for the formation of benzothiazinones, and DBU played a significant role in terms of promoting the intermediate transformed into the desired product. And we knew that 2t could not transform into the desired product 3t under the secondly optimized reaction conditions (eq. 4). This result suggested that 2t could not come into being directly through nucleophilic addition reaction during the reaction process. Finally, from the deuterated experiment, we could deduce that water acted as the hydrogen donor in the transformation, which possibly derived from the solvent (eq. 5).

DOI: 10.1039/C7OB02585H COMMUNICATION

^{*a*} Conditions: **1** (0.20 mmol), K₂S (0.60 mmol), Cu₂O (10 mol %), Neocuproine (20 mol %), DMF (2 mL), N₂, at 80 ^oC for 12 h. ^{*b*} Isolated yield. ^{*c*} **1a** (0.20 mmol), K₂S (0.60 mmol), Cu₂O (10 mol %), 1,10-Phen (20 mol %), DMAc (2 mL), air, at 140 ^oC for 6 h.

Scheme 3. Synthesis of 2-benzylidenebenzo[b]thiazinones^{a,b}

Scheme 4. Control experiments

COMMUNICATION

On the basis of the present experimental results and previous mechanisms reported,¹²⁻¹⁷ a possible mechanism for the **1t** was proposed as outlined in **Scheme 5**. Initially, intermediate **A** was generated in situ by the reaction of N-(2-iodophenyl)cinnamamide (**1t**) with K₂S *via* the copper-catalyzed traditional coupling reaction. Then, intermediate **A** could transform into intermediate **3t** via oxidation, electrophilic addition and elimination in the presence of copper and oxygen. At last, following a sequential reduction of **3t**, the desired product **2t** was formed in the presence of DBU.

We have established a simple and practical method for the of 2-benzylbenzo[b]thiazinones synthesis and 2benzylidenebenzo[b]thiazinones via a copper-catalyzed coupling reaction of 2-iodophenylcinnamamides and potassium sulfide. The experimental results showed that DBU as a switch of the reaction could control the selectivity of 2benzylbenzo[b]thiazinones and benzylidenebenzo[b]thiazinones. Further investigation on the synthetic application and mechanistic studies of DBU is currently ongoing in our laboratory.

Acknowledgment

This work was supported by the Natural Science Foundation of China (21572051, 21602057), Education Department of Hunan Province (15A109), Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (KLCBTCMR201707, KLCBTCMR201708) for financial support.

Notes and references

 For a summary of some representative reports on biologicalactivities of benzothiazines, see: (a) M. Donnier-Maréchal, P.-E. Larchanché, D. L. Broc, C. Furman, P. Carato, P. Melnyk, *Eur. J. Med. Chem.*, 2015, **89**, 198. (b) K. Kubota, H. Kurebayashi, H. Miyachi, M. Tobe, M. Onishi, Y. Isobe, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 2766. (c) S. Darvesh, K. V. Darvesh, R. S. McDonald, D. Mataija, R. Walsh, S. Mothana, O. Lockridge, E. Martin, *J. Med. Chem.*, 2008, **51**, 4200. (d) A. Bisi, M. Meli, S. Gobbi, A. Rampa, M. Tolomeo, L. Dusonchet, *Bioorg. Med. Chem.*, 2008, **16**, 6474. (e) E. A. Weiss, M. J. Tauber, R. F. Kelley, M. J. Ahrens, M. A. Ratner, M. R. Wasielewski, *J. Am. Chem. Soc.*, 2005, **127**, 11842. (f) R. Y. Lai, X. Kong, S. A. Jenekhe, A. J. Bard, *J. Am. Chem. Soc.*, 2003, **125**, 12631. (g) K. Hasegawa, S. Ito, S. Inoue, K. Wakamatsu, H. Ozeki, I. Ishiguro, *Biochem. Pharmacol.*, 1997, **53**, 1435.

- (a) Y. Matsumoto, R. Tsuzuki, A. Matsuhisa, T. Yoden, Y. Yamagiwa, I. Yanagisawa, T. Shibanuma, H. Nohira, *Bioorg. Med. Chem.*, 2000, 8, 393. (b) M. Kajino, K. Mizuno, H. Tawada, Y. Shibouta, K. Nishikawa, K. Meguro, *Chem. Pharm. Bull.*, 1991, 39, 2888.
- 3 H. Tawada, Y. Sugiyama, H. Ikeda, Y. Yamamoto, K. Meguro, *Chem. Pharm. Bull.*, 1990, **38**, 1238.
- 4 L.-Q. Zhang, L.-P. Guan, C.-X. Wei, X.-Q. Deng, Z.-S. Quan, *Chem. Pharm. Bull.*, 2010, **58**, 326.
- 5 F. Schiaffella, A. Macchiarulo, L. Milanese, A. Vecchierelli, G. Costantino, D. Pietrella, R. Fringuelli, J. Med. Chem., 2005, 48, 7658.
- 6 R. Raju, A. M. Piggott, Z. Khalil, P. V. Bernhardt, R. J. Capon, Tetrahedron Lett., 2012, 53, 1063.
- 7 (a) T. Ghailane, M. Saadouni, S. Boukhris, N. Habbadi, A. Hassikou, A. Kerbal, B. Garrigues, A. Souizi, *Heterocycles*, 2011, 83, 357. (b) M. M. Heravi, N. Nami, H. A. Oskooie, R. Hekmatshoar, *Phosphorus, Sulfur, and Silicon*, 2005, 180, 1873. (c) G. Trapani, A. Latrofa, A. Reho, M. Franco, G. Liso, *J. Heterocyclic Chem.*, 1992, 29, 1155. (d) G. Kaupp, E. Gründken, D. Matthies, *Chem. Ber.*, 1986, 119, 3109. (e) J. Krapcho, A. Szabo, J. Williams, *J. Med. Chem.*, 1963, 6, 214. (f) F. K. Kirchner, E. J. Alexander, *J. Am. Chem. Soc.*, 1959, 81, 1721. (g) W. H. Mills, J. B. Whitworth, *J. Chem. Soc.*, 1927, 2738.
- 8 (a) Y. Zhao, Y. Wu, J. Jia, D. Zhang, C. Ma, J. Org. Chem., 2012,
 77, 8501. (b) H. Zuo, Z.-B. Li, F.-K. Ren, J. R. Falck, L. Meng, C. Ahn, D.-S. Shin, Tetrahedron, 2008, 64, 9669.
- (a) W.-S. Huang, R. Xu, R. Dodd, W. C Shakespeare, *Tetrahedron Lett.*, 2013, **54**, 5214. (b) D. Chen, Z.-J. Wang, W. Bao, *J. Org. Chem.*, 2010, **75**, 5768. (c) V. Cecchetti, A. Fravolini, R. Fringuelli, G. Mascellani, P. Pagella, M. Palmioli, G. Segre, P. Terni, *J. Med. Chem.*, 1987, **30**, 465.
- 10 (a) H. Xie, J. Cai, Z. Wang, H. Huang, G.-J Deng, Org. Lett., 2016, 18, 2196. (b) L. Meng, T. Fujikawa, M. Kuwayama, Y. Segawa, K. Itami, J. Am. Chem. Soc., 2016, 138, 10351. (c) K. Yan, D. Yang, W. Wei, S. Lu, G. Li, C. Zhao, Q. Zhang, H. Wang, Org. Chem. Front, 2016, 3, 66. (d) G. Zhang, H. Yi, H. Chen, C. Bian, C. Liu, A. Lei, Org. Lett., 2014, 16, 6156. (e) C. Hou, Q. He, C. Yang, Org. Lett., 2014, 16, 5040. (f) Y. Liu, J.-L. Zhang, R.-J. Song, J.-H. Li, Org. Lett., 2014, 16, 5838. (g) Z. Qiao, H. Liu, X. Xiao, Y. Fu, J. Wei, Y. Li, X. Jiang, Org. Lett., 2013, 15, 2594. (h) H. liu, X. Jiang, Chem. Asian J., 2013, 8, 2546. (i) W. You, X. Yan, Q. Liao, C. Xi, Org. Lett., 2010, 12, 3930. (j) D. Ma, S. Xie, P. Xue, X. Zhang, J. Dong, Y. Jiang, Angew.Chem. Int. Ed., 2009, 48, 4222.
- 11 (a) Y.-N. Wu, R. Fu, N.-N. Wang, W.-J. Hao, G. Li, S.-J. Tu, B. Jiang, J. Org. Chem., 2016, **81**, 4762. (b) K. Kobayashi, A. Kobayashi, M. Tanmatsu, *Heterocycles*, 2012, **85**, 919.
- 12 S. Sangeetha, P. Muthupandi, G. Sekar, Org. Lett., 2015, 17, 6006.
- 13 S. Sangeetha, G. Sekar, Org. Lett., 2017, 19, 1670.
- 14 X. Zhang, W. Zeng, Y. Yang, H. Huang, Y. Liang, *Synlett.*, 2013, **24**, 16872.
- 15 Z.-Y. Gu, J.-J. Cao, S.-Y. Wang, S.-J. Ji, Chem. Sci., 2016, 7, 4067.
- 16 (a) P. Dang, Z. Zheng, Y. Liang, J. Org. Chem., 2017, 82, 2263.
 (b) H. Min, G. Xiao, Wen. Liu, Y. Liang, Org. Biomol. Chem., 2016, 14, 11088. (c) X. Zhang, W. Zeng, Y. Yang, H. Huang, Y. Liang, Org. Lett., 2014, 16, 876. (d) W. Zeng, P. Dang, X. Zhang, Y. Liang, C. Peng, RSC Adv., 2014, 4, 31003.
- (a) P. Sang, Z. Chen, J. Zou, Y. Zhang, *Green Chem.*, 2013, 15, 2096. (b) Z. Chen, M. Luo, Y. Wen, G. Luo, L. Liu, *Org. Lett.*, 2014, 16, 3020. (c) H.-Y. Tu, B.-L. Hu, C.-L. Deng, X.-G. Zhang, *Chem. Commun.*, 2015, 51, 15558.

Published on 13 November 2017. Downloaded by University of Newcastle on 14/11/2017 03:05:09.

Published on 13 November 2017. Downloaded by University of Newcastle on 14/11/2017 03:05:09.

Copper-catalyzed high selectively synthesis of 2-benzyl- and

2-benzylidene-substituted benzo[b]thiazinones from 2-iodophenyl

cinnamamides and potassium sulfide

Wenjuan Liu, Hao Min, Xiaoming Zhu, Guobo Deng* and Yun Liang*

An efficient and practical procedure for the synthesis of benzo[*b*]thiazinones from easily available 2-iodophenylcinnamamides and potassium sulfide has been developed. DBU as a switch could control the selectivity of the formation of 2-benzyl-substituted benzo[*b*]thiazinones and 2-benzylidenebenzo[*b*]thiazinones.