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Abstract: The presence of nitrogen atoms in most chiral pharma-
ceutical drugs has motivated the development of numerous strate-
gies for the synthesis of enantiomerically enriched amines. Current
methods are based on multistep transformations of functionalized
allylic electrophiles to form chiral allylic amines. The enantioselec-
tive allylic amination of nonactivated olefins would represent a
more direct and more attractive strategy. We report the enantio-
selective synthesis of ent-sitagliptin through an allylic amination of
a nonactivated terminal olefin.

Key words: asymmetric catalysis, aminations, drugs, rearrange-
ments, palladium

Nitrogen atoms are present in more than 80% of pharma-
ceutical drugs approved by the U.S. Food and Drug Ad-
ministration (FDA).1,2 The presence of nitrogen atoms in
small molecules leads to desirable medicinal properties,
including improved solubility under physiological condi-
tions, favorable polar surfaces, and hydrogen-bonding in-
teractions with amino acid residues. As a result, many
powerful chemical methods have been developed for the
incorporation of nitrogen atoms into small molecules,
with profound effects on the discovery of new drugs.3

Chiral amines represent an important subclass of medici-
nally relevant nitrogen-containing molecules.4 For exam-
ple, sitagliptin (1) is an FDA-approved inhibitor of
dipeptidyl peptidase-4 for the treatment of Type II diabe-
tes (Scheme 1).5,6 Several elegant enantioselective meth-
ods have been developed for the synthesis of chiral
amines 4 from allylic alcohols and other allylic electro-
philes, such as allylic halides 3.7

We were interested in developing an alternative approach
for the preparation of chiral amines 4 by direct conversion
of nonfunctionalized olefins 2 through an allylic amina-
tion in the presence of a chiral catalyst.8 Unsaturated hy-
drocarbons such as 2 are ideal substrates for chemical
synthesis because they are inexpensive and abundant
components of petrochemical feedstocks.9 However, ole-
fins are also challenging substrates for asymmetric catal-
ysis, because it is difficult to achieve selective
transformation of a single C–H bond into a C–N bond in
the presence of several sterically and electronically simi-
lar C–H bonds.

We recently reported a palladium-catalyzed enantioselec-
tive allylic amination of nonactivated terminal olefins
through an ene reaction/[2,3]-rearrangement.10 Here, we
describe the application of this approach to the enantiose-
lective synthesis of ent-sitagliptin (1).

Several elegant approaches to sitagliptin have been re-
ported in the literature.6 Most notably, researchers at Mer-
ck developed multiple enantioselective routes to this
compound.6a–d,6g In our retrosynthetic analysis of ent-sita-
gliptin (Scheme 2), we surmised that the target molecule
1 might be obtained from β-amino acid 5. This intermedi-
ate might, in turn, be generated from the allylic amine de-
rivative 6 through a series of functional-group
interconversions. Enantiomerically enriched allylic amine
6 is a suitable retron for our recently developed catalytic
enantioselective allylic amination of nonactivated olefins.
The analysis therefore suggested that 1-but-3-en-1-yl-
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2,4,5-trifluorobenzene (7) would be a suitable starting
point for our synthetic efforts.

In an initial report, we described a catalytic enantioselec-
tive intermolecular allylic amination of nonactivated ter-
minal olefins that are substituted with aliphatic
substituents (2a → 11a, Scheme 3).10 This transformation
proceeds through a two-step ene reaction/[2,3]-rearrange-

ment, the discovery of which was inspired by the seminal
reports of Sharpless, Kresze, and Katz and their respective
co-workers on the conversion of olefins into racemic
allylic amines.11 In the first step, a nonactivated olefin 2a
reacts with sulfurdiimide reagent 8 through a hetero-ene
reaction. The resulting zwitterion 9a is subjected to a
palladium-catalyzed enantioselective [2,3]-rearrangement
to give the desired allylic amine 11a.

As a model system for our first step in the synthesis of ent-
sitagliptin (7 → 6, Scheme 2), we selected but-3-en-1-yl-
benzene (2b), which lacked the three fluoride substituents
in the aromatic ring of olefin 7 (Scheme 3). We expected
that our carefully optimized conditions for the palladium-
catalyzed generation of allylic amines 11a with aliphatic
substitution at the homoallylic position would also be suit-
able for the conversion of aryl alkene 2b into the allylic
amine 11b with aromatic substitution at the homoallylic
position. To our dismay, however, in the presence of 10
mol% palladium(II) trifluoroacetate and 12 mol% of li-
gand 10a, the allylic amine 11b was generated in only 4%
enantiomeric excess (Table 1, entry 2).

Although we still do not known why terminal olefins with
aromatic substitution in the homoallylic position do not
behave well under our previously optimized conditions,

Scheme 1  Strategies for the conversion of nonactivated olefins into chiral allylic amines
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Scheme 2  Retrosynthetic analysis of sitagliptin
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we decided to reoptimize all the conditions for the palla-
dium-catalyzed [2,3]-rearrangement step with the model
substrate but-3-en-1-ylbenzene (2b) (Table 1). We con-
firmed that zwitterion 9b did not undergo a thermal
[2,3]-rearrangement in the absence of a palladium catalyst
at 4 °C (Table 1, entry 1). As discussed above, treatment
of zwitterion 9b with ligand 10a under our previously op-
timized conditions resulted in an almost racemic product
(entry 2). After surveying other bisoxazoline and bisoxa-
zolinyl-pyridine ligands with palladium(II) acetate, we
found that bisoxazoline 10b was a more effective ligand
than bisoxazoline 10a (entries 3 and 4), giving the desired
product in 75% yield and 79% ee (entry 4).12 We also ex-
amined a series of palladium sources (entries 5–8), among
which palladium(II) trifluoroacetate proved to be the most
promising (entry 8). We were now able to isolate the de-
sired product in 80% yield and 85% ee. By screening sev-
eral solvents,12 we identified 1,2-dichloroethane as the
optimal medium for the reaction (entry 9). Finally, by
lowering the reaction temperature to –15 °C and increas-
ing the loading of ligand 10b to 20 mol%, we generated
allylic amination product 11b in 94% isolated yield (two
steps) and 93% ee (entry 10).

Having identified the optimal conditions, we then con-
verted a series of 4-arylbut-1-ene substrates 2 into the cor-
responding enantiomerically enriched allylic amine

derivatives 11 (Table 2).13 This reaction tolerated both
electron-withdrawing and electron-donating substituents.
In all cases, the allylic amination products 11 were isolat-
ed in synthetically useful yields and enantiomeric excess-
es.

Next, we used our new reaction conditions in an enantio-
selective allylic amination of 1-but-3-en-1-yl-2,4,5-triflu-
orobenzene (7) as a step in our synthesis of ent-sitagliptin
(Scheme 4). To our delight, aryl alkene 7 was smoothly
converted into the desired allylic amine derivative 6 by a
hetero-ene reaction followed by a palladium-catalyzed en-
antioselective [2,3]-rearrangement. Treatment of the re-
sulting allylic amination product 6 with methanolic
potassium carbonate gave the allylic sulfonamide 12 in
78% yield (three steps) and 93% ee. Hydroboration and
extensive oxidation of olefin 12 gave the β-amino acid 5.
Coupling of amino acid 5 with amine 13, and subsequent
deprotection of the sulfonamide gave ent-sitagliptin (1).

In conclusion, our synthesis of ent-sitagliptin highlights
the potential utility of enantioselective allylic amination
as an economically efficient and environmentally benign
alternative for the production of pharmaceutical drugs.
We expect that this method will be useful for the synthesis
of other nitrogen-containing pharmaceutical agents from
inexpensive and abundant nonactivated olefins.

Table 1  Optimization of Enantioselective Allylic Amination

Entry Metal catalyst (10 mol%) Ligand (mol%) Solvent (0.13 M) Temp (°C) Time (d) Yielda ee (%)

1 – – – 4 0.5 < 5 –

2 Pd(TFA)2 10a (12) CH2Cl2 4 2 91 4

3 Pd(OAc)2 10a (12) MeOH 4 0.5 71 19

4 Pd(OAc)2 10b (12) CH2Cl2 4 0.5 75 79

5 Pd2(dba)3 10b (12) CH2Cl2 4 2 60 0

6 PdCl2(MeCN)2 10b (12) CH2Cl2 4 2 63 6

7 Pd(acac)2 10b (12) CH2Cl2 4 2 73 0

8 Pd(TFA)2 10b (12) CH2Cl2 4 2 80 85

9 Pd(TFA)2 10b (12) DCE 4 2 94 91

10 Pd(TFA)2 10b (20) DCE –15 7 94 93

a Isolated yield for two steps.
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