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Abstract: In situ C-acylation of the Blaise intermediate – as report-
ed by Lee and coworkers – provides a-acyl-b-enamino esters that
are versatile building blocks for the preparation of N-heterocycles.
The corresponding N-acylated b-ketoenamides can be employed in
the synthesis of 4-hydroxypyridine derivatives. N-Acylation of the
a-acyl-b-enamino esters with 2-picolyl chloride furnished b-keto-
enamides, and the subsequent TMSOTf/base-promoted intramolec-
ular condensation reaction led to 4-hydroxy-2,2¢-bipyridine
derivatives. Conversion into 2,2¢-bipyrid-4-yl nonaflates allowed
further functionalization such as palladium-catalyzed coupling re-
actions. 

Key words: condensation, 2,2¢-bipyridines, b-ketoenamides, mul-
ticomponent reaction, nonaflates, pyridines

Although being first described at the beginning of the 20th

century, the synthetic potential of the Blaise reaction1 –
the addition of zinc enolates derived from a-halo esters to
nitriles – has not been fully exploited. Despite the broad
availability of suitable starting materials application of
this reaction was limited due to low yields and competing
side reactions. More recently, improved protocols led to
an increased interest.2 Developments and applications of
the Blaise reaction have been reviewed by Rao et al.3 Lee
and coworkers demonstrated that zinc chelate intermedi-
ates such as 2 (Scheme 1) react in situ with electrophiles
to provide valuable precursors for the synthesis of hetero-
cycles like pyrroles,4a,b 2-pyridones,4c or indoles.4d Fol-
lowing our previous work5 on the trimethylsilyl
trifluoromethanesulfonate (TMSOTf) promoted intramo-
lecular condensation of b-ketoenamides 4 to 4-hydroxy-
pyridines 56 we were interested in expanding the substrate
scope for this transformation. In particular we were in-
trigued to extend our method to the synthesis of unsym-
metrically functionalized 2,2¢-bipyridines5f taking into
account the general importance7 of this class of heterocy-
cles in coordination and supramolecular chemistry and in
numerous applications. Various cross-coupling strategies
employing pyridine-containing building blocks and other
de novo approaches for their synthesis have been devel-
oped.8,9 However, new and flexible approaches for the
synthesis of unsymmetrically functionalized 2,2¢-bipy-
ridines are rare.

Upon treatment with n-butyllithium followed by addition
of acetic acid anhydride the intermediates 2 of the Blaise
reaction of ethyl bromoacetate with nitriles 1 are trans-
formed into a-acyl-b-enamino esters 3 (Scheme 1).4a Be-
ing structurally related to b-ketoenamides 4, we
envisioned that N-acylation of the a-acyl-b-enamino es-
ters 3 (with activated carboxylic acid derivatives) should
also provide suitable precursors for the TMSOTf-promot-
ed cyclization to 4-hydroxypyridine derivatives.

Scheme 1 C-Acylation of the Blaise intermediates 2 leading to 3
and TMSOTf/base-promoted intramolecular condensation of b-keto-
enamides 4 to 4-hydroxypyridines 5

Following Lee’s protocol4a we prepared a series of a-acyl-
b-enamino esters 3 that were acylated10 with activated pi-
colinic acid derivatives (Scheme 2). The desired b-keto-
enamides 7a–f were obtained as inseparable mixtures of E
and Z isomers11 in moderate to good yields (Table 1).

Scheme 2 Synthesis of a-acyl-b-enamino esters 3a–f and N-acyla-
tion to b-ketoenamides 7a–f. Reagents and conditions: (a) i) Zn (acti-
vated, 2 equiv), BrCH2CO2Et (1.5 equiv), THF, reflux, 1 h; ii) n-BuLi
(1 equiv), 0 °C; iii) Ac2O (1.3 equiv), r.t., 3 h.4a (b) Method A: 2-
PyCOCl (2 equiv), Et3N (2 equiv), CH2Cl2, 0 °C then r.t., overnight;
method B: 2-PyCOBt12 (1.5 equiv), NaH (1.3 equiv), THF, r.t., over-
night.
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Gratifyingly, the mixtures of E- and Z-configured b-ke-
toenamides 7 (except 7b) cyclized in the desired manner:
treatment with TMSOTf in the presence of Hünig base
(DIPEA) and heating for 5 days in 1,2-dichloroethane
(DCE) provided the desired 4-hydroxy-2,2¢-bipyridines
(Table 2). However, their isolation directly after the cy-
clization posed to be rather difficult: separation from the
ammonium salt generated from Hünig base and trifluo-
romethanesulfonic acid (formed after aqueous workup)
was tedious, requiring several runs of column chromatog-
raphy. This problem was solved when the crude 4-hy-
droxy-2,2¢-bipyridines were directly O-alkylated to 8, or
more conveniently O-nonaflated to 9.14,15

The decreased polarity of 2,2¢-bipyrid-4-yl nonaflates 9
allows their facile chromatographic purification. An addi-
tional advantage of this protocol is the direct preparation
of precursors for subsequent metal-catalyzed coupling re-
actions. Although the overall yields for the synthesis of
2,2¢-bipyridine derivatives 8 or 9 are sometimes only
moderate, the readiness and simplicity of the protocol is
remarkable. No systematic optimizations have so far been
attempted.

We performed a few typical subsequent palladium-cata-
lyzed transformations employing the obtained 2,2¢-bipy-
rid-4-yl nonaflates 9 in order to demonstrate their
synthetic potential (Scheme 3). Reduction of nonaflate 9a
by formic acid and triethylamine17 provided 2,2¢-bipyri-
dine derivative 11 in moderate yield. Suzuki coupling of
nonaflate 9f with 4-fluorophenyl boronic acid furnished
2,2¢-bipyridine 10 and Sonogashira reaction of 9c with
alkyne 12 led to 2,2¢-bipyridine 13, both in excellent
yields.

Table 1 Synthesis and N-Acylation of a-Acyl-b-enamino Esters 
3a–f to Intermediates 7a–f

R Yield of 3 
(%)a,b

Method for 
N-acylation

Yield of 7 
(%)a

Isomeric 
ratioc

Ph 3a: 63 A 7a: 87 3.5:1

CH2OMe 3b: 23d A 7b: 42 –e

Me 3c: 51f A 7c: 50 3.0:1

i-Pr 3d: 54f A 7d: 61 4.5:1

n-Bu 3e: 71 B 7e: 71 4.0:1

4-NCC6H4 3f: 36g A 7f: 83 16:1

a Yield of pure compounds after column chromatography.
b For preparation of 3a, 3c, and 3d, also see ref. 4a.
c Ratio determined by 1H NMR spectroscopy.
d For an alternative preparation of 3b, also see ref.13.
e Compound 7b could not be obtained in pure form and the isomeric 
ratio could not be determined by 1H NMR spectroscopy. 
f Nitriles 1c and 1d were used as solvent in the Blaise reaction (yields 
of 3c and 3d refer to BrCH2CO2Et).
g Twice the amounts of reagents were used in the modified Blaise re-
action [compound 3g was isolated in 21% yield as byproduct (also see 
Scheme 4)]. 

Table 2 TMSOTf/Base-Promoted Cyclization of b-Ketoenamides 7 
to Unsymmetrically Substituted 2,2¢-Bipyridine Derivatives 8 or 9

Entry R1 Derivatization Yield (%)a

1 7a: Ph methylationb 8a: 67

2 7a: Ph nonaflationc 9a: 70

3 7b: CH2OMe nonaflationc 9b: –d

4 7c: Me nonaflationc 9c: 67

5 7d: i-Pr nonaflationc 9d: 33

6 7e: n-Bu methylationb 8e: 70

7 7e: n-Bu nonaflationc 9e: 61

8 7f: 4-NCC6H4 nonaflationc 9f: 62

a Yields of pure products after column chromatography.
b MeI, K2CO3, acetone, reflux, overnight.
c NaH, Nf2O, THF, r.t., overnight.16

d Decomposition of starting material.
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In addition to monoaddition product 3f the modified
Blaise reaction of terephthalodinitrile 1f also afforded the
bis-b-enamino ester 3g with 21% yield (Scheme 4). N-
Acylation leading to 7g was challenging due to the poor
solubility of precursor 3g in all solvents examined. The
subsequent TMSOTf/base-promoted cyclization followed
by nonaflation allowed the synthesis of bis-2,2¢-bipyridyl
nonaflate 9g in low overall yield (Scheme 4). Although
further optimization should be possible this first example
nevertheless demonstrates that the presented approach al-
lows a simple and very rapid access to fairly complex
compounds with 2,2¢-bipyridyl moieties.

Scheme 4 Synthesis of phenylene bridged bis(2,2¢-bipyrid-4-yl)
derivative 9g

The modified Blaise reaction of benzonitrile 1a was also
performed with longer reaction times. In addition to the
expected product 3a we also obtained b-ketoenamide 14
in 8% yield formed by partial N-acylation of 3a with the
excess of Ac2O. Treatment of compound 14 with
TMSOTf and base followed by nonaflation afforded the
pyrid-4-yl nonaflate 15 in moderate yield (Scheme 5), in-
dicating that the presented approach is not limited to the
synthesis of 2,2¢-bipyridine derivatives, but may also be
utilized for the synthesis of highly functionalized pyridine
derivatives in general if other N-acylating components are
used.

We demonstrated that Lee's modification of the Blaise re-
action followed by N-acylation provides highly suitable
precursors for the TMSOTf/base-promoted intramolecu-
lar condensation affording 4-hydroxypyridine derivatives
in moderate to good yields. Moreover, a flexible method

for the preparation of unsymmetrically functionalized
2,2¢-bipyridine derivatives has been discovered. The in-
troduction of the nonaflyl group in 4-position allows
metal-catalyzed coupling reactions providing ideal build-
ing blocks for more complex architectures.
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S, 5.32. Found: C, 45.75; H, 2.51; N, 4.69; S, 5.47.

(16) Nf2O = nonafluorobutanesulfonic acid anhydride; 
nonaflation employing nonafluorobutanesulfonyl fluoride 
(NfF) was slow and incomplete.

(17) Cacchi, S.; Ciattini, P. G.; Morera, E.; Otar, G. Tetrahedron 
Lett. 1986, 27, 5541.
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