THE *p*-NITROPHENYLETHYL (NPE) GROUP

A VERSATILE NEW BLOCKING GROUP FOR PHOSPHATE AND AGLYCONE PROTECTION IN NUCLEOSIDES AND NUCLEOTIDES

FRANK HIMMELSBACH, BERND S. SCHULZ, THOMAS TRICHTINGER, RAMAMURTHY CHARUBALA and WOLFGANG PFLEIDERER Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, West Germany

(Received in the UK 22 April 1983)

Abstract—The syntheses of new monomeric building blocks for oligonucleotide synthesis via the phosphotriester approach containing the p-nitrophenylethyl group for phosphate and aglycone protection are described. Blocking of the amide function in guanosines at O⁶ can be achieved by the Mitsunobu reaction forming the corresponding O⁶-p-nitrophenylethyl derivatives (4, 5, 10). Sugar-protected thymidine (16) and uridine (17) have been alkylated at O⁴ in an S_N1-type reaction by p-nitrophenylethyl iodide-silver carbonate in benzene to form the O^4 -p-nitrophenylethyl derivatives (18, 19). Protection of the amino group in 2'-deoxycytidine (25) and cytidine (26) can be performed directly by 1-(p-nitrophenylethoxycarbonyl)-benzotriazole in DMF to obtain the corresponding carbamates (27, 28) as a new type of N⁴-acylated cytidine derivative. p-Nitrophenylethoxycarbonylation of the amino group in 2'-deoxyadenosine (33) and adenosine (34) requires previous sugar protection by acyl or silvl groups and can then be achieved by p-nitrophenylethyl chloroformate or better by 1-methyl-3-p-nitrophenylethoxycarbonylimidazolium chloride to form N⁶-p-nitrophenylethoxycarbonyladenosines (38, 39, 40, 42). The various p-nitrophenylethyl blocking groups are stable under mild hydrolytic conditions (e.g. ammonia and triethylamine) but can be cleaved selectively by DBU or DBN in aprotic solvents. 5'-O-Monomethoxytritylation (12, 29, 43) as well as phosphorylations at the 3'-OH group can be effected to give the corresponding 3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphotriesters (13, 22, 30, 44) also in high yields. Oximate cleavage of the latter compounds to the phosphodiesters (14, 24, 32, 46) and detritylation to the 5'-unblocked phosphotriesters (15, 23, 31, 45) do not affect the aglycone protecting groups, thereby demonstrating their general versatility. The newly synthesized compounds have been characterized on the basis of their elementary analyses (C, H, N), and UV- and ¹H-NMR-spectra.

Recent developments of new methodologies in the chemical synthesis of oligonucleotides¹⁻⁴ have concentrated mainly on the phosphotriester approach^{5,6} as the most versatile method for the assembly of defined oligonucleotide sequences. The acceptance of the Catlin-Cramer-Principle⁷ for stepwise and block condensations created a great variety of special phosphate blocking groups and led to the recommendation of a large number of universally applicable phosphotriester combinations suiting the synthetic purposes. The main trend is hereby directed towards combinations of 3'-terminal phosphotriesters bearing preferentially the o-chloro⁸ and p-chlorophenyl group,9 respectively, as the basic stable protecting group, whereas the structural modifications are predominantly achieved by the second phosphate blocking function which can be regarded as the flexible part of this approach. In the nucleoside-3'-(o-chlorophenyl, 2-cyanoethyl)-phosphates, ^{10,11} the cyanoethyl groups has been substituted by the trichloroethyl,¹²⁻¹⁷ tribromoethyl,¹⁸⁻²⁰ methylthio,²¹ 4-nitrophenyl,^{22,23} 2-phenylsulfonylethyl,^{24,25} 9-fluorenylmethyl,^{26.27} 2-anthraquinonylmethyl,²⁸ 5-benz-isoxazolylmethyl,²⁹ cyclohexylamido, and morpholido group³⁰ as well as by the p-nitrophenylethyl group, 31-33 whereas the *p*-chlorophenyl function has mainly been combined with the 2-cyanoethyl9.34-37 and occasionally with the 5-chloro-8-quinolinyl

group.^{38,39} The latter blocking group is proving to function as an interesting alternative to the chlorophenyl groups in internucleotide phosphate protection.³⁸⁻⁴¹ Our own contribution to the methodology of oligonucleotide synthesis illustrates clearly that especially from the points of view of stability of phosphotriesters and their deprotection, the pnitrophenylethyl group appears to be, so far, the most advanced phosphate protecting group. This is due to its chemical inertness in the condensation step, its stability towards mild acid and base hydrolyses, and its easy cleavage by DBU or DBN in a β -elimination reaction⁴²⁻⁴⁷ which does not affect the P-O bonds at all. These outstanding properties of the p-nitrophenylethyl group suggest a more general application of this interesting group for the protection of various other functions present in the aglycones of the nucleosides and nucleotides. We have therefore investigated the use of the p-nitro-phenylethyl group for O-protection of the amide functions of guanine, uracil, and thymine residues as well as in form of the *p*-nitrophenylethoxycarbonyl group for the blocking of the amino groups of adenine and cytosine residues. The advantage of the uniformity of the blocking group pattern over the multiplicity of the previously used combinations appears obvious at least during the deprotection steps which are considerably simplified by our new approach requiring, in general, only a DBU treatment and an acid cleavage of the monomethoxytrityl group⁴⁷ to release the free oligonucleotide from its fully protected synthetic precursor.

2'-Deoxyguanosine and guanosine protection

A long-standing problem in oligonucleotide synthesis is dealing with the side-reactions of the guanine residue^{5,10,35,48-50} which is susceptible preferentially to sulfonylation at O⁶ by condensing agents⁵¹⁻⁵³ and to phosphorylation by activated nucleotides.⁵⁴ Therefore, protection of the amide function in guanine residues seems to be an obvious necessity if such types of side reactions are to be eliminated. Various efforts have recently been directed towards the solution of this problem including the introduction of 6-O-(2-nitrophenyl) group,⁵⁵ a number of 6-O-substituted silyl, sulfonyl, phosphoryl, and phosphinothioyl derivatives⁵⁶ as well as substituted ethyl groups which are prone to β -elimination cleavage reactions.⁵⁷ The last investigation involves the introduction of the *p*-nitrophenylethyl group into the O⁶-position by a complicated procedure, starting from 2-isobutyrylamino-6-(2,4,6-triisopropylbenzenesulfonyoxy)-3',5'-bis-O-t-butyldimethylsilyl-9- β -D-2'-deoxyribofuranosylpurine, first by reaction with triethylamine and subsequently by substitution of the resulting 6-trimethylammonium group by the *p*-nitrophenylethoxy residue. Careful deprotection of the silyl groups led finally to N²-isobutyryl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine (6).

After a series of unsuccessful attempts to displace the 6-substituent in 6-chloro- and 6-methanesulfonyl-2-amino-9- β -D-ribofuranosylpurine nucleophilically by *p*-nitrophenylethanol under various reaction conditions, we found⁵⁸ that the "Mitsunobu reaction"⁵⁹ offered a good chance of direct O⁶-alkylation if the. 2-amino group is acylated, and hinders in this way a possible reaction at the adjacent N-1 ring atom.

Treatment of N²,3',5'-tri-O-isobutyryl-2'-deoxyguanosine (1) and N^2 , 2', 3', 5'-tetra-isobutyryl-guanosine (2) respectively with 1.5 molecular equivalents each of diethyl azodicarboxylate, triphenylphosphine and 2-(p-nitrophenyl)-ethanol in dioxan at room temp led after 24 hr directly to the corresponding O^{6} -p-nitrophenylethyl derivatives 4 and 5 in 85 and 86% yields, respectively. The pnitrophenylethyl group can be cleaved selectively in 40 min by 0.5 M DBU in pyridine to regenerate the starting materials 1 and 2. Reaction with conc ammonia in dioxan cleaves the sugar acyl groups to give, after 3 days and 20 hr, respectively, N²-isobutyryl- O^{6} -*p*-nitrophenylethyl-2'-deoxyguanosine (6) and -guanosine (7) as crystalline compounds, whereas treatment with conc ammonia in methanol effects the same transformation after 3 hr. Prolonged treatment under the latter conditions finally also cleaves the N²-acyl group without harming the O⁶-blocking group and yields O^6 -p-nitrophenylethyl-2'deoxyguanosine (8) and -guanosine (9) respectively. reaction sequence similar starting from N^2 , 2', 3', 5'-tetra-benzoylguanosine (3) proceeds analogously with the formation of the guanosine derivative 11, via the intermediate 10.

The preparation of the appropriate starting materials for oligodeoxynucleotide synthesis was then achieved from N²-isobutyryl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine (6) which, on monomethoxytritylation, first yielded the corresponding 5'-O-monomethoxytrityl derivative 12 in 86% yield. Secondly, phosphorylation was carried out in the usual manner by treatment of 12 with 2,5dichlorophenyl phosphorodichloridate in presence of 1,2,4-triazole and subsequent addition of

2-(p-nitrophenyl)-ethanol to form the fully blocked phosphotriester N²-isobutyryl-5'-O-monomethoxytrityl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (13) again in 86% yield. Detritylation of 13 with 2% p-toluenesulfonic acid in methylene chloridemethanol (4:1) proceeded in 86% yield to give the corresponding 5'-unprotected phosphotriester 15, whereas the oximate-cleavage⁶⁰ of the 2,5-dichlorophenyl group to the triethylammonium N²-isobutyryl-5'-O-monomethoxytrityl-O⁶-p-nitro-phenylethyl-2'-deoxyguanosine-3'-p-nitrophenylethyl-phosphate (16) could be performed with p-nitrobenzaldoxime in dioxan/water/triethylamine in 90% isolated yield.

Thymidine and uridine protection

More extended studies of the phosphotriester approach recently also revealed some so far unknown side reactions at the aglycone residues of thymidine and uridine.52 Condensing agents of the type of arenesulphonyl 1,2,4-triazolide, nitrotriazolide and tetrazolide respectively as well as phosphorylating agents activate the amide function and lead to 4-azol-1-ylpyrimidin-2-one ribonucleosides and ribonucleotides. 2',3',5'-Tri-O-acetyluridine has been converted by 1-(mesitylene-2-sulphonyl)-3-nitro-1,2, 4-triazole (MSNT) into 2',3',5'-tri-O-acetyl-4-(3nitro-1,2,4-triazol-1-yl)-1- β -D-ribofuranosylpyrimidin-2-one^{52,55} and protected uridines and the less reactive thymidines have behaved similarly on treatment with *p*-chlorophenyl phosphorochloridate and 1.2.4-triazole.⁶¹⁻⁶³ It is noteworthy that this basemodification introduces the possibility of nucleophilic displacement reactions leading to cytidine derivatives with ammonia and amines, respectively, as well as to the corresponding 4-hydrazino- and 4-methoxypyrimidin-2-one nucleosides. A first successful amide protection at O^4 in uridine has recently been achieved by phenol and 2,4-dimethylphenol,⁵⁵ two blocking groups which can be cleaved simultaneously with the substituted aryl phosphotriester functions by the oximate procedure.

Our own efforts in this connection have been directed towards the introduction of the p-

nitrophenylethyl group onto O.⁴ Since the Mitsunobu reaction⁵⁹ does not afford O⁴ but N-3 substitution, the silver-catalysc.³ S_N1-type alkylation with *p*nitrophenylethyl iodide in benzene was investigated. 3'-O-Benzoyl-5'-O-monomethoxytritylthymidine (16) and 2',3'-di-O-benzoyl-5'-O-monomethoxytrityluridine (17), respectively, reacted in 65 and 66% yields to give the corresponding O⁴-*p*-nitrophenylethyl derivatives 18 and 19, which can be debenzoylated with ammonia in methanol or dioxan to give O⁴-*p*nitrophenylethyl-5'-O-monomethoxytrityl-thymidine (20) and -uridine (21), respectively.

Phosphorylation of 20 with 2,5-dichlorophenyl phosphorodichloridate in the presence of 1,2,4triazole and subsequent treatment with 2-(p-nitrophenyl)-ethanol gave 5'-O-monomethoxytrityl-O⁴-pnitrophenylethylthymidine-3'-(2,5-dichlorophenyl, pnitrophenylethyl)-phosphate (22) in 82% yield. Deblocking of the monomethoxytrityl group by p-toluenesulfonic acid in methylene chloride/ methanol led to the 5'-unblocked phosphotriester 23 in 81% yield, and oximate treatment of 22 resulted in the formation of the corresponding 3'-p-nitrophenylethylphosphodiester 24, which was isolated as its triethylammonium salt in 97% yield.

2'-Deoxycytidine and cytidine protection

Amino protection in the 2'-deoxycytidine and cytidine series is usually effected by N4-acylation involving for example the acetyl, pivaloyl, benzoyl,^{64,65} and substituted benzoyl groups. Comparative studies concerned with the stability of N⁴-acylated 2'deoxycytidines⁶⁶ indicate a distinct increase in the stability of the amide bond towards base-promoted deacylation in substituting aliphatic for aromatic acyl groups. As expected, electron-donating substituents, especially in p-position, further enhanced stability as is exemplified by the anisoyl and p-dimethylaminobenzoyl groups. However, an even stronger effect can be achieved by the steric shielding of an o-methylphenyl group on the carbonyl function. Thus, the 2-methyl- and 2,4-dimethylbenzoyl groups are, so far, the most stable 4-amino protecting groups in this series.

	02N-O-CH2CH2J A92CO3 / C6H6	MMTrOł		2CH2 R	-NO2	ROH, R ¹ C		H2CH2-{_}-N (^{CH3} 2CH2-{_}-NC	10 ₂
		[R R ¹	R ²]		R	R ¹]
<u>16</u> СН ₃ Н		18	Снз н	8z		22	MMTr	2 5-Cl2C6H3	
<u>17</u> Н ОВz		19	H OBz	Bz		23	н	25-Cl2C6H3	
		20	Снзн	н		24	MMTr	Et ₃ ŇH	
		21	н он	н					•

In order to extend our simplified blocking group pattern to include 2'-deoxycytidine and cytidine derivatives, we investigated the use of the pnitrophenylethoxycarbonyl group for this purpose. Based on observations of Butula,^{67,68} that 1-alkoxycarbonyl-benzotriazoles selectively acylate amino groups in presence of OH functions, 1-(p-nitrophenylethoxycarbonyl)benzotriazole has been synthesized as the most potentially promising acylating agent. Reactions with unprotected 2'-deoxycytidine (25) and cytidine (26) proceed smoothly in DMF at 60° and lead in, 90% yields, to the corresponding N^4 -p-nitrophenylethoxycarbonyl derivatives 27 and 28. This approach appears to have an advantage over the recently published N-benzoyloxycarbonylation by 1-(benzyloxycarbonyl)-3-ethyl-imidazolium tetrafluoroborate.69

The new blocking group is stable against ammonia and triethylamine in methanol, dioxane, and water but can be cleaved quantitatively to regenerate the starting materials by DBN or DBU in aprotic solvents. Methoxytritylation of 27 proceeds in 88% yield to 5'-O-monomethoxytrityl- N^4 -p-nitrophenylethoxycarbonyl-2'-deoxycytidine (29) and phosphorylation with 2,5-dichlorophenyl phosphorodichloridate, 1,2, 4-triazole, and 2-(p-nitrophenyl)-ethanol leads in the usual manner to the fully protected 5'-O-monomethoxytrityl- N^4 -p-nitrophenylethoxycarbonyl-2'deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (30) in 86% yield. Detritylation of the phosphotriester 30 with p-toluenesulfonic acid in methylene chloride/methanol occurs almost quantitatively to give 31, and oximate-promoted cleavage of the 2,5-dichlorophenyl groups leads to the protected phosphodiester 32, which was isolated as its triethylammonium salt in 93% yield.

2'-Deoxyadenosine and adenosine protection

The N⁶-benzoyl group has long proved to be satisfactory for the protection of the aglycone moiety of adenosine and 2'-deoxyadenosine derivatives in both the phosphodi- and phosphotri-ester approaches. The latter protecting group is more stable than its 4-chloro, 3,4-dichloro-, and 4-nitroderivatives; it is even more stable than its aliphatic counterparts such as isobutyryl and phenylacetyl.⁷¹ Some increase in stability can be obtained by the anisoyl group⁷⁰ and the more lipophilic 4-t-butylbenzoyl residue⁷¹ reveals some advantages from the point of view of synthesis and isolation of protected oligonucleotides by the phosphotriester method.

p-Nitrophenylethoxycarbonylation of the 6-amino group in 2'-deoxy-(33) and adenosine (34) could not be achieved directly with 1-p-nitrophenylethoxycarbonyl)-benzotriazole in the same way as in the cytosine series. This is due to the lower nucleophilic potential of the amino function in the adenosine series. The more reactive p-nitrophenylethyl chloroformate, however, smoothly acylates 3',5'-di-O-acetyl-2'-deoxyadenosine (35) and 2',3',5'-tri-O-acetyladenosine (36), respectively, in pyridine to give mixtures of the N⁶-mono- and di-pnitrophenylethoxycarbonyl derivatives which can be selectively deprotected on treatment with aqueous ammonia in methanol to give N⁶-p-nitrophenylethoxycarbonyl-2'-deoxy-(40) and -adenosine (41) in 82 and 85% overall yields, respectively. By analogy with recent reports,^{69,73} monoalkoxycarbonylation of 35 and 36 can be effected directly with 1-methyl-3*p*-nitrophenylethoxycarbonylimidazolium chloride. The latter reagent was prepared from Dnitrophenylethyl chloroformate and N-methylimidazole in methylene chloride, and its use led crystalline 3',5'-di-O-acetyl-N⁶-p-nitrophenylto ethoxycarbonyl-2'-deoxyadenosine (38) and the 2',3',5'-tri-O-acetyl-N⁶-p-nitrophenylethoxycarbonyl-adenosine (**39**) in 85% yields. Deacetylation with triethylamine in methanol then proceeded almost quantitatively to give 40 and 41, respectively, in 95% isolated yields. An even more simple one-pot reaction leading to 40 was developed starting from 33, which was treated first with 1-trimethylsilylimidazole in methylene chloride to form selectively the 3',5'-bis-O-trimethylsilyl-2'-deoxyadenosine (37). Addition of 1-methyl-3-p-nitrophenylethoxycarbonylimidazolium chloride causes monoacylation to 42 and work-up with ammonia in aqueous methanol leads to N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine (40) in 73% overall yield.

Deprotection of the amino blocking group to regenerate the starting materials 33 and 34 may again

best be effected with DBN or DBU in pyridine. Monomethoxytritylation of 40 could be performed in the usual manner with monomethoxytrityl chloride in pyridine to 5'-O-monomethoxytrityl-N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine (43) in high yield and further phosphorylation with 2.5-dichlorophenyl phosphorodichloridate, 1.2.4-triazole, and 2-(p-nitrophenyl)-ethanol in pyridine afforded the fully protected monomeric nucleotide building block, 5'-O-monomethoxytrityl-N⁶-p-nitrophenylethoxycarbonyl - 2' - deoxyadenosine - 3' - (2,5 dichlorophenyl, p-nitrophenylethyl)-phosphate (44). During the detritylation experiments it was noticed that the carbamate function in the aglycone moiety seems to be more stable towards acid cleavage than the N⁶-benzoyl group since the phosphotriester intermediate 45 was isolated in 93% yield, whereas, due to particle debenzoylation, the yield of the corresponding benzoyl derivative was always only 85%. Furthermore, preliminary qualitative chromatographic studies also indicate a somewhat enhanced stability of the glycosidic bond in 44 and 45 compared to the N⁶-benzoyl analogs. Quantitative measurements relating to these observations are under investigation and these results will soon be published elsewhere. Finally oximate cleavage of the 2,5-dichlorophenyl group in 44 led to the phosphodiester 46 in high yield. The amino blocking group was completely stable to the conditions of *p*-nitrobenzaldoxime/triethylamine treatment in dioxan/water.

Structure and characterization

The structural assignments of the newly synthesized compounds are based on the well-defined constitutions of the starting materials whereby C, H, N-elementary analysis prove the empirical formulae and high resolution 'H-NMR-spectra ensure in addition the correctness of the assigned structures (Table 1). In the *p*-nitrophenylethyl substituted nucleosides and nucleotides, the AA'BB'-pattern of the *p*-nitrophenyl group attracts very special attention due to its characteristic signals which are listed in Table 1 together with the chemical shifts of the O-CH₂-triplet and the anomeric protons. The 250 MHz-spectra, in general, show clearly separated signals as may be seen for example, from the spectrum of N⁶-p-nitrophenylethoxycarbonyl-2'-deoxy-adenosine (40).

The purity of the compounds has been checked by chromatographic means and further structural support is provided by the UV-absorption spectra, measured in methanol solution.

EXPERIMENTAL

UV-absorption spectra were measured with a Cary 118 spectrometer. 'H-NMR-spectra are taken at 250 MHz with a Bruker WM-250 spectrometer; as standards have the CHCl, and DMSO signals been used. Schleicher and Schüll precoated silica gel sheets F 1500 LS 254 were used for TLC, which was performed in the following solvent systems: A [CHCl₃-MeOH (19:1)]; B [CHCl₃-MeOH (9:1)]; C [CHCl₃-MeOH-Et₃N (90:5:5)];D [toluene-EtOAc-MeOH (5:4:1)]; E [toluene-EtOAc (7:3)]. Merck silica gel PF254 was used for separations on preparative plates $(40 \times 20 \times 0.2 \text{ cm})$ and Merck particle size 0.05–0.2 mm for preparative column chromatography. Drying of the substances was achieved in a Büchi oven T0-50 under high vacuum over silica gel blue (Merck). Absol. pyridine was obtained by refluxing with p-toluenesulfonyl chloride, distillation, treatment with CaH2, distillation and storage over molecular sieve. The other solvents have been dried and purified in the usual manner. M.ps are not corrected. Several compounds have not been obtained in crystalline form but as amorphous solids on evaporation and drying in high vacuum.

N²,3',5'-Triisobutyryl-2'-deoxyguanosine (1)⁶⁵

Compound 4 (0.156 g, 0.25 mmol) was treated with a 0.5 molar soln of DBU in abs pyridine (5 ml) for 1 hr at room temp. It was then neutralized with 1 M AcOH (2.5 ml) and evaporated to dryness. The residue was purified by preparative TLC on a silica gel plate ($40 \times 20 \times 0.2$ cm) using CHCl₃-MeOH (19:1). The main band was eluted by CHCl₃-MeOH (1:1) and yielded on evaporation and drying in high vacuum N²,3',5'-triisobutyryl-2'-deoxyguanosine as

Table 1. Physical data of p-nitrophenylethyl substituted nucleosides and nucleotides

Com-	UV-Spectr	¹ H-NMR-Spectra (6-values in ppm)				Sol-	
pound	λ _{max} (nm)	1g E	o-H- phenyl	n-H- phenyl	1'-H	-0-0H2-0H2-	vent
4	218 269	4.42 4.40	7.494	8 134	6 33+	A 91+	
* 5	217 268	4.46 4.46	7.504	8.14d	6.024	4.87+	chci 3
6	218 269	4.44 4.42	7.64d	8.16d	6.31t	4.77t	nDMSO
2	228 268 [282]	4.43 4.40 [4,25]	7.65a	8.174	5.88d	4.78t	DDMSO
8	250 279	4.16 4.25	7.62d	8.17d	6.19t	4.65t	DDMSO
2	251 278	4.17 4.26	7.62đ	8.17d	5.76đ	4.66t	D _c -DMSO
10	230 270	4.77 4.55	×	8.16d	6.25d	4.89m ^{a)}	CDC1,
11	230 271	4.31 4.49	7.62d	8.16d	5.92d	4.75t	D ₆ -DMSO
12	[236] 269	[4.32] 4.45	7.64d	8.16d	6.34t	4.77t	D _K -DMSO
13	[222] 270 [282]	[4.71] 4.56 [4.43]	7.48d 7.35d	8.07d 8.13d	6.33t	4.83t	CDCI ₃
<u>14</u>	[236] 270 [282]	[4.35] 4.58 [4.47]	7.46d 7.49d	8.01d 8.04d	6.34t	4.79t	CDCI ₃
15	217 270 [282]	4.62 4.54 [4.40]	7.46d 7.36d	8.08d 8.08d	6.21t	4.77t	CDC13
<u>18</u>	[227] 275 [280]	[4.54] 4.25 [4.25]	×	8.15d	6.53t	4.63t	CDC1 3
12	273 [280]	4.31 [4.28]	30	8.15d	5.92	4.61t	coci 3
<u>20</u>	275 [280]	4.18 [4.17]	7.40d	8.14d	6.37	4.60t	CDC13
<u>21</u>	274 [280]	4.25 [4.23]	7.41d	8.16d	5.80d	4.65t	CDC1 ₃
22	273 [280]	4.35 [4.32]	x x	8.10 8.17	6.45m ^{a)}	4.65t	CDC13
23	273 [280]	4.38 [4.36]	7.30d 7.36d	8.12d 8.16d	6.04	4.63t 4.46dt	CDC13
<u>24</u>	275 [280]	4.38 [4.37]	**	8.01d 8.13d	6.33	4.60t 4.04t	CDC13
<u>22</u>	242 281	4.24 4.16	7.59d	8.15d	6.08t	4.35t	D ₆ -DMSO
<u>28</u>	243 280	4.23 4.14	7.60d	8.17d	5.76d	4.35t	D ₆ -DMSO
22	235 [277] 281	4.41 [4.16] 4.17	7.40d	8.20d	6.28t	4.40t	CDC1 ₃
<u>30</u>	229 273	4.56 4.41	7.38d	8,07đ 8,14đ	6.25m ^a	4.40t	CDC13
<u>31</u>	245 273	4.38 4.40	7.36d 7.38d	8.11d 8.14d	6.17m ^a	4.40t	CDC13
32	274	4.41	ж Х	8.02d 8.18d	6.20m ^a)	4.37t	CDC1 3
<u>38</u>	267	4.45	7.39d	8.11d	6.44d	4.53t	CDCI ₃
39	267	4.46	7.40d	8.14d	6.18d	4.52t	coci ³
4Ω	267	4.44	7.60d	8.16d	6.42t	4.30t	D ₆ -DMSO
<u>41</u>	267	4.45	7.61d	8,17d	5.99d	4.40t	D ₆ -DMSO
43	268	4.45	7.40d	8.12d	6.46t	4.52t	CDC13
<u>44</u>	267	4,59	7.40d ×	8.06d 8.13d	6.42m ^{a)}	4.52t	CDC1 ₃
4 <u>5</u>	267	4.58	7.38d 7.42d	8.12d 8.13d	6.28m ^{a)}	4.50t	CDC1.3
<u>4</u> 9	267	4.58	7.40d .:	8.02d 8.13d	6.47t	4,50t	CDC13

s = singlet, d = doublet, t = triplet, m =.multiplet;

* = covered by aromatic H, a) = complex splitting due to the presence of diastereomeric mixtures.

Fig. 1. 250 MHz-¹H-NMR spectrum of N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine (40) in [D₆]DMSO.

a chromatographically pure solid foam; yield, 0.1 g (84%). The material was identical with an authentic sample.

N²,2',3',5'-Tetraisobutyrylguanosine (2)

Compound 5 (71 mg, 0.1 mmol) was treated with 2 ml of 0.5 molar soln of DBU in abs pyridine for 3 hr at room temp. The soln was then neutralized with 1 ml of 1 molar AcOH, evaporated to dryness and the residue was chromatographed on a preparative silica gel plate ($20 \times 20 \times 0.2$ cm) with CHCl₃-MeOH (19:1). The main band was eluted and yielded on evaporation and drying N²,2',3',5-tetraisobutyrylguanosine identical chromatographically and spectrophotometrically with an authentic sample; yield, 46 mg (81%).

$N^{2},2',3',5'$ -Tetrabenzoylguanosine (3)

Compound 10 (85 mg, 0.1 mmol) was treated analogously to the preceding procedure and gave on isolation pure $N^2,2',3',5'$ -tetrabenzoylguanosine; yield, 61 mg (87%). The material was chromatographically and spectrophotometrically identical with an authentic sample.

N^2 ,3',5' - Triisobutyryl - O⁶ - p - nitrophenylethyl - 2' - deoxy - guanosine (4)

Compound 1^{65} (0.477 g, 1 mmol), triphenylphosphine (0.393 g, 1.5 mmol), diethyl azodicarboxylate (0.261 g, 1.5 mmol), and *p*-nitrophenylethanol (0.25 g, 1.5 mmol) were stirred in 25 ml abs dioxan for 24 hr at room temp. After evaporation to a smaller volume and dilution in 500 ml CHCl, the soln was washed with water (2 × 100 ml). The CHCl, layer was separated, dried over Na₂SO₄ and then concentrated to a small volume which was separated on a silica gel column (16×2.5 cm). Elution was done first with 300 ml CHCl₃, then with a mixture of CHCl₃-MeOH (99:1), which eluted the product after a prefraction of 100 ml in the following 600 ml. This fraction was evaporated to dryness and the residue recrystallized from CHCl₃-petroleum ether to give N²,3',5'-triisobutyryl-O⁶-*p*-nitrophenylethyl-2'-de-oxyguanosine (Found: C, 57.10; H, 5.91; N, 13.11. C₃₀H₃₇N₆O₉ (625.7) requires: C, 57.59; H, 5.96; N, 13.43%) as colourless crystals; m.p. 123-126°; yield, 0.529 g (85%); *R_f* 0.49 (system A).

$N^2-2', 3', 5'$ - Tetraisobutyryl-O⁶-p-nitrophenylethylguanosine (5)

Compound 2⁶⁵ (1.127 g, 2 mmol), diethyl azodicarbo-xylate (0.52 g, 3 mmol), triphenylphosphine (0.79 g, 3 mmol), and p-nitrophenylethanol (0.5 g, 3 mmol) were stirred in 40 ml abs dioxan for 3 hr at room temp. On evaporation to a smaller volume diethyl hydrazinedicarboxylate separated and was filtered off. The filtrate was evaporated to dryness and the residue dissolved in CHCl₃ and separated on a silica gel column (20×5 cm). Elution with CHCl₃ yielded a main fraction which was still contaminated with some triphenylphosphine. Column chromatography was therefore repeated in the same manner. Evaporation to dryness of the main fraction and drying in high vacuum gave pure N²,2',3',5'-tetraisobutyryl-O⁶-p-nitrophenylethylguanosine (Found: C, 57.18; H, 6.12; N, 12.01. C₃₄H₄₄N₆O₁₁ (712.7) requires: C, 57.29; H, 6.22; N, 11.79%) as colourless amorphous solid; yield, 1.01 g (70%); $R_f 0.87$ (system A).

 N^2 -Isobutyryl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine (6)

(a) Compound 1⁶⁵ (0.477 g, 1 mmol), triphenylphosphine (0.393 g, 1.5 mmol), diethyl azodicarboxylate (0.261 g, 1.5 mmol), and *p*-nitrophenylethanol (0.25 g, 1.5 mmol) were stirred in 25 ml abs dioxan for 24 hr at room temp. After evaporation to 1:4 of the volume, 500 ml CHCl₃ was added and then washed with water (2 × 100 ml). The organic layer was dried over Na₂SO₄, evaporated to dryness and then the residue dissolved in 15 ml dioxan. Conc ammonia (20 ml) was added and then stirred for 3 days. Evaporation to dryness and recrystallization of the residue from MeOH gave N²-isobutyryl-O⁶-*p*-nitrophenylethyl-2'deoxyguanosine (Found: C, 54.09; H, 5.31; N, 17.18. C₂₂H₂₆N₆O₇ (486.5) requires: C, 54.23; H, 5.39; N, 17.28%) as colourless crystals; m.p. 210-211°; yield, 0.365 g (75%); *R*_f 0.13 (system B).

(b) Compound 4 (0.16 g, 0.26 mmol) was dissolved in dioxan (5 ml), conc ammonia (5 ml) added and then stirred at room temp for 3 days. After evaporation to dryness, the residue was purified by preparative TLC on a silica gel plate ($20 \times 20 \times 0.2$ cm) in CHCl₃-MeOH (4:1). The main band was eluted with CHCl₃-MeOH (1:1) and gave on evaporation N²-isobutyryl-O⁶-*p*-nitrophenylethyl-2'-deoxyguanosine as an amorphous, chromatographically pure solid; yield, 0.105 g (85%).

N²-Isobutyryl-O⁶-p-nitrophenylethylguanosine (7)

(a) Compound 5 (0.071 g, 0.1 mmol) was treated with a mixture of 1.5 ml MeOH and 1.5 ml 25% aqueous ammonia for 4 hr at room temp. After evaporation to dryness, the residue was purified by preparative TLC on a silica gel plate ($20 \times 20 \times 0.2$ cm) CHCl₃-MeOH (4:1). The main band was eluted and gave on evaporation and drying N²-isobutyryl-O⁶-p-nitrophenylethylguanosine as a colourless solid; yield, 38 mg (76%).

(b) Compound 2^{65} (11.27 g, 20 mmol) was dissolved in 400 ml abs dioxan. After addition of triphenylphosphine 30 mmol), diethyl azodicarboxylate (5.24 g, (7.88 g, 30 mmol), and p-nitrophenylethanol (5.0 g, 30 mmol) and stirring for 3 hr at room temp the reaction was evaporated to dryness. The residue was dissolved in 250 ml MeOH and after addition of 250 ml 25% aqueous ammonia stirred for 3 hr at room temp. The soln was neutralized with glacial AcOH, evaporated to dryness and the residue chromatographed on a silica gel column $(20 \times 9 \text{ cm})$ with CHCl₁-MeOH (19:1). The main fraction was collected and gave on evaporation N²-isobutyryl-O⁶-p-nitrophenylethylguanosine (Found: C, 52.64; H, 5.14; N, 16.60. C₂₂H₂₆N₆O₈ (502.5) requires: C, 52.59; H, 5.22; N, 16.73%) as an amorphous, chromatographically pure solid; yield, 8.7 g (86%). Recrystallization from dioxan or ethanol gave colourless crystals; m.p. 199–201°; $R_f 0.39$ (system B).

O⁶-p-Nitrophenylethyl-2'-deoxyguanosine (8)

Compound 4 (0.16 g, 0.26 mmol) was dissolved in MeOH (50 ml) and after addition of conc aqueous ammonia (50 ml) was stirred for 5 days at room temp. The soln was evaporated and the residue fractionated on silica gel (20 × 20 × 0.2 cm) in the system toluene-EtOAc-MeOH (10:8:3). The main band was eluted with CHCl₃-MeOH (1:1) and gave on evaporation and drying in high vacuum, 0⁶-p-nitrophenylethyl-2⁻deoxyguanosine (Found: C, 50.12; H, 4.65; N, 19.15. C₁₈H₂₀N₆O₆ × H₂O (434.4) requires: C, 49.76; H, 5.10; N, 19.34%) as an amorphous solid; yield, 0.081 g (76%); R_f 0.28 (system B).

O⁶-p-Nitrophenylethylguanosine (9)

Compound 7 (1.0 g, 2 mmol) was suspended in MeOH (75 ml) and conc aqueous ammonia (75 ml) and then stirred for 6 days at room temp. After evaporation of the soln to dryness, the residue was recrystallized from water to give 0^6 -*p*-nitrophenylethylguanosine (Found: C, 50.18; H, 4.55; N, 19.72. C₁₈H₂₀N₆O₇ (432.4) requires: C, 50.00; H, 4.66; N, 19.44%) as yellowish crystal powder; m.p. 108°; yield, 0.51 g (59%); R_f 0.48 (system B).

$N^{2}, 2', 3', 5'$ -Tetrabenzoyl-O⁶-nitrophenylethylguanosine (10)

Compound 3 (3.5 g, 5 mmol), triphenylphosphine (2.62 g, 10 mmol), *p*-nitropic-nylethanol (1.67 g, 10 mmol), and diethyl azodicarboxylate (1.74 g, 10 mmol) were stirred for 18 hr at room temp leading to a complete soln of all components. The soln was evaporated to dryness, the residue dissolved in CHCl₃ and then chromatographed on a silica gel column (20 × 5 cm) with CHCl₅. The main fraction was collected, evaporated and the residue recrystallized from CCl₄. The second fraction, which contained some triphenylphosphine, was also evaporated and the residue recrystallized twice from CCl₄ to give pure N²,2',3',5'-tetrabenzoyl-O⁶-nitrophenylethylguanosine (Found: C, 63.52; H, 4.12; N, 9.83. C₄₆H₃₆N₆O₁₁ × H₂O (866.8) requires: C, 63.74; H, 4.42; N, 9.70%) as colourless crystals; m.p. 168°; yield, 3.09 g (71%); R, 0.91 (system A).

N²-Benzoyl-O⁶-p-nitrophenylethylguanosine (11)

Compound 10 (0.17 g, 0.2 mmol) was stirred in saturated methanolic ammonia (3 ml) and dioxan (1 ml) at room temp for 8 days. It was then evaporated and the residue chromatographed on a preparative silica gel plate ($40 \times 20 \times 0.2$ cm) with CHCl₃-MeOH (9:1). The main band was eluted, the eluate evaporated to an amorphous gel, which crystallized on treatment with MeOH to give N²-benzoyl-O⁶-p-nitrophenylethylguanosine (Found: C, 54.99; H, 4.49; N, 15.24. C₂₃H₂₄N₆O₈ × 1/2 H₂O (545.5) requires: C, 55.04; H, 4.62; N, 15.41%) as colourless crystals; m.p. 194; yield, 61 mg (57%); R₇ 0.41 (system B).

N^2 - Isobutyryl - 5'-O - monomethoxytrityl-O^6 - p - nitrophenylethyl - 2' - deoxyguanosine (12)

Compound 6 (1.06 g, 2.2 mmol) was evaporated in abs pyridine $(3 \times 5 \text{ ml})$ and then monomethoxytrityl chloride (1.39 g, 4.5 mmol) and 20 ml abs pyridine was added. After stirring for 24 hr at room temp MeOH (5 ml) was added and the soln evaporated to a smaller volume and then extracted with 800 ml CHCl₃. The CHCl₃ layer was washed with water $(3 \times 300 \text{ ml})$, dried over Na₂SO₄, evaporated and finally coevaporated with toluene $(3 \times 10 \text{ ml})$. The residue was chromatographed on a silica gel column $(14 \times 2.5 \text{ cm})$ and eluted first with 500 ml CHCl₃ and then with 900 ml CHCl₁-MeOH (99:1) which contained the product. This fraction was evaporated and the residue reprecipitated from CHCl₃ into *n*-hexane with stirring to give N²-isobutyryl-5'-O-monomethoxytrityl-O⁶-pnitrophenylethyl-2'-deoxyguanosine (Found: C, 64.78; H, 5.40; N, 10.40. $C_{42}H_{42}N_6O_8 \times H_2O$ (776.8) requires: C, 64.93; H, 5.71; N, 10.87%) as colourless amorphous powder; yield, 1.437 g (84%); $R_f 0.28$ (system A).

N^2 - Isobutyryl - 5' - O - monomethoxytrityl - O⁶ - p - nitrophenylethyl-2'-deoxyguanosine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (13)

Compound 12 (1.137 g, 1.5 mmol) was coevaporated with abs pyridine $(3 \times 4 \text{ ml})$ and then dissolved in 4 ml abs pyridine. This soln was added dropwise to a mixture of 5 mmol) and 1.2.4-triazole (0.34 g, 2,5-dichlorophenylphosphorodichloridate in 4 ml abs pyridine and stirred in an ice-bath. After 30 min, when the starting material had disappeared (checked by chromatography), p-nitrophenylethanol (0.473 g, 2.8 mmol) was added and the mixture stirred at room temp for another 6 hr. Phosphate buffer (5 ml, pH 7) was added to stop the reaction. The mixture was extracted with 800 ml CHCl₃, washed with buffer $(2 \times 200 \text{ ml})$, the organic layer dried over Na₂SO₄, evaporated to dryness and then coevaporated with toluene $(2 \times 50 \text{ ml})$. The residue obtained was dissolved in a little CHCl₃, chromatographed on a silica gel column $(25 \times 2.5 \text{ cm})$ first with CHCl₃ (800 ml) and then CHCl₃-MeOH(99:1; 1000 ml) to elute the product. The main fraction was evaporated, the residue dissolved in 10 ml CHCl, and this soln added slowly dropwise into *n*-hexane (400 ml) with stirring to give N^2 -isobutyryl-5'-O-monomethoxytrityl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine-3'-(2,5-dichlorophenyl,p-nitrophenylethyl)-phosphate (Found: C, 59.48; H, 4.83; N, 8.53. C₅₆H₅₂Cl₂N₇O₁₃P (1132.9) requires: C, 59.37; H, 4.62; N, 8.65%) as a colourless powder; yield, 1.461 g (86%); Rf 0.33 (system A), R_{f} 0.53 (system D).

Triethylammonium N²-isobutyryl-5'-O-monomethoxytrityl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine-3'-p-nitrophenylethylphosphate (14)

A soln of p-nitrobenzaldoxime (1.66 g, 10 mmol) in dioxan (20 ml), water (20 ml), and Et₃N (20 ml) was stirred for 10 min at room temp and then 13 (1.132 g, 1 mmol) was added. The mixture was stirred for 3 hr, then evaporated to dryness and coevaporated with toluene (2×20 ml). The material obtained was dissolved in CHCl, and chromatographed on a silica gel column (12×2.5 cm) first with CHCl₃ (400 ml) and then CHCl₃-MeOH mixtures (99:1, 300 ml; 98:2, 300 ml; 97:3, 300 ml; 95:5, 300 ml) and finally with CHCl₃-MeOH-Et₃N (90:5:5; 500 ml) to elute the product. This fraction was evaporated, then coevaporated with toluene $(2 \times 20 \text{ ml})$ and the residue dissolved in CHCl₃ (8 ml). This soln was added slowly dropwise to n-hexane (300 ml) with intensive stirring to give triethylammonium N²-isobutyryl-5'-O-monomethoxytrityl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine-3'-p-nitrophenylethylphosphate (Found: C, 61.71; H, 6.12; N, 10.29. $C_{56}H_{65}N_8O_{13}P$ (1089.7) requires: C, 61.72; H, 6.01; N, 10.82%) as a colourless, amorphous powder; yield, 0.98 g $(90\%); R_f 0.39$ (system C).

N²-Isobutyryl-O⁶-p-nitrophenylethyl-2'-deoxyguanosine-3'-(2,5-dichlorphenyl, p-nitrophenylethyl)-phosphate (15)

Compound 13 (1.132 g, 1 mmol) was added to a 2% soln of p-toluene-sulfonic acid in CH₂Cl₂-MeOH (4:1; 20 ml) and stirred for 30 min at room temp. The reaction was stopped by addition of phosphate buffer (20 ml; pH 7) and then extracted several times with CHCl₃ (600 ml). The organic layer was washed with buffer $(2 \times 100 \text{ ml})$, water (100 ml) and then dried over Na₂SO₄. The extract was evaporated to a small volume, chromatographed on a silica gel column (20×2.5 cm) and eluted first with CHCl₃ (700 ml) and then CHCl,-MeOH (99:1; 800 ml). The latter fraction was again evaporated, the residue dissolved in CHCl₃ (10 ml) and this soln added dropwise into n-hexane (400 ml) with intensive stirring to give N²-isobutyryl-O⁶p-nitrophenylethyl-2'-deoxyguanosine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (Found: C, 50.42; H, 4.32; N, 11.21. C₃₆H₃₂Cl₂N₇O₁₂P (860.6) requires: C, 50.24; H, 4.21; N, 11.39%) as a colourless amorphous powder; yield, 0.741 g (86%); R_f 0.11 (system A), R_f 0.33 (system D).

3'-O-Benzoyl-5'-O-monomethoxytritylthymidine (16)⁷⁴

Compound 18 (0.2 g, 0.26 mmol) and diazabicyclo [5.4.0]undecen (DBU) (0.4 g, 0.26 mmol) in abs pyridine (5 ml) was stirred for 3 hr at room temp. It was neutralized with 1N AcOH (2.6 ml) and evaporated to dryness. The residue was dissolved in CHCl, (40 ml), washed with phosphate buffer (30 ml; pH 7) and then the CHCl₃ layer dried over Na₂SO₄. The soln was chromatographed on a silica gel plate ($40 \times 20 \times 0.2$ cm) after evaporation to a small volume and developed in CHCl₁-MeOH(19:1). The main band was eluted with the same solvent mixture and gave on evaporation 3'-O-benzoyl-5'-O-monomethoxytritylthymidine as an amorphous solid; yield, 0.13 g (81%). The substance was chromatographically and spectrophotometrically identical with an authentic material.

2',3'-Di-O-benzoyl-5'-O-monomethoxytrityluridine (17)

Compound 19 (0.227 g, 0.26 mmol) was treated analogously and gave after preparative TLC, 2',3'-di-O-benzoyl-5'-O-monomethoxytrityluridine as a colourless solid foam; yield, 0.166 g (88%). The identity with an authentic sample was checked chromatographically and spectrophotometrically.

p-Nitrophenylethyliodide

NaI (8.8 g, 59 mmol) was dissolved in abs ethyl methyl ketone (70 ml) and then p-nitrophenylethyl chloride (10.0 g, 54 mmol) in ethyl methyl ketone (30 ml) was added. After boiling under reflux for 24 hr, the ppt was filtered off, washed with acetone and the united filtrates evaporated. The residue was dissolved in CHCl₃ (150 ml), washed with a 1% $Na_2S_2O_3$ aq (2 × 50 ml), dried over Na_2SO_4 and then again evaporated. The residue was recrystallized from diethyl ether and little CHCl₃ to give *p*-nitrophenylethyliodide (Found: C, 34.73; H, 2.88; N, 4.97. C₈H₈INO₂ (277.0) requires: C, 34.68; H, 2.91; N, 5.06%) as yellowish crystals; m.p. 100-101°; yield, 13.9 g (93%).

3'-O-Benzoyl-5'-O-monomethoxytrityl-O⁴-p-nitrophenylethylthymidine (18)

Compound 16⁷⁴ (21.0 g, 33.9 mmol) and silver carbonate (14.0 g, 51 mmol) were heated under reflux in abs benzene (190 ml) for 1 hr. After cooling to 50° p-nitrophenylethyliodide (19.4 g, 70 mmol) was added and the mixture stirred for 3 days at this temp. The ppt was filtered off and the filtrate evaporated to dryness. The residue was dissolved in CH₂Cl₂ and chromatographed on a silica gel column (400 g) first with CH₂Cl₂ and then with CHCl₃. The main fraction was collected and evaporated in vacuum to a solid foam; yield, 17.0 g (65%). A small sample was further purified by preparative TLC on a silica gel plate with CHCl₃ and gave after elution, evaporation, and reprecipitation from a little CHCl₃ into n-hexane 3'-O-benzoyl- $5' - O - monomethoxytrityl - O^4 - p - nitrophenylethylthymidine$ (Found: C, 70.15; H, 5.37; N, 5.30. $C_{45}H_{41}N_3O_9$ (767.8) requires: C, 70.39; H, 5.38; N, 5.47%) as an amorphous powder; $R_f 0.9$ (system A).

2',3' - Di - O - benzoyl - 5' - O - monomethoxytrityl - O⁴ - p - nitro-

phenylethyluridine (19) Compound 17 (8.0 g, 11 mmol) and silver carbonate (4.7 g, 17 mmol) were boiled under reflux in abs benzene (90 ml) for 1 hr. After cooling to 50° p-nitrophenylethyliodide (6.11 g, 22 mmol) was added and stirred at this temp for another 24 hr. The ppt was filtered off, the filtrate evaporated, the residue dissolved in CH₂Cl₂ and this soln chromatographed on a silica gel column (100 g) in the same solvent. The main fraction was collected, evaporated in vacuum to give a colourless solid foam; yield, 6.37 g (66%). A small sample was further purified by preparative TLC on a silica gel plate and gave after elution, evaporation and reprecipitation from a little CHCl₃ into n-hexane 2',3'-di-O-benzoyl-5'-O-monomethoxytrityl-O⁴-p-nitrophenylethyluridine (Found: C, 70.33; H, 5.03; N, 4.60. $C_{51}H_{43}N_3O_{11}$ (873.9) requires: C, 70.09; H, 4.96; N, 4.81%) as a colourless amorphous powder; $R_f 0.94$ (system A).

5' - O - Monomethoxytrityl - O⁴ - p - nitrophenylethylthymid ine (20)

Compound 18 (1.0 g, 1.3 mmol) was dissolved in dioxan (5 ml) and after addition of a satd soln of ammonia in abs MeOH (10 ml) stirred for 18 hr at room temp. The soln was evaporated to dryness, the residue dissolved in CHCl₃ and this soln chromatographed on a silica gel column (40 g) first in CHCl₃ and then with gradient CHCl₃-MeOH-mixtures (95:5). The main fraction was collected and gave on evaporation in vacuum a colourless solid foam; yield, 0.7 g (80%). A small sample was further purified by preparative TLC and reprecipitation from a little CHCl, into n-hexane to give 5'-O-monomethoxytrityl-O⁴-p-nitrophenylethylthymidine (Found: C, 68.96; H, 5.70; N, 6.08. $C_{38}H_{37}N_3O_8$ (663.7) requires: C, 68.76; H, 5.62; N, 6.33%) as a colourless amorphous powder; $R_f 0.50$ (system A).

5'-O-Monomethoxytrityl-O⁴-p-nitrophenylethyluridine (21)

Compound 19 (1.0 g, 1.14 mmol) was dissolved in dioxan (5 ml) and then a satd soln of ammonia in abs MeOH (10 ml) was added. It was stirred for 24 hr at room temp and then the soln evaporated to dryness. The residue was dissolved in CHCl₃, and chromatographed on a silica gel column (40 g) first with CHCl₃ and then with CHCl₃-MeOH (98:2). The main fraction was collected and gave on evaporation in vacuum 5'-O-monomethoxytrityl-O⁴-p-nitrophenylethyluridine (Found: C, 66.86; H, 5.39; N, 6.25. C₃₇H₃₅N₃O₉ (666.0) requires: C, 66.75; H, 5.29; N, 6.31%) as a colourless amorphous foam; yield, 0.628 g (82%); R_f 0.55 (system A).

5'-O-Monomethoxytrityl-O⁴-p-nitrophenylethylthymidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (22)

Compound 20 (3.0 g, 4.5 mmol) was dissolved in abs pyridine (10 ml) and then added dropwise to a soln of 1,2,4-triazole (0.94 g, 13.6 mmol) and 2,5-dichloro-phenylphosphorodichloridate (1.77 g, 6.33 mmol) in abs pyridine (5 ml) which had previously been stirred for 15 min in an ice-bath. The mixture was then stirred for 30 min at room temp, p-nitrophenylethanol (1.37 g, 8.2 mmol) added and stirring continued for another 3.5 hr. The soln was then evaporated to a small volume, extracted with CHCl₁ (150 ml) and washed with phosphate buffer pH 7 (50 ml). The CHCl₃ layer was dried over Na₂SO₄, evaporated to drvness and the residue dissolved again in CH2Cl2. This soln was chromatographed on a silica gel column (80 g) first with CH₂Cl₂ and then with CHCl₃. The main fraction was collected and gave on evaporation in vacuum a colourless solid foam; yield, 3.87 g (82%). A small sample was further purified by preparative TLC on silica gel with CHCl, and repricipitated from a little CHCl, into n-hexane to give 5'-O-monomethoxytrityl-O⁴-p-nitrophenylethylthymidine - 3' - (2,5 - dichlorophenyl, p - nitrophenylethyl)-phosphate (Found: C, 60.25; H, 5.05; N, 5.24. $C_{52}H_{47}Cl_2N_4O_{13}P$ (1037.8) requires: C, 60.18; H, 4.56; N, 5.39%) as a colourless amorphous powder; R_f 0.90 (system A).

O^{4} -p-Nitrophenylethylthymidine-3'-(2,5-dichlorophenyl, pnitrophenylethyl)phosphate (23)

Compound 22 (1.0 g, 1.09 mmol) was treated with a 2% soln of p-toluenesulfonic acid in CH₂Cl₂-MeOH (4:1) (20 ml) for 30 min at room temp. The mixture was diluted with CHCl₃ (100 ml), washed with phosphate buffer pH 7 (2×50 ml) and then the organic layer dried over Na₂SO₄. The extract was evaporated to dryness, the residue dissolved in a tittle CHCl₃ and chromatographed on a silica gel column (40 g) with CHCl₃. The main fraction gave on evaporation and drying in vacuum a colourless solid foam; yield, 0.68 g (81%). A small sample was further purified by preparative TLC on a silica gel plate in CHCl₃. The main band gave on elution, evaporation, and reprecipitation from CHCl₃ into *n*-hexane O⁴-*p*-nitrophenylethylhymidine-3'-(2,5-dichlorophenyl, *p*-nitrophenylethyl)-phosphate (Found: C, 50.38; H, 404; N, 7.08. C₃₂H₃₁Cl₂N₄O₁₂P (765.5) requires: C, 50.20; H, 4.08; N, 7.32%) as a colourless amorphous powder; R_f 0.6 (system A).

Triethylammonium 5' - O - monomethoxytrityl - O^4 - p - nitrophenylethylthymidine -3'-p-nitrophenylethylphosphate (24)

p-Nitrobenzaldoxime (1.66 g, 10 mmol) was dissolved in a mixture of dioxan (20 ml), water (20 ml), and Et₃N (20 ml) and stirred for 10 min. Then 22 (1.037 g, 1 mmol) was added and the soln stirred for 30 min. The mixture was evaporated to dryness, coevaporated with abs pyridine $(2 \times 10 \text{ ml})$ and abs toluene $(2 \times 10 \text{ ml})$. The residue was dissolved in a little CHCl₃ and chromatographed on a silica gel column (20 g) for separation first with CHCl3-MeOH (19:1) to elute the reagents and then with CHCl₃-MeOH-Et₃N (90:5:5) to give the product. The main fraction was collected and formed on evaporation in vacuum a solid foam; yield, 0.964 g (97%). A small sample was further purified by chromatography on a preparative silica gel plate with the system CHCl₃-MeOH-Et₃N (90:5:5) to yield 5'-O-monomethoxytrityl-O4-p-nitrotriethylammonium

phenylethylthymidine-3'-p-nitrophenylethyl phosphate (Found: C, 60.61; H, 5.95; N, 6.74. $C_{32}H_{60}N_5O_{13}P \times 2H_2O$ (1030.0) requires: C, 60.63; H, 6.26; N, 6.79%) as a colourless amorphous powder; R_f 0.42 (system C).

1-(p-Nitrophenylethoxycarbonyl)-benzotriazole

2-(p-Nitrophenylethyl)ethanol (8.35 g, 50 mmol) and 1-(chlorocarbonyl)-benzotriazole (9.05 g, 50 mmol) were stirred in cold abs CH₂Cl₂ (70 ml) at 0-5° and then a soln of Et₃N (10 ml) in CH₂Cl (10 ml) was added dropwise. After 1 hr stirring the soln was warmed to room temp and kept for another 30 min. Then CH₂Cl₂ (250 ml) was added and the soln shaken with ice-water (3 × 200 ml). The organic layer was dried over Na₂SO₄ and then evaporated to dryness. The residue was recrystallized from abs benzene (120 ml) to give 1-(p-nitrophenylethoxycarbonyl)benzotriazole (Found: C, 57.59; H, 3.79; N, 17.95. C₁₃H₁₂N₄O₄ (312.3) requires: C, 57.69; H, 3.87; N, 17.94%) as yellowish crystals; m.p. 135–136°; yield, 14.4 g (92%); 'H-NMR[CDCl₃, 250 MHz]: δ = 3.37 (2H, t), 4.88 (2H, t), 7.52 (1H, m), 7.54 (2H, d), 17.65 (1H, m), 8.05 (1H, d), 8.22 (2H, d); R_f 0.65 (system E).

N⁴-p-Nitrophenylethoxycarbonyl-2'-deoxycytidine(27)

Compound 25 (3.2 g, 14 mmol) and 1-(p-nitrophenylethoxycarbonyl)-benzotriazole (4.7 g, 15 mmol) were heated in abs DMF (42 ml) to 60° for 15 hr. The DMF was distilled off in vacuum and the residue treated with a mixture of 1,2-dichloroethane (30 ml) and water (30 ml) with vigorous shaking. The ppt was filtered off, washed with water and dried at 50° to give N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine (Found: C, 50.63; B, 4.67; N, 13.03. C₁₈H₂₀N₄O₈ × 0.5 H₂O (429.4) requires: C, 50.35; H, 4.93; N, 13.05%) as colourless crystals; yield, 5.35 g (91%). The compound could be recrystallized from MeOH; m.p. 114-120°; R_f 0.28 (system A).

N⁴-p-Nitrophenylethoxycarbonyl cytidine (28)

Cytidine 26 (1.21 g, 5 mmol) and 1-(p-nitrophenylethoxycarbonyl)-benzotriazole (1.56 g, 5 mmol) were heated in abs DMF (20 ml) to 60° for 20 hr with stirring. The DMF was evaporated under high vacuum at a bath temp of 30°. The remaining oil was shaken with a mixture of water (20 ml) and 1,2-dichloroethane, whereby a solid was formed. This material was filtered off by suction, washed with water and dichloroethane and then dried at 60° in an oven to give N⁴-p-nitrophenylethoxycarbonylcytidine (Found: C, 47.36; H, 4.51; N, 12.29. $C_{18}H_{20}O_9 \times H_2O$ (454.4) requires: C, 47.58; H, 4.88; N, 12.33%) as a colourless powder, m.p. 85-89°; yield, 1.96g (90%). The compound can be recrystallized from MeOH; R_f 0.30 (system B).

5'-O-Monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine (29)

Compound 27 (1.68 g, 4 mmol) was evaporated with abs pyridine $(2 \times 20 \text{ ml})$ and then dissolved in abs pyridine (15 ml). p-Monomethoxytrityl chloride (1.48 g, 4.8 mmol) was added and the mixture stirred for 16 hr at room temp. The soln was then diluted with phosphate buffer pH7 (100 ml) and extracted with $CHCl_1$ (1 × 100 ml, 2 × 50 ml). The extracts were washed with phosphate buffer and then dried over Na₂SO₄. The filtrate was evaporated, then coevaporated with abs toluene $(3 \times 20 \text{ ml})$ and finally applied for short column chromatography⁷⁵ (30 g) first with 1,2-dichloroethane and with CHCl₃ to remove the reagents and impurities. The product was eluted by a gradient $CHCl_3$ -MeOH (100:1 till 100:4). The main fraction was evaporated and gave on coevaporation with CH₂Cl₂ in vacuum 5'-O-monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine (Found: C, 65.67; H, 5.17; N, 7.85. C₃₈H₃₆N₄O₉ (692.7) requires: C, 65.89; H, 5.24; 8.09%) as an amorphous solid foam; yield, 2.44 g (88%); R_f 0.34 (system A).

5'-O-Monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)phosphate (**30**)

1.2.4-Triazole (0.33 g, 4.8 mmol) was evaporated with abs pyridine (10 mmol) and then the residue dissolved in abs pyridine (6 ml). 2,5-Dichlorophenylphosphorodichloridate was added and the mixture stirred for 20 min at room temp. It was then cooled with ice and a soln of 29 (1.04 g, 1.5 mmol) in abs pyridine (10 ml) added dropwise with stirring. After 1 hr, the starting material had disappeared completely (checked chromatographically). As a second component 2(p-nitrophenyl)-ethanol (0.5 g, 3 mmol) was added and the mixture stirred for 24 hr at room temp. The soln was diluted with phosphate buffer pH 7 (100 ml) and then extracted with $CHCl_3$ (3 × 50 ml). The organic layer was dried over Na₂SO₄, filtered, the filtrate evaporated to drvness and then coevaporated with toluene $(3 \times 20 \text{ ml})$. The residue was applied for short column chromatography75 (30 g) eluting subsequently with toluene and toluenc-EtOAc (9:1 till 6:4) to remove the reagents and finally with a gradient toluene-EtOAc (1:1 till 1:2) to isolate the product. The main fraction was collected, evaporated and co-evaporated with CHCl₁ (50 ml) and CH₂Cl₂ (2×50 ml) to give 5'-O-monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (Found: C, 58.73; H, 4.26; N, 6.45; C₅₂H₄₆Cl₂N₅O₁₄P (1066.8) requires: C, 58.54; H, 4.35; N, 6.56%) as a colourless amorphous solid foam; yield, 1.38 g (86%). Reprecipitation from CHCl₃ into *n*-hexane formed a colourless amorphous powder; R_1 0.62 (system A).

N^4 -p-Nitrophenylethoxycarbonyl-2'-deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (31)

Compound 30 (0.32 g, 0.3 mmol) was treated with a 2% soln of p-toluenesulfonic acid in CH2Cl2-MeOH (4:1) for 20 min at room temp. After dilution with CHCl₃ (40 ml), the soln was shaken with phosphate buffer pH 7 (3 \times 40 ml), the organic layer then dried over Na2SO4 and evaporated to dryness. The residue was fractionated by column chromatography on silica gel $(12 \times 2 \text{ cm})$ first with CHCl₃ and then with CHCl₃-MeOH (98:2). The main fraction was collected and gave on evaporation and drying at 50° in high vacuum N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (Found: C, 48.57; H, 3.91; N, 8.68. $C_{12}H_{30}Cl_2N_5O_{13}P$ (794.5) requires: C, 48.38; H, 3.81; N, 8.82%) as a colourless solid foam; yield, 0.23 g (95%). Reprecipitation from little CHCl, into *n*-hexane yielded an amorphous powder; R_f 0.40 (system A).

Triethylammonium 5'-O-monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl - 2' - deoxycytidine - 3' - p - nitrophenylethyl-phosphate (**32**)

4-Nitrobenzaldoxime (0.5 g, 3 mmol) was dissolved in a mixture of dioxan (6 ml), water (6 ml), and Et₃N (6 ml) and stirred for 20 min at room temp. Then 5'-O-monomethoxytrityl-N⁴-p-nitrophenylethoxycarbonyl-2'-deoxycytidine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (0.32 g, 0.3 mmol) was added and stirring continued for another 40 min. The mixture was then evaporated in vacuum and coevaporated with abs pyridine (10 ml) and toluene $(3 \times 10 \text{ ml})$ before chromatography of the residue on a silica gel column $(10 \times 2 \text{ cm})$ with CHCl₃ and CHCl₃-MeOH (95:5) to remove the reagents and finally with CHCl₃-MeOH-Et₃N (95:5:5) to elute the product. The main fraction was collected, evaporated in vacuum and coevaporated with toluene (10 ml), CHCl₃ (20 ml), and CH_2Cl_2 (2 × 20 ml) to give triethylammonium 5'-O-monomethoxytrityl - N⁴ - p - nitrophenylethoxycarbonyl - 2' - deoxycytidine-3'-p-nitrophenylethyl-phospnate (Found: C, 60.80; H, 5.96; N, 8.14. $C_{52}H_{59}N_6O_{14}P$ (1023.1) requires: C, 61.05; H, 5.81; N, 8.21%) as a colourless amorphous foam; yield, $0.285 g (93\%); R_f 0.25 (system C).$

2-(p-Nitrophenyl)ethyl chloroformate

Phosgene (70 g, 0.7 mol) was dissolved in abs toluene (200 ml) with ice-cooling. A soln of 2-(p-nitrophenyl)ethanol (33.4 g, 0.2 mol) in a mixture of abs CH₂Cl₂ (100 ml) and abs toluene (50 ml) was added dropwise with stirring. After stirring at room temp for 1 hr the temp was raised slowly to 50° within 5 hr. After cooling, the mixture was evaporated in vacuum. The residue started to crystallize, it was then dried in high vacuum at room temp to give pure 2-(p-nitrophenyl-ethyl chloroformate (Found: C, 47.31; H, 3.46; N, 6.21. C₉H₈ClNO₄ (229.6) requires: C, 47.08; H, 3.51; N, 6.10%) as yellowish crystals which could be used in this form for further reactions; yield, 46.0 g (100%). The material could be recrystallized from abs toluene to yield yellowish crystals, m.p. 42°; ¹H-NMR[CDCl₃, 250 MHz]: $\delta = 3.14$ (2H, t), 4.53 (2H, t), 7.38 (2H, d), 8.15 (2H, d).

1-Methyl-3-p-nitrophenylethoxycarbonylimidazolium chloride

2-(p-Nitrophenyl)ethyl chloroformate (4.6 g, 20 mmol) was dissolved in abs CH₂Cl₂ (40 ml) and after ice-cooling 1-methylimidazole (1.7 ml, 20 mmol) was added under exclusion of moisture. The mixture was stirred for 15 min at 0-5° and then another 30 min at room temp. The ppt was collected by suction under dry N₂, washed with abs CH₂Cl₂ and dried in high vacuum to give 1-methyl-3-*p*-nitrophenylethoxycarbonylimidazolium chloride (Found: C, 49.98; H, 4.44; N, 13.38. C₁₃H₁₄ClN₃O₄ (311.7) requires: C, 50.09; H, 4.53; N, 13.48%) as a colourless crystal powder; m.p. 92-95°; yield, 5.0 g (80%). ¹H-NMR[(CD₃)₂SO, 250 MH2]; $\delta = 3.27$ (2H, t), 4.00 (3H, s), 4.75 (2H, t), 7.70 (2H, d), 7.98 (1H, d), 8.09 (1H, d), 8.17 (2H, d), 10.15 (1H, s).

3',5'-Di-O-acetyl-2'-deoxyadenosine (35)⁷⁶

Compound 38 (0.132 g, 0.25 mmol) and DBU (0.38 g, 2.5 mmol) were stirred in abs MeCN (5 ml) at room temp for 18 hr. The mixture was neutralized by addition of 0.16 ml glacial AcOH in abs MeCN (2.5 ml). It was diluted with water (25 ml) and extracted with CHCl₃ (3×15 ml). The organic layer was dried over Na₂SO₄ and then chromatographed on a silica gel plate ($20 \times 20 \times 0.2$ cm) for separation with CHCl₃-MeOH (98:2). The main band was eluted with CHCl₃-MeOH (2:1), evaporated, dissolved in CHCl₃, filtered, and then again evaporated to give 3',5'-di-O-acetyl-2'-deoxyadenosine as a solid foam; yield, 77 mg (92%). Recrystallization from EtOAc gave colourless crystals; yield, 68 mg (81%), which were identical with authentic material.

2',3'5'-Tri-O-acetyladenosine (36)77

Compound 39 (0.147 g, 0.25 mmol) was treated with DBU (0.38 g, 2.5 mmol) in abs MeCN (5 ml) as in the preceding procedure. After chromatographical separation and evaporation 2',3',5'-tri-O-acctyladenosine was obtained as a colourless glass; yield, 93 mg (92%). Recrystallization from EtOAc gave colourless crystals; yield, 85 mg (84%). The identity with an authentic material was proved by chromatographical and spectrophotometrical comparison.

3',5' - Di - O - acetyl - N⁶ - p - nitrophenylethoxycarbonyl - 2' deoxyadenosine (38)

Compound 35^{76} (2.35 g, 10 mmol) was dissolved in abs CH₂Cl₂ (60 ml) and then 1-methyl-3-*p*-nitrophenylethoxycarbonylimidazolium chloride (4.36 g, 14 mmol) was added. After 16 hr stirring at room temp the ppt was filtered off and the filtrate evaporated in vacuum. The residue was dissolved in 1,2-dichloroethane for short column chromatography⁷⁵ on silica gel (50 g) and subsequently with 1,2-dichloroethane, CHCl₃ and CHCl₃-MeOH (100:2). The main fraction was evaporated and gave on treatment with EtOAc a crystalline material. Work-up of the mother liquor yielded another crop of 3',5'-di-O-acetyl-N⁶-*p*-nitrophenylethoxycarbonyl-2'-deoxyadenosine (Found: C, 52.51; H, 4.59; N, 15.93. $C_{23}H_{24}N_6O_9$ (528.5) requires: C, 52.27; H, 4.58; N, 15.90%) as colourless crystals; m.p. 134-136°; yield, 3.15 g (85%). The material was recrystallized from EtOAc acetate, R_f 0.63 (system A).

2',3',5' - Tri - O - acetyl - N⁶ - p - nitrophenylethoxycarbonyl-adenosine (39)

Compound 36⁷⁷ (2.02 g, 5 mmol) was dissolved in abs CH₂Cl₂ 1-Methyl-3-p-nitrophenylethoxycar-(50 ml). bonylimidazolium chloride (3.12 g, 10 mmol) was added and then the soln stirred for 18 hr at room temp. The suspension was filtered, the residue washed with CH2Cl2 (20 ml) and the filtrates evaporated. The residue obtained was dissolved in 1,2-dichloroethane and fractionated by short column chromatography⁷⁵ on silica gel (40 g) subsequently with 1,2-dichloroethane, CHCl₃ and CHCl₃-MeOH (50:1). The product was collected, evaporated and the residue recrystallized from EtOAc to give 2',3',5'-tri-O-acetyl- N^{6} -p-nitrophenylethoxycarbonyladenosine (Found: С, 51.19; H, 4.36; N, 14.58. C₂₅H₂₆N₆O₁₁ (586.5) requires: C, 51.20; H, 4.47; N, 14.33%) as colourless crystals; m.p. 149-151°; yield, 2.55 g (87%); R_f 0.69 (system A).

N⁶-p-Nitrophenylethoxycarbonyl-2'-deoxyadenosine (40)

(a) Compound **38** (3.1 g, 5.86 mmol) was dissolved in MeOH (300 ml) and then Et₃N (60 ml) was added with stirring at room temp. After 16 hr, the ppt was collected by suction and washed with 1,2-dichloroethane. The filtrate was evaporated and the residue treated with a mixture of water (40 ml) and 1,2-dichloroethane (40 ml) to yield a second crop of crystals of N⁶-p-nitrophenylethoxy-carbonyl-2)-deoxyadenosine (Found: C, 49.29; H, 4.74; N, 18.04. C₁₀H₂₀N₆O₇ × H₂O (462.4) requires: C, 49.35; H, 4.80; N, 18.17%) in a total yield of 2.46 g (94%). The compound was recrystallized from MeOH to give colourless crystals with m.p. 100-110°; R_f 0.37 (system B). (b) Compound **35**⁷⁶ (1.68 g, 5 mmol) was dissolved in abs

pyridine (10 ml) and 2-(p-nitrophenyl)ethyl chloroformate (2.88 g, 12.5 mmol) was added with stirring under icecooling for 1 hr. The mixture was then stirred for another 2 hr at room temp and thereafter treated with phosphate buffer pH 7 (100 ml) and extracted with CHCl₃ (3×50 ml). The united extracts were washed again with phosphate buffer (100 ml), dried over Na₂SO₄ and then evaporated to dryness followed by coevaporation with abs toluene $(3 \times 20 \text{ ml})$. The residue was fractionated by short column chromatography⁷⁵ on silica gel (30 g) first with 1,2-dichloroethane and then with CHCl₃ which eluted a mixture of mono- and diacylated adenosine derivatives. This fraction was evaporated to dryness, the residue was dissolved in MeOH (200 ml) and then treated with conc aqueous ammonia (60 ml) at room temp. After 1 hr the mixture was evaporated to dryness and the residue shaken with a mixture of water (20 ml) and 1,2-dichloroethane to form a colourless, chromatographically pure solid of N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine; yield, 1.78 g (80%).

(c) Compound 33 (1.25 g, 5 mmol) and 1-trimethylsilylimidazole (3 ml, 20 mmol) were heated under reflux and exclusion of moisture in abs CH₂Cl₂ (25 ml) for 30 min to achieve trimethylsilylation of the OH-functions to form 37. The soln was evaporated in vacuum, the residue shaken with abs toluene (50 ml) and after standing for 10 min, the ppt of imidazole was filtered off. It was washed with another 50 ml of abs toluene and then the united filtrates were treated with a 1% soln of potassium biphosphate (150 ml) which had been saturated with NaCl. After separation the organic layer was dried over Na₂SO₄, filtered and on evaporation crystalline 37 was obtained. This material was dissolved in abs CH₂Cl₂ (60 ml), 1-methyl-3-p-nitrophenylethoxycarbonylimidazolium chloride (3.11 g, i0 mmol) was added and then the mixture heated under reflux for 3 hr with magnetic stirring. The ppt was filtered off after cooling to room temp and the filtrate was evaporated to dryness. The

residue was dissolved in pyridine (25 ml) and then treated for 1 hr with half-conc aqueous ammonia (20 ml) to hydrolyse the trimethylsilyl groups. It was diluted with water (40 ml), then evaporated to a small volume in vacuum and after addition of another 50 ml water concentrated to half of the volume. 1,2-Dichloroethane (25 ml) was added to the suspension and the mixture shaken vigorously. The separated material was collected by suction, washed with water and 1,2-dichloroethane and then dried at 60° in an oven to give 40 as a colourless, chromatographically pure solid; yield, 1.63 g (73%).

N⁶-p-Nitrophenylethoxycarbonyladenosine (41)

(a) Compound 36 (0.393 g, 1 mmol) and *p*-nitrophenylethyl chloroformate were stirred in abs pyridine (2 ml) for 2 hr at room temp. It was then diluted with CHCl₃ (50 ml), shaken with phosphate buffer pH 7 (3×50 ml) and the organic layer dried over Na₂SO₄. After filtration it was evaporated and coevaporated with abs toluene $(3 \times 20 \text{ ml})$. The residue was fractionated on a silica gel column $(15 \times 3 \text{ cm})$ first with CHCl₃ and then with CHCl₃-MeOH (92:8) to elute the N⁶-mono- and diacylated mixture. This fraction was evaporated, the residue dissolved in MeOH (40 ml) and then conc aqueous ammonia (15 ml) added. After stirring for 30 min at room temp it was again evaporated and the residue gave on recrystallization from EtOH С, N^{6} -*p*-nitrophenylethoxycarbonyladenosine (Found: 49.42; H, 4.26; N, 18.30. C₁₉H₂₀N₆O₈ requires: C, 49.57; H, 4.38; N, 18.25%) as colourless needles; m.p. 152-160°; yield, $0.38 \text{ g} (83\%); R_{f} 0.37 \text{ (system B)}.$

(b) Compound 39 (2.1 g, 3.5 mmol) was dissolved in MeOH (200 ml). Et₃N (40 ml) was added and the soln stirred for 18 hr at room temp. The product was filtered off by suction, washed with MeOH and dried at 60° in an oven. The mother liquor was evaporated to dryness, the residue shaken with a mixture of water (20 ml) and 1,2-dichloroethane (20 ml) and the ppt collected and dried to give a second crop of N⁶-p-nitrophenylethoxy-carbonyladenosine as a crystalline powder; yield, 1.46 g (90%).

5'-O-Monomethoxytrityl-N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine (43)

Compound 40 (1.78 g, 4 mmol) was evaporated with abs pyridine $(2 \times 20 \text{ ml})$, the residue dissolved in abs pyridine (18 ml) and p-monomethoxytrityl chloride (1.49 g, 4.8 mmol) added. After stirring for 16 hr at room temp, the mixture was treated with phosphate buffer pH 7(100 ml) and extracted with $CHCl_3$ (4 × 50 ml). The united extracts were washed with phosphate buffer (100 ml) and after separation and drying the organic layer over Na₂SO₄ the filtrate was evaporated to dryness and finally coevaporated with abs toluene. The residue was applied for short column chromatography⁷⁵ on silica gel (30 g) and fractionated with 1,2-dichloroethane followed by CHCl₃. The main fraction was collected, evaporated and coevaporated with CH₂Cl₂ $(2 \times 20 \text{ ml})$ to give 5'-O-monomethoxytrityl-N⁶-pnitrophenylethoxycarbonyl-2'-deoxyadenosine (Found: C, 65.13; H, 4.99; N, 11.54. $C_{39}H_{36}N_6O_8$ (716.8) requires: C, 65.35; H, 5.06; N, 11.73%) as a colourless amorphous solid foam; yield, 2.58 g (90%); R₁ 0.46 (system A).

$5' - O - Monomethoxytrityl - N^6 - p - nitrophenyl$ ethoxycarbonyl - 2' - deoxyadenosine - 3' - (2,5 - dichlorophenyl, p - nitrophenylethyl) - phosphate (44)

1,2,4-Triazole (0.33 g, 4.8 mmol) was first evaporated with abs pyridine (10 ml), then dissolved in abs pyridine (6 ml) and 2,5-dichlorophenylphosphoro dichloridate (0.6 g, 2.25 mmol) was added and the mixture stirred for 20 min. It was then cooled in an ice-bath before dropwise addition of 43 (1.1 g, 1.53 mmol) dissolved in abs pyridine (10 ml). Stirring was continued for 1 hr, 2-(p-nitrophenyl)-ethanol (0.5 g, 3 mmol) was added and the mixture kept for 16 hr at room temp with stirring. After dilution with phosphate buffer pH 7 (100 ml) it was extracted with CHCl₃ $(3 \times 50 \text{ ml})$, washed with phosphate buffer, the organic layer dried over Na₂SO₄ and then the filtrate evaporated and coevaporated with abs toluene $(3 \times 20 \text{ ml})$. The residue was fractionated by short column chromatography7 on silica gel (28 g) first with toluene and followed by a gradient toluene-EtOAc (9:1 till 6:4). The product was finally eluted with toluene-EtOAc mixtures (1:1 till 1:3). The main fraction was collected, evaporated in vacuum and coevaporated with CHCl₁ (50 ml) and CH₂Cl₂ $(2 \times 50 \text{ ml})$ to give 5'-O-monomethoxytrityl-N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine-3'-(2,5-dichlorophenyl, p-nitrophenylethyl)-phosphate (Found: C, 58.58; H, 4.14; N, 8.77. C₁₃H₄₆Cl₂N₇O₁₃P (1090.9) requires: C, 58.36; H, 4.25; N, 8.99%) as a colourless solid foam; yield, 1.47 g $(88\%); R_f 0.67$ (system A).

N^{b} -p-Nitrophenylethoxycarbonyl-2'-deoxyadenosine-3'-(2,5dichlorophenyl, p-nitrophenylethyl)-phosphate (45)

Compound 44 (0.328 g, 0.3 mmol) was treated with a 2% soln of p-toluene-sulfonic acid in CH₂Cl₂-MeOH (4:1) for 10 min with stirring at room temp. The soln was diluted with CHCl₃ (40 ml) and then shaken with phosphate buffer pH 7 (3 × 40 ml). The organic layer was separated, dried over Na₂SO₄ and evaporated. The residue was fractionated by column chromatography on silica gel (12 × 2 cm) with CHCl₃ and CHCl₃-MeOH (98:2). The main fraction was collected and evaporated in vacuum to a solid foam. Reprecipitation from a little CHCl₃ into *n*-hexane gave N⁶-p-nitrophenylethoxycarbonyl-2'-deoxyadenosine-3'-(2,5-dichlorophenyl p-nitrophenylethyl)-phosphate (Found: C, 48.66; H, 3.76; N, 11.70. C₃₃H₃₀Cl₂N₇O₁₂P (818.5) requires: C, 48.42; H, 3.69; N, 11.98%) as a colourless amorphous powder; yield, 0.228 g (93%); *R_f* 0.57 (system A).

Triethylammonium 5' - O - monomethoxytrityl - N^6 - p - nitrophenylethoxycarbonyl - 2' - deoxyadenosine - 3' - p - nitrophenylethyl - phosphate (46)

4-Nitrobenzaldoxime (0.5 g, 3 mmol) was dissolved in a mixture of dioxan (6 ml), water (6 ml), and Et₃N (6 ml) and stirred for 20 min at room temp. Compound 44 (0.328 g, 0.3 mmol) was added and stirring was continued for another 40 min. The mixture was evaporated in vacuum at a bath temp of 30° and then coevaporated with abs pyridine (10 ml) and abs toluene $(3 \times 10 \text{ ml})$. The residue was fractionated by column chromatography on silica gel $(10 \times 2 \text{ cm})$ first with CHCl₃ and CHCl₃-MeOH (95:5) to remove the reagents and impurities. The product was eluted with CHCl₃-MeOH-Et₃N (95:5:5). The main fraction was evaporated, coevaporated with abs toluene (2×10) ml), CHCl₃ (20 ml), and CH₂Cl₂ (2 \times 20 ml) to give 5'-O-monomethoxytrityl-N6-p-nitrotriethylammonium phenylethoxycarbonyl-2'-deoxyadenosine-3'-p-nitrophenylethyl-phosphate (Found: C, 60.59; H, 5.78; N, 10.59. $C_{53}H_{59}N_8O_{13}P$ (1047.0) requires: C, 60.80; H, 5.68; N, 10.70%) as a colourless solid foam; yield, 0.289 g (92%); R_f 0.36 (system C).

Acknowledgement—We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and Mrs. M. Bischler for the determination of various physical data.

REFERENCES

- ¹H. Kössel and H. Seliger, Fortschr. Chem. Org. Naturstoffe 32, 297 (1975).
- ²V. Amarnath and A. D. Broom, Chem. Rev. 77, 183 (1977).
- ³M. Ikehara, E. Ohtsuka and A. F. Markham, *Adv. Carbohydr. Chem. Biochem.* **36**, 135 (1979).
- ⁴E. Ohtsuka, M. Ikehara and D. Sö¹¹, *Nucleic Acid Res.* **10**, 6553 (1982).
- ⁵C. B. Reese, Tetrahedron 34, 3143 (1978).
- ⁶J. H. van Boom, Heterocycles 7, 1197 (1977).

- ⁷J. C. Catlin and F. Cramer, J. Org. Chem. 38, 245 (1975).
- ⁸J. H. van Boom, P. M. J. Burgers, G. E. Rowen, C. B. Reese and R. Saffhill, J. Chem. Soc. Chem. Commun. 869 (1971).
- ⁹K. Itakura, N. Katagiri, C. P. Bal, R. H. Wightman and S. A. Narang, J. Am. Chem. Soc. **97**, 7327 (1975).
- ¹⁰C. Broka, T. Hozumi, R. Arentzen and K. Itakura, Nucleic Acid Res. 8, 5461 (1980).
- ¹¹G. Silber, D. Flockerzi, R. S. Varma, R. Charubala, E. Uhlmann and W. Pfleiderer, *Helv. Chim. Acta* 64, 1704 (1981).
- ¹²J. H. van Boom, P. M. J. Burgers and P. H. van Deursen, Tetrahedron Letters 869 (1976).
- ¹³J. H. van Boom and P. M. J. Burgers, *Recueil* 97, 73 (1978).
- ¹⁴J. H. van Boom, P. M. J. Burgers, C. H. M. Verdegaal and G. Wille, *Tetrahedron* 34, 1999 (1978).
- ¹⁵J. F. M. de Rooij, G. Wille-Hazeleger, P. H. van Deursen,
- J. Serdijn and J. H. van Boom, *Recueil* 98, 537 (1979). ¹⁶J. A. J. den Hartog, R. A. Wijnands and J. H. van Boom,
- J. Org. Chem. 46, 2242 (1981).
- ¹⁷J. A. J. den Hartog, G. Wille, R. A. Scheublin and J. H. van Boom, *Biochemistry* 21, 1009 (1982).
- ¹⁸R. Arentzen, C. A. A. van Boeckel, G. van der Marel and J. H. van Boom, Synthesis Commun. 137 (1979).
- ¹⁹J. A. J. van Hartog, G. Wille and J. H. van Boom, *Recueil* 100, 320 (1981).
- ²⁰G. A. van der Marel, J. E. Marugg, E. de Vroom, G. Wille, M. Tromp, C. A. A. van Boeckel and J. H. van Boom, *Ibid.* 101, 234 (1982).
- ²¹C. B. Reese and L. Yau, Chem. Commun. 1050 (1978).
- ²²S. S. Jones and C. B. Reese, J. Am. Chem. Soc. 101, 7399 (1979).
- ²³S. S. Jones, B. Rayner, C. B. Reese, A. Ubasawa and M. Ubasawa, *Tetrahedron* 36, 3075 (1980).
- ²⁴N. Balgobin, S. Josephson and J. Chattopadhyaya, Tetrahedron Letters 1915 (1981).
- ²⁵N. Balgobin, C. Welch and J. Chattopadhyaya, *Chem. Ser.* **20**, 196 (1982).
- ²⁶C. Gioeli and J. Chattopadhyaya, Ibid. 19, 235 (1982).
- ²⁷N. Balgobin and J. Chattopadhyaya, Ibid. 20, 133 (1982).
- ²⁸N. Balgobin, M. Kwiatkowski and J. Chattopadhyaya, *Ibid.* 20, 198 (1982).
- ²⁹N. Balgobin and J. Chattopadhyaya, Ibid. 20, 142 (1982).
- ³⁰J. H. van Boom, P. M. J. Burgers, R. Crea, W. C. M. M. Luyten, A. B. J. Vink and C. B. Reese, *Tetrahedron* 31, 2953 (1975).
- ³¹E. Uhlmann and W. Pfleiderer, Nucleic Acid Res. Spec. Publ. 4, 525 (1978).
- ³²E. Uhlmann and W. Pfleiderer, *Tetrahedron Letters* 1181 (1980).
- ³³E. Uhlmann and W. Pfleiderer, *Helv. Chim. Acta* **64**, 1688 (1981).
- ³⁴A. K. Sood and S. A. Narang, Nucleic Acid Res. 4, 2757 (1977).
- ³⁵H. M. Hsiung, R. Brousseau, J. Michniewics and S. A. Narang, *Ibid.* 6, 1371 (1979).
- ³⁶G. R. Gough, C. K. Singleton, H. L. Weith and T. G. Gilham, *Ibid.* 6, 1557 (1978).
- ³⁷H. M. Hsiung, Tetrahedron Letters 5119 (1982).
- ³⁸H. Takaku, K. Kamaike and K. Kasuga, Chem. Lett. 197 (1982).
- ³⁹H. Takaku, K. Kamaike and K. Kasuga, J. Org. Chem. 47, 4937 (1982).
- ⁴⁰H. Takaku, K. Kamaike and M. Suetake, *Chem. Lett.* 111 (1983).
- ⁴¹H. Takaku, T. Nomoto, Y. Sakamoto and T. Hata, *Ibid.* 1225 (1979).
- ⁴²W. Pfleiderer, Les Colloques de l'INSERM Nucleosides, Nucleosides (Edited by J. L. Barascut and J. L. Imbach), Vol. 81, 177, Paris (1978).
- ⁴³W. Pfleiderer, E. Uhlmann, R. Charubala, D. Flockerzi, G. Silber and R. S. Varma, *Nucleic Acid Res.* Spec. Publ. 7, 61 (1980).

- ⁴⁴E. Uhlmann, R. Charubala and W. Pfleiderer, *Ibid.*, Spec. Publ. 9, 131 (1981).
- ⁴⁵M. Ichiba and W. Pfleiderer, *Ibid.*, Spec. Publ. 9, 169 (1981).
- ⁴⁶R. Charubala and W. Pfleiderer, *Tetrahedron Letters* 4789 (1982).
- ⁴⁷F. Himmelsbach and W. Pfleiderer, Ibid. 4793 (1982).
- ⁴⁸J. B. Chattopadhyaya and C. B. Reese, Nucleic Acid Res. 8, 2039 (1980).
- ⁴⁹M. L. Duckworth, M. J. Gait, P. Goelet, G. F. Hong and M. Singy, *Ibid.* 9, 1691 (1981).
- ⁵⁰M. D. Matcucci and M. H. Caruthers, J. Am. Chem. Soc. 103, 3185 (1981).
- ³¹P. K. Bridson, W. T. Markiewicz and C. B. Reese, J. Chem. Soc. Chem. Commun. 447; 791 (1977).
- ³²C. B. Reese and A. Ubasawa, *Tetrahedron Letters* 2265 (1980).
- ⁵³H. P. Daskalov, M. Sekine and T. Hata, *Ibid.* 3899 (1980).
- ⁵⁴G. R. Gough, K. J. Collier, H. L. Weith and T. G. Gilham, Nucleic Acid Res. 7, 1955 (1979).
- ⁵⁵S. S. Jones, C. B. Reese, S. Sibanda and A. Ubasawa, *Tetrahedron Letters* 4755 (1981).
- ⁵⁶H. P. Daskalov, M. Sekine and T. Hata, Bull. Chem. Soc. Jpn. 54, 3076 (1981).
- ⁵⁷B. L. Gaffney and R. A. Jones, *Tetrahedron Letters* 2257 (1982).
- ⁵⁸T. Trichtinger, R. Charubala and W. Pfleiderer, *Ibid.* 711 (1983).
- ⁵⁹O. Mitsunobu, Synthesis 1 (1981).
- ⁶⁰C. B. Reese and L. Zard, Nucleic Acid Res. 9, 4611 (1981).

- ⁶¹W. L. Sung, J. Chem. Soc. Chem. Commun. 1089 (1981).
- ⁶²W. L. Sung, Nucleic Acid Res. 9, 6139 (1981).
- ⁶³W. L. Sung, J. Org. Chem. 47, 3623 (1982).
- ⁶⁴D. H. Rammler and H. G. Khorana, J. Am. Chem. Soc. 84, 3112 (1962); K. A. Watanabe and J. J. Fox, Angew. Chem. 78, 589 (1966); *Ibid.* Int. Ed. Engl. 5, 579 (1966).
- ⁶⁵D. Flockerzi, G. Silber, R. Charubala, W. Schlosser, R. S. Varma, F. Creegan and W. Pfleiderer, *Liebigs Ann. Chem.* 1568 (1981).
- ⁶⁶H. Köster, K. Kulikowski, T. Liese, W. Heikens and V. Kohli, *Tetrahedron* 37, 363 (1981).
- ⁶⁷I. Butula, M. V. Prostenik and V. Vela, *Croatica Chem. Acta* **49**, 837 (1977).
- ⁶⁸I. Butula, L. Curkovic, M. Prostenik, V. Vela and F. Zorko, Synthesis 704 (1977).
- ⁶⁹B. E. Watkins, J. S. Kiely and H. Rapoport, J. Am. Chem. Soc. 104, 5702 (1982).
- ⁷⁰K. K. Ralph and G. H. Khorana, *Ibid.* 83, 2926 (1961).
- ⁷¹V. Kohli and A. Kumar, Indian J. Chem. 18, 272 (1979).
- ⁷²J. B. Chattopadhyaya and C. B. Reese, J. Chem. Soc. Chem. Commun. 639 (1978).
- ⁷³B. E. Watkins and H. Rapoport, J. Am. Chem. Soc. 104, 4471 (1982).
- ⁷⁴S. L. Beaucage and K. K. Ogilvie, *Tetrahedron Letters* 1691 (1977).
- ⁷⁵B. J. Hunt and W. Rigby, Chem. & Ind. 1868 (1967).
- ⁷⁶D. H. Hayes, A. Michelson and A. R. Todd, J. Chem. Soc. 803 (1955).
- ¹⁷H. Bredereck, Chem. Ber. 80, 401 (1947).