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Azomethine-Isocyanide [3+2] Cycloaddition to Imidazoles 

Promoted by Silver and DBU 

Xiaoshan Huang,a Xuefeng Cong,a Pengbing Mia and Xihe Bi*ab  

A new silver-promoted [3+2] cycloaddition of azomethine ylides 

with isocyanides has been described. The methodology provides 

an efficient and modular approach to 1,2,4-trisubstituted 

imidazoles of vital bioactive molecules and atypical antipsychotics 

analogue.  

The 1,3-dipolar cycloaddition reaction is one of the most 

efficient methods of preparing five-membered heterocyclic 

compounds1. Remarkably, owing to its simplicity and atom 

efficiency, 1,3-dipolar [3+2] cycloaddition of azomethine ylides 

has been well established as a reliable and powerful tool for 

the construction of nitrogen-containing heterocyclic structural 

motifs with various π-systems2,3,4,6. For example, numerous 

alkenes2,3 and imines4 as dipolarophiles have been subse-

quently explored to achieve optically active pyrrolidines and 

imidazolidines by using either chiral metal-based catalysts or 

organocatalysts since the pioneering contribution of Allway 

and R. Grigg5 (Fig 1a). Recently, the cycloaddition of 

azomethine ylides with ynones for construction of 2,5-

dihydropyrroles and pyrroles also have been developed by 

Gong and Deng ect., respectively (Fig 1b)6. Isocyanides are 

versatile building blocks and have been widely applied in 

organic synthesis7. In particular, aryl isocyanides as 

dipolarophiles have proven to be a versatile functionality to 

undergo [3+2] cycloaddition for heterocycle synthesis8. 

However, the 1,3-dipolar [3+2] cycloaddition reaction of 

azomethine ylides with isocyanides to valuable heterocycles 

are rare.7d,9  

 Imidazoles, especially those with multiple functional 

groups, are considered to be special structural motifs, which 

are not only prevalent in various highly bioactive natural 

products10, but also present in many enzymes and 

metalloenzymes in biological systems11, and pharmaceutical 

compounds12. In addition, they also appeared as critical 

skeletons in functional materials13. Due to their characteristic 

properties, many impressive investigations have been 

developed for constructing imidazole scaffolds from basic 

chemical materials14. Despite these great achievements having 

been made, development of new methodologies for 

regioselective synthesis of functionalized imidazoles remains a 

challenging task14,15. Herein, we report the [3+2] cycloaddition 

of azomethine ylides with isocyanides promoted by silver and 

DBU for the efficient synthesis of 1,2,4-trisubstituted 

imidazoles (Fig 1c). In this transformation, silver plays a triple 

role: (1) serving as catalyst to activate isocyanides; (2) 

employing as oxidant to accomplish the aromatization; and (3) 

promoting the formation of metalated azomethine ylides. 

 

 

Fig. 1 [3+2] Cycloaddition Reactions of Azomethine ylides 

 We initiated our investigation with the optimization studies 

of the [3+2] cycloaddition of (E)-methyl 2-((4-

chlorobenzylidene)amino)acetate (1a) and 1-bromo-4-

isocyanobenzene (2a). We were pleased to find that tri-

substituted imidazole 3a was obtained in 30% isolated yield in 

the presence of 30 mol % of Ag2CO3 in 1,4-dioxane at 80 °C 
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(Table 1, entry 1). The employment of 0.2 equiv of DBU as base 

only increased the yield to 38% (entry 2), but along with a 

significant amount of the hydrolytic aldehyde of 1a. Thus, 4Å 

molecular sieves were employed to inhibit the hydrolysis of 

azomethine 1a. As expected, yield of imidazole 3a was 

improved to 72 % yield (entry 3). Compared to Ag2CO3, other 

silver salts such as AgNO3, AgOTf, AgOTFA, and Ag2O were less 

effective or ineffective in this transformation. A base screening 

revealed that DBU remained the best choice in our case (ESI, 

Table S1)16. Other solvent such as DCE and toluene also gave 

the desired product but in low yield, while no reactions 

occurred in DMF (ESI, Table S1). In view of this reaction 

involving oxidative process, external oxidants were screened. 

However, PhI(OAc)2, K2S2O8 and O2 could not improve the 

conversation (ESI, Table S1). To our delight, the amount of 

Ag2CO3 was increased to 0.5 equiv and 1.0 equiv in the 

reaction, and, yields of 3a were improved to 78% and 87%, 

respectively. The isolated yield can be up to 82% (Table 1, 

entries 8-9).  

Table 1 Optimization of the Reaction Conditions
a
 

 
entry [Ag] base solvent yield of 3a

b 

1c Ag2CO3 - 1,4-Dioxane 35% (30%) 

2c Ag2CO3 DBU 1,4-Dioxane 38% 

3 Ag2CO3 DBU 1,4-Dioxane 72%  

4 AgNO3 DBU 1,4-Dioxane trace 

5 AgOTf DBU 1,4-Dioxane - 

6 AgOTFA DBU 1,4-Dioxane 17% 

7 Ag2O DBU 1,4-Dioxane 26% 

8d Ag2CO3 DBU 1,4-Dioxane 78% (76%) 

9e Ag2CO3 DBU 1,4-Dioxane 87% (82%) 

aReaction conditions: 1a (0.75 mmol), 2a (0.5 mmol), [Ag] (30 mol %), DBU (20 

mol %), 4Å MS (200.0 mg) in Dioxane (5 mL) at 80 °C for 24 h under Ar. 
bDetermined by 1H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an 

internal standard; isolated yield are given in parentheses. cwithout 4Å MS; under 

air. dAg2CO3 (0.5 equiv) was used.  eAg2CO3 (1.0 equiv) was used. DBU = 1,8-

diazabicyclo[5.4.0]undec-7-ene. 

 With the optimal conditions in hand, the substrate scope 

toward this cycloaddition was further investigated, and the 

results were listed in scheme 2. A wide array of azomethines 

were examined in the reaction with 2a, affording the 

corresponding 1,2,4-trisubstituted imidazoles in moderate to 

excellent yields (Scheme 1). Firstly, wide variation of the 

substituents on the benzene ring at para position including 

electron-donating (e.g., MeO and Me) and -withdrawing 

groups (e.g., Ph, F, Br, and CN) allowed the formation of 

diverse highly functionalized 1,2,4-trisubstituted imidazols 

(3d−3j) in 46-90% yields. This transformation is not sensitive to 

the ortho steric hindrance, affording the corresponding 

imidazole 3b in 68% yield. Notably, 3,5-diboromo substituted 

azomethine could be readily introduced in the reaction, 

providing the corresponding product 3k in a prepared useful 

yield. In addition, azomethine containing fused aromatic 

groups as well as heteroaromatic groups all reacted smoothly 

to give the desired products (3l-3o). The cinnamyl substituent 

1p was also allowed to react with isocyanide 2a, providing 

alkenyled imidazole in an acceptable yield. Further, other 

azomethines with alkyl-substituted ester group were 

appreciated the products 3q to 3s under the optimal 

conditions (43-85%).  

 

Scheme 1  [3+2] Cycloaddition of 2a with different Azomethines. 

 In view of these interesting results, we further extended 

the substrate scope of this strategy to isocyanides (Scheme 2). 

We found that varied aryl isocyanides bearing electron-

donating and -withdrawing groups, could smoothly react with  
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Scheme 2  [3+2] Cycloaddition of 1f with different substituted aryl isocyanides. 

azomethine 1f to afford the corresponding 1,2,4-trisubstituted 

imidazoles in moderate to excellent yields (4b, 4c, 4d). It was 
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noticed that functional groups involving iodo (4e, 4f), 

methoxycarbonyl (4g), and nitro could be well tolerated in our 

case, affording the functionalized imidazole in 48-78% yields. 

2,6-dimethyl phenyl (4h) and 1-naphenyl (4i) isocyanides were 

also readily employed under the optimal condition, thus 

suggesting our system was not influenced by steric factors. It is 

worth noting that trace amount of desired product was 

obtained with tert-butyl and benzyl isocyanides. 

To further demonstrate the practical usefulness of the 

method, a gram-scale reaction was performed with 

azomethine ylide 1a and 2a. Under the optimized reaction 

conditions, the reaction could proceed smoothly, affording the 

desired product 3a in 74% yield (Scheme 3a). It is worth 

mentioning that 1,2,4-trisubstituted imidazoles 3 and their 

derivatives are more specific GABAA receptor ligands in 

compared with classical anesthetics such as etomidate, 

propofol, and alphaxalone17. These imidazoles have previously 

been synthesized in a three-step process17a. By contrast, this 

cycloaddition strategy allowed the corresponding imidazoles 3 

to be synthesized directly from readily available substrates in a 

single step in good isolated yield. The resulting ethyl ester 3a 

can undergo the saponification with hydro alcoholic NaOH, 

giving the corresponding carboxylic acids 3aa in 83% isolated 

yield. Notably, the product 3aa is a known intermediate for 

accessing a series of atypical antipsychotics analogue in 

previous report17b (Scheme 3b). 

 

Scheme 3  Gram scale and Synthetic Applications 

As shown in Figure 2a, the [3+2] cycloaddition still carries 

out smoothly when the addition of TEMPO (2,2,6,6-

tetramethylpiperidine-1-oxyl) into the system, implying that 

the radical pathway may be excluded in the this 

transformation. Therefore, a plausible reaction mechanism is 

proposed on the basis of the above experiments and related 

reports (Figure 2b)8. Initially, the intermediate A2e,18 is formed 

and attacks to the complex Ag2CO3(RNC)n B, giving the imidoyl 

silver intermediate C
3a,18a. After the protonation of 

intermediate C, the intermediate D is formed and followed by 

isomerisation and cyclization to give intermediate E. 

Intermediate E then experiences an oxidation to yield the 

desired product 3. Compared to classical [3+2] cycloaddition, 

this process occurs in a stepwise manner and the complex 

Ag2CO3(RNC)n is formed initially to promote the nucleophilic 

attack of intermediate A. 
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Fig. 2 Plausible mechanism 

 In conclusion, we have developed the first azomethine-

isocyanide [3+2] cycloaddition reaction promoted by silver and 

DBU to achive 1,2,4-trisubstituted imidazoles. This method 

allows modular access to 1,2,4-trisubstituted imidazoles 

starting from the readily available aryl isocyanides and 

azomethine ylides with broad substrate scope and good 

functional group compatibility. Ag2CO3 plays key role as the 

catalyst and oxidant in this transformation. Furthermore, the 

target scaffolds containing ester group at C4 position are more 

specific GABAA receptor ligands, and easily access to a series of 

atypical antipsychotics analogue. Considering the extreme 

importance of 1,2,4-trisubstituted imidazoles in medicinal 

chemistry, the methodology presented herein undoubtedly 

will find wide applications in future synthetic endeavors and 

pharmaceutical synthesis. 

This work was supported by the NSFC (21522202, 21372038), 

the Ministry of Education of the People’s Republic of China 

(NCET-13-0714), the Jilin Provincial Research Foundation for 
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