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Abstract: Palladium-catalyzed couplings of pyrid-4-yl nonaflates
with methyl diazoacetate are described. After optimization of the
reaction conditions the scope of the transformation proved to be
fairly broad and a series of pyrid-4-yl-substituted methyl diazoace-
tates was prepared in generally high yields.
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Palladium-catalyzed coupling reactions have evolved into
one of the most efficient methods for the construction of
C–C bonds.1 Coupling between aryl halides and metal-
organic species have been well-established for many
years. In contrast, palladium-catalyzed couplings employ-
ing CH-active precursors as carbon nucleophiles have
only recently been developed. Based on the pioneering
work of Hartwig and Buchwald on the intermolecular
coupling of enolates derived from ketones, esters and am-
ides,2 the use of other CH-acidic compounds such as ni-
triles, nitroalkanes, aldehydes etc. has attracted growing
interest in palladium-catalyzed arylation processes over
the last years.3 Recently, two reports have been published
describing the use of alkyl diazoacetates as coupling part-
ners: Wang and co-workers developed a protocol for the
palladium-catalyzed coupling of vinyl and aryl iodides
with ethyl diazoacetate to compounds 2,4 and Frantz et al.
reported the coupling of acceptor-substituted enol
triflates5 providing products such as 4 (Scheme 1).

Over the last years we have systematically investigated
the behavior of pyrid-4-yl nonaflates in various cross-
coupling processes.6 Intrigued by the reports of the two
groups mentioned above, we wanted to identify reaction
conditions for palladium-catalyzed couplings of pyrid-4-
yl nonaflates with alkyl diazoacetates, which should lead
to structurally interesting new pyrid-4-yl diazoacetates.
Only a few reports describe the preparation and use of
pyridyl diazoacetates, and the majority of the synthetic
routes are based on diazo group transfer processes em-
ploying pyrid-4-yl acetates as starting materials.7 Hence,
the palladium-catalyzed coupling between pyrid-4-yl
nonaflates and alkyl diazoacetates would present a useful
and flexible alternative to access these versatile com-
pounds.

As we demonstrated earlier, pyrid-4-yl nonaflates 11 can
be prepared through a simple two-step process utilizing
a TMSOTf-promoted cyclocondensation of β-ketoen-
amides 10 followed by a nonaflation step with the inter-
mediate 4-hydroxypyridines (Scheme 2).8 Two routes
have been developed for the preparation of the required β-
ketoenamides: a multi-component approach based on the
reaction of lithiated alkoxyallenes 5, nitriles 6, and car-
boxylic acids 7 (Scheme 2, route A)9 or the acylation of
simple enaminoketones 8 with acyl chlorides 9 (route
B).10 In addition to a series of highly substituted pyridine
derivatives, we also prepared enantiopure pyridine deriv-
atives with side chains bearing stereogenic centers in the
2- and/or 6-position.11 Some of these new pyridines
proved to be good ligands for asymmetric transforma-
tions, including the addition of zinc organyls to aldehydes
or the iridium-catalyzed hydrogenation of olefins.12

As we had large quantities of the enantiopure pyridyl nona-
flate 13a available from a previous investigation, we de-
cided to use this compound in our optimization studies. In
a first experiment, 13a was reacted with methyl diazoace-
tate under reaction conditions similar to those reported by
Frantz and co-workers5 (Table 1, entry 1). Although the
desired product 14a could be isolated, the yield was only
moderate and the reaction was rather slow. Even after
three days at room temperature, complete conversion was
not achieved. Unfortunately, neither higher reaction tem-
peratures nor changes in the stoichiometry of the reagents
led to higher conversions. 

Scheme 1 Literature examples for the palladium-catalyzed coupling
of ethyl diazoacetate with aryl iodides and electron-deficient alkenyl
triflates
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We next applied the reaction conditions reported by Wang
and co-workers.4 Although this led to complete conver-
sion of pyridyl nonaflate 13a within 24 hours, the yield of
the isolated coupling product 14a was only slightly im-
proved (Table 1, entry 2). 

To identify the origin of the observed higher reaction rates
under Wang’s conditions, a systematic screening was un-
dertaken in which all parameters were varied. We found
that the use of TBAB as an additive – in contrast to the
coupling of aryl iodides – had no significant influence on
the reaction efficiency (compare Table 1, entries 2 and 3).
However, both the base and the solvent seem to strongly
influence the reaction efficacy. The use of N-methylmor-
pholine (NMM) instead of DBU led to significantly di-
minished yields and a change of the solvent from
acetonitrile to DMF proved to have an even more delete-

rious effect, leading to a low yield of 22% (Table 1, entries
4 and 5). By screening different amine bases, we found
that triethylamine gave the best results; 72% of the desired
coupling product 14a could be isolated after only four
hours reaction time (Table 1, entry 6). Unexpectedly, the
use of Hünig’s base gave a dramatically lower yield (Ta-
ble 1, entry 7). We also tested whether other palladium
catalysts were capable of promoting the coupling reaction,
but neither [Pd2(dba)3]/P(t-Bu)3 nor [PdCl2(PPh)3] afford-
ed product 14a (Table 1, entries 8 and 9). Finally, in the
absence of any palladium catalyst no product formation
was observed, ruling out a competitive addition–elimina-
tion process (Table 1, entry 10).

With the optimized reaction conditions (Table 1, entry
6),13 we then started to evaluate the substrate scope of the
process with respect to different substitution patterns at

Scheme 2 Synthesis of highly substituted pyrid-4-yl nonaflates 11 by TMSOTf/base-promoted cyclocondensations of β-ketoenamides 10 fol-
lowed by nonaflations and palladium-catalyzed transformations of 11 leading to specifically substituted pyridine derivatives 12
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Table 1 Optimization of the Palladium-Catalyzed Coupling of Methyl Diazoacetate with Pyrid-4-yl Nonaflate 13a

Entry Catalyst Conditionsa Time (h) Yield (%)

1 Pd(PPh3)4 (5 mol%) NMM, DMF, r.t. 72 44b

2 Pd(PPh3)4 (10 mol%) DBU, MeCN, TBAB, 45 °C 24 49

3 Pd(PPh3)4 (10 mol%) DBU, MeCN, 45 °C 24 45

4 Pd(PPh3)4 (10 mol%) NMM, MeCN, 45 °C 24 35

5 Pd(PPh3)4 (10 mol%) DBU, DMF, 45 °C 24 22

6 Pd(PPh3)4 (10 mol%) Et3N, MeCN, 45 °C 4 72

7 Pd(PPh3)4 (10 mol%) (iPr)2NEt, MeCN, 45 °C 24 8

8 Pd2(dba)3 (5 mol%) [HP(t-Bu)3][BF4] (10 mol%) NMM, DMF, r.t. 24 –

9 PdCl2(PPh3)2 (5 mol%) Et3N, MeCN, 45 °C 24 –

10 No catalyst DBU, MeCN, 45 °C 24 –

a NMM = N-methylmorpholine; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; TBAB = tetra-n-butylammonium bromide.
b Complete conversion was not achieved.
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Table 2 Substrate Scope of the Palladium-Catalyzed Coupling of Pyrid-4-yl Nonaflates 13 with Methyl Diazoacetate

Entry Pyrid-4-yl Nonaflate Product Time (h) Yield (%)

1a 13a 14a 4 72

2b 13b 14b 1.5 84

3c 13c 14c 1.5 87

4a 13d 14d 1 93

5a 13e 14e 1 77

6a 13f 14f 72 28 (53)d

7c 13g 14g 96 37 (81)d

a Pd(PPh3)4 (10 mol%) was used.
b Pd(PPh3)4 (5 mol%) was used.
c Pd(PPh3)4 (7 mol%) was used.
d Yield based on recovered starting material given in parenthesis.
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the pyridine ring; the results are summarized in Table 2.
Regardless of the electronic nature of the pyridine ring
substituents, the coupling reactions were complete within
a few hours (typically within 1–4 h) and good yields were
obtained (Table 2, entries 1–5). Substituents in the 3-posi-
tion, however, seem to have a significant impact on the re-
action efficacy. Hence, 3-methoxy-2,6-(dithienyl)pyrid-
4-yl nonaflate (13f) and 3-benzyl-substituted pyridine de-
rivative 13g were transformed at significantly lower rates
than all other substrates tested, and full conversions into
the corresponding pyrid-4-yl methyl diazoacetates were
not achieved within three days reaction time (Table 2, en-
tries 6 and 7); considerable amounts of starting material
were isolated in these experiments. Apart from this limi-
tation, the developed conditions proved to be rather gen-
eral and it could be shown that alkyl, aryl, and heteroaryl
substituents in the 2- or 6-position of the pyridine ring
were well-tolerated (Table 2, entries 2–5).

Remarkably, the preparation of 2,2′-bipyridine and
2,2′:6′,2′′-terpyridine derivatives 14c and 14d could also
be achieved in excellent yields (Table 2, entries 3 and 4).
The twofold coupling required for the conversion of 13d
into bis(diazo) compound 14d proceeded with particular-
ly high efficacy. An additional practical aspect of the de-
veloped reaction conditions is the fact that, in some cases,
the generated pyrid-4-yl-substituted methyl diazoacetates
directly precipitate from the reaction mixture. Thus, com-
pounds 14d and 14e could be isolated in analytical pure
form upon simple filtration. In addition, as already shown
in the optimization studies, TBS-protected hydroxymeth-
yl-substituted pyridyl nonaflates can be coupled without
touching the functionalized sidechain. The high yield of
thienyl-substituted compound 14e (Table 2, entry 5) dem-
onstrates that the presence of a sulfur-containing group
does not hamper the coupling step.

We also briefly examined other aryl and alkenyl nona-
flates. Interestingly, neither phenyl nonaflate nor (Z)-
pent-1-en-1-yl nonaflate14 were transformed into the cor-
responding diazo compounds under the developed reac-
tion conditions. Apparently, only nonaflates containing
electron-deficient substituents are able to undergo the palla-
dium-catalyzed coupling with methyl diazoacetate, which
is in agreement with results obtained by Frantz and co-
workers5 regarding alkenyl triflates. 

In conclusion, we have established an efficient method for
the preparation of pyrid-4-yl-substituted methyl diazo-
acetates 14 based on palladium-catalyzed couplings of
pyrid-4-yl nonaflates 13 with methyl diazoacetate. Diazo-
alkanes of type 14 are interesting compounds that could
undergo a multitude of subsequent reactions such as 1,3-
dipolar cycloadditions or processes involving carbenes.15

Application of a pyrid-4-yl alkyl diazoacetate in surface
modification processes has already been described.16 The
method reported here may also find use in the synthesis of
other new heteroaryl-substituted alkyl diazoacetates.
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