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Abstract

A novel synthetic approach for the synthesis of 5-aminotetrazoles has been developed 

employing simple ketones as the substrates. This methodology involved the N2-extrusion/aryl 

migration of azido complexes as the key step for the in situ generation of carbodiimidium ion 

which could further react with hydrazoic acid and cyclize intramolecularly to provide 5-

aminotetrazoles in good to excellent yields. In addition, the regioselectivity of the reaction 

was studied and rationalized by DFT calculations.  
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 ■  INTRODUCTION

5-Substituted tetrazoles are ubiquitous structures found in many applications 

including pharmaceutical chemistry, organic and inorganic chemistry, and material sciences.1 

Several methods are available for the preparation of 5-substituted tetrazoles.2 However, 5-

aminotetrazoles are relatively much less accessible even though they are crucial core 

structures of many biologically active molecules.3 In particular, this class of compounds 

shows several pharmacological properties such as anti-allergic,3a antitumor3c anti-

inflammatory,3d anti-neoplastic,3e-3f antimicrobial3g and anti-HIV3j activities. They also have 

inhibitory effect in the secretion process of hepatitis B virus surface antigen (HBsAg)3b and 

could act as inhibitors of iNOS,3h HIF-2,3i and STAT33k as shown in Figure 1. Besides the 

biological activities, 5-aminotetrazoles could also be utilized as an energetic material. Due to 

their importance, the development of efficient and practical methods for preparation of 5-

aminotetrazoles continues to be vital. Some examples are depicted in Scheme 1.4
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Figure 1. Bioactive compounds

Among a small number of synthetic methodologies, carbodiimide is the most 

important key intermediate for the preparation of 5-aminotetrazole analogues through 

nucleophilic addition of azide, followed by ring closure. The most prevalent precursors used 
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in the preparation of carbodiimides are thioureas which could be synthesized from 

isothiocyanates and amines.5 In the synthesis of 5-aminotetrazoles using these methods, 

carbodiimide intermediate was generated in situ from the reaction of thiourea either with 

I2/NEt3 or hypervalent iodine/NEt3
6 which further reacted with azide in a one-pot manner. In 

a related procedure, thioureas could be generated in situ from isothiocyanates and amines 

which could be directly converted to carbodiimides by treatment with HgCl2 or CuBr in the 

presence of base.7 However, the availability and variety of thiourea and isothiocyanate 

derivatives are rather limited. Therefore, the development of a novel method for the 

preparation of 5-aminotetrazoles using more readily available and structurally diverse 

substrates is highly beneficial.
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Scheme 1. The reported methods for the synthesis of 5-aminotetrazole.

Herein, we report an alternative approach for the formation of 5-aminotetrazoles from 

simple ketone precursor (1) which is easily accessible from inexpensive and abundant 

materials. In this work, ketone substrate was converted to a carbodiimidium ion intermediate 

(2) using TMSN3/TfOH via double rearrangement-nitrogen extrusion (Pathway I)8 as shown 

in Scheme 2. Then, this intermediate was further reacted with HN3 to provide 5-

aminotetrazole product (3). However, the formation of tetrazoles could also compete with the 
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generation of carbodiimidium ion intermediate when the rate of R1-migration is slower than 

the cyclization (Pathway II).
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Scheme 2. Proposed synthetic methodology for the synthesis of 5-aminotetrazole.

■  RESULTS AND DISCUSSION

In our study, benzophenone (1a) was employed as the screening substrate to optimize 

reaction conditions as shown in Table 1. Based on the proposed strategy, at least 3.0 

equivalents of TMSN3 were required. Therefore, the combination of 3.0 equiv of TMSN3 and 

3.0 equiv of TfOH in dry DCM was examined in entry 1 to provide the desired product 3a in 

90%. Interestingly, reducing the reaction time could increase the yield of 5-aminotetrazole to 

94% (entry 2) whereas reducing the amount of TfOH to 1.0 and 2.0 equivalents provided the 

desired product in lower yields (entries 3-4). Moreover, we investigated the effect of solvents 

such as DCE, toluene and CH3CN (entries 5-7) and found that these solvents diminished the 

yields of 5-aminotetrazole. Therefore, using 3.0 equivalents each of TfOH and TMSN3 in dry 

DCM at room temperature was the optimal conditions for the transformation.
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Table 1. Screening for the optimal conditions.a

O

TMSN3, TfOH

Solvent, RT, 5 h

N N
NN

HN
1 3

Entry 1 

(eq)

TMSN
3
 

(eq)

TfOH 

(eq)

Solvent Time

(h)

Yield (%)

1 1.0 3.0 3.0 DCM o/n 90

2 1.0 3.0 3.0 DCM 5 94

3 1.0 3.0 1.0 DCM 5 45

4 1.0 3.0 2.0 DCM 5 78b

5 1.0 3.0 3.0 DCE 5 71

6 1.0 3.0 3.0 PhCH
3

5 87

7 1.0 3.0 3.0 CH
3
CN 5 88

a Isolated yields b 1,3-Diphenylurea was isolated in 8% yield.

To evaluate the generality of our protocol, a variety symmetrical ketone precursors 

was examined using the optimal conditions as shown in Table 2. The reaction of 

benzophenone (1a) provided the desired product in 94%. Other analogues of benzophenone 

were also smoothly converted to the desired products. The para-methylbenzophenone (1b) 

gave 5-aminotetrazole product 3b in 88% yield whereas the ortho-methylbenzophenone (1c) 

furnished the corresponding product 3c in slightly higher yield (92%). All para-

halobenzophenone derivatives (1d-1f) were converted to the corresponding aminotetrazole 

products in good yields. Furthermore, regioisomeric methoxybenzophenone derivatives (1g-

1i) were also investigated under these conditions. All three substrates provided the 
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corresponding products in good to excellent yields with the ortho-methoxybenzophenone 

(1g) giving the desired product in highest yield among the three regioisomers. This was 

possibly due to the steric effect of the ortho-methoxy group in facilitating the rearrangement 

process. Unfortunately, the reaction of dicyclohexylketone (1j) provided tetrazole 4j as the 

major product whereas the corresponding product 3j was obtained in only 12% yield. This 

result demonstrated that dicyclohexylketone could be smoothly converted to azidonium imine 

(1j') via cyclohexyl migration and nucleophilic addition of HN3. However, the rate of 

cyclohexyl migration of this intermediate (Pathway I, Scheme 2) is slower than cyclization 

(Pathway II, Scheme 2) which led to the formation of 5-aminotetrazole 3j as the minor 

product (12%) and tetrazole 4j as the major product (80%). 

Table 2. Synthesis of 5-aminotetrazoles from symmetrical ketones.a
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O

TMSN3 (3.0 eq), TfOH (3.0 eq) N N
NN

HN
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HN
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Me Me3b: 88%
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3d: 83%

3i: 87%

3h: 80%

Me
Me

3c: 92%

3f: 84%

3j: 12%

3g: 92%

1 3

N N
NN

HN

3j: 12%

N NH
O N

N

2 eq. HN3
Partway II N N

NN

N C N
H

HN3

4j: 80%

Partway I

fast

slow

1j 1j'

a Isolated yields

Table 3 Substrate Scope.a
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O

TMSN3 (3.0 eq), TfOH (3.0 eq) N N
NN

HN
DCM, rt, 5 h

R1R
R1

R

Entry Sub
stra
te
(1)

Product (3 and 3') Yield (%) and ratio (3:3')

1

O

O

2

3

F

O
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O

Br

4
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O

O

N N
NN

HN R
R1

t-Bu

+
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OMe

N N
NN

HN
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N N
NN

HN

N N
NN

HN
MeO

MeO

91% (55:45)b

94% (53:47)b

94% (48:52)b

N N
NN

HN

N N
NN

HN

90% (48:52)b

F

Cl

N N
NN

HN

82% (43:57)

Br

N N
NN

HN
t-Bu

N N
NN

HN
F

N N
NN

HN
Cl

N N
NN

HN
Br

N N
NN

HN
OMe

N N
NN

HN
OMe

1
k

1l

1
m

1
n

1p

1o

3k 3k'

3l 3l'

3m: 47% 3m': 48%

3n: 35% 3n': 47%

3p 3p'

3o 3o'

1 3 3'

95% (49:51)

9

10

O

CF3

N N
NN

HN
F3C

84% (40:60)
N N

NN

HN
CF31q 3q: 34% 3q': 50%

O

CF3

N N
NN

HN
F3C

75% (35:65)
N N

NN

HN
CF3

1r 3r: 26% 3r': 49%
MeO OMe MeO

(

O

N N
NN

HN 91% (40:60)
N N

NN

HN
1s 3s: 30%
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OMe

OMe
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OMe

O
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O

MeO

O

MeO

O

MeO

N N
NN

HN Me

N N
NN

HN
MeO

N N
NN

HN
MeO

-

77%

82%

MeO15

O

N N
NN

HN

O
N N

NN

HN

OMe

OMe

t-Bu t-Bu

Entry Substrate (1) Product (3 and 3') Combined Yield (%) and ratio (3:3')

11

O
N N

NN

HN

N N
NN

HN

12

Br

Br

N N
NN

HN

MeO

OMe

N N
NN

HN

t-Bu

O OMe
N N

NN

HN

OMe
68% (79:21)N N

NN

HN

OMe

Br

OMe

MeO

13

14

16

17

78% (64:36)

77% (100:0)

1u

1v

1w

1x

1y

1z

1ab

3u: 50% 3u': 28%

3v': 14%

3w': 0%

3x'

3v: 54%

3w: 77%

3x

3y: 25%

3z

3ab

99% (55:45)b

N N
NN

Me
MeO 4y: 74%

18

19

O
Me

O

Me

Me

Me

20 Me

O

Me
Me

1ac

1ad

1ae

69%

59%

N
N

NN

Me

N
N

NN

Me

MeMe

N

N
N

N

Me

Me

Me

4ac

4ad

4ae

64%

a Isolated yields bA mixture of inseparable products was isolated whose ratio was determined 
using 1H NMR.

Page 9 of 31

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Next substrate scope study is shown in Table 3, unsymmetrical ketones were 

employed to generate unsymmetrical carbodiimidium ion intermediates which could lead to 

the formation of regioisomeric 5-aminotetrazole products.  A number of substituents on 

unsymmetrical ketones was varied to study their influence on product distribution. Using 4-

tert-butylbenzophenone (1k), the reaction provided aminotetrazole 3k and 3k' in an almost 

1:1 ratio. Similarly, a series of 4-halobenzophenone (1l-1n) also gave the corresponding 

products as mixtures of regioisomeric products in ratios of nearly 1:1 in good combined 

yields. Next investigation, derivatives of methoxybenzophenone (1o-1p) were examined as 

shown in entries 5-6. Both meta- and para-methoxybenzophenone afforded mixtures of 

aminotetrazoles in almost 1:1 ratios with excellent combined yields in both cases. The 

regioselectivity for the formation of the two isomeric products was clearly observed when 

both aryl substituents of ketone have great difference in electron density. For example, 

compound 1q, having electronically neutral phenyl ring and strong electron-withdrawing 4-

trifluoromethylbenzene as substituents of ketone (entry 7), provided a mixture of 5-

aminotetrazoles 3q and 3q’ with a ratio of 40:60 in very good combined yield. The 

regioselective conversion was achieved based on ring closure of the nitrogen atom on the 

more electron-rich aniline moiety (phenyl ring) while the minor product was obtained from 

the ring closure of nitrogen atom on the less electron-rich aniline unit (para-

trifluoromethylbenzene). Furthermore, substrates having higher difference in electron density 

on both aromatic rings were examined in entries 8-10. To increase the difference in electron 

density on both aryl rings of ketone substrate, we then employed compound 1r containing 

para-methoxybenzene and para-trifluoromethylbenzene as the ketone substituents (entry 8). 

In this case, the improvement in regioselectivity was observed to give a mixture of 5-

aminotetrazoles 3r and 3r’ with a 35:65 ratio in good combined yield. In comparing entries 6 

and 9, the substrate with one more methoxy group (entry 9), 1,3-dimethoxybenzene, could 
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improve the regioselectivity providing a mixture of compounds 3s and 3s’ with a 40:60 ratio 

in 91% combined yield. In addition, the result from entry 10 with 3,4,5-trimethoxybenzene as 

the substituent provided even better regioselectivity with a 28:72 ratio of the corresponding 

products 3t and 3t’ in good combined yield. From all results, the regioselective conversion 

was achieved via cyclization of the nitrogen atom on the more electron rich aniline moiety 

while the minor product was obtained via cyclization of the nitrogen atom on the lower 

electron density aniline unit. These results also implied that when the electron densities on 

both aryl rings were obviously different, the migratory aptitude of aryl rings were distinct 

such that the corresponding products were obtained regioselectively. The reaction mechanism 

was proposed in Scheme 3. 
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Scheme 3. Proposed reaction mechanism.

The ketone substrate reacted with HN3, which was generated in situ, to give nitrilium 

ion intermediate following one of the two possible N2-extrusion/migration Pathways, A and 

B, depending on the migratory aptitude of R and R1 groups. In Pathway A, the higher 

electron density aryl ring (R group) underwent the first aryl migration to give the nitrilium 

ion intermediate. Then, this intermediate reacted with the second equivalent of HN3 to 

provide intermediate I. The reaction subsequently underwent another nitrogen extrusion/aryl 

migration of R1 (lower electron density) to generate carbodiiminium ion intermediate II. 

According to experiments in the literature regarding rate of proton exchange, the NH 

exchange rate was very slow under strong acidic conditions.10 Therefore, the proposed 

mechanism for the generation of carbodiiminium ion intermediate V via proton exchange of 

intermediate II could be ruled out.  The proposed mechanism for the generation of major 

product was proposed in Pathway A-1. The intermediate II could react with the third 

equivalent of HN3 and immediately cyclize to obtain the major product. An alternative route 

was the cyclization using N-6 atom of III to give the intermediate VIII as shown in Pathway 

A-2. However, Pathway A-1 could give the more stable intermediate IV due to its higher 

aromatic character and being less strained compared to intermediate VIII. Another 

competitive mechanism is Pathway B which is the competing R1 aryl ring migration resulting 

in the formation of minor product. In this pathway, the lower electron density (R1) underwent 

aryl migration in the first step to obtain the nitrillium ion IX which further reacted with HN3 

to give carbodiimidium ion intermediate V. Next, this intermediate reacted with another HN3 

and directly cyclized to provide the aminotetrazole salt which could give the desired product 

as the minor product after work up. 

The steric effect of ortho substituents on aryl ketone substrate was investigated. With 

bromo substituent 1u, the reaction gave a mixture of the corresponding products 3u and 3u’ 
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in 78% yield with a ratio of 64:36. Increasing the size of substituents, the reaction could 

significantly affect the regioselectivity of the corresponding products. Substrates 1v 

containing ortho-methoxy substituent gave the desired products with high regioselectivity 

(3v:3v’; 79:21). Interestingly, the regioselectivity of this reaction was opposite to the reported 

method from which compound 3v was obtained as the minor product.6a Having more steric 

hindrance in substrate 1w, containing ortho-(4-tBu-phenyl) group gave a single product 3w in 

77% yield. These results indicated that the steric bulkiness of ortho substituent could 

significantly increase a migratory aptitude of the aryl ring to provide high regioselectivity for 

the formation of 5-aminotetrazole products. The results from entries 7-13 clearly showed that 

the regioselectivity of the reaction depended on the migratory aptitude of the aryl groups. 

Aryl ring with higher electron density and steric hindrance has lower migratory. Surprisingly, 

low regioselectivity was observed with the substrate having symmetrical 2,6-

dimethoxyphenyl groups 1x which offered the corresponding products in an almost 1:1 ratio 

(55:45) in excellent yield. The results from the reactions of alkylarylketones in entries 15-17 

were strongly supportive of our proposed mechanism. In case of methylarylketone (1y), the 

reaction gave compound 3y in only 25% yield while longer side chain, butylarylketone, 

provided a single regioisomer of compound 3z in 77% yield. In case of compound 1ab 

containing cyclohexyl group as the substituent, the reaction smoothly provided 

aminotetrazole 3ab as a single isomer in 82% yield. The results from entries 15-17 

demonstrated that the order of migratory aptitude as aryl ring> bulky alkyl group > less bulky 

alkyl group leading to the formation of a single regioisomeric product. These results further 

confirmed that proton exchange under strong acidic conditions could be ruled out as 

intermediate V was formed as only single regioisomeric products were obtained (Pathway A-

1).
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Furthermore, ketone substrates having dialkyl substituents were examined in entries 

18-20. Unfortunately, 5-aminotetrazole products could not be generated; only the formation 

of tetrazoles was resulted in all cases. These results implied that the migratory aptitude of 

ketone substituents played an important role on the outcome of reactions. In case of ketone 

having alkyl substituent on both sides, the reaction readily underwent cyclization after the 

first alkyl migration and nucleophilic addition by HN3 at the nitrilium ion intermediate to 

provide tetrazole products. 

Figure 2. The potential energy diagram of the reaction of compound 1t via Pathways 

A-1, A-2, and B calculated with MP2/6-311+G(2df,2p) on the optimized structures with 

M06-2X/6-311+G(2df,2p). Energies are in kcal/mol. 

In this work, a computational study was also performed to assist in understanding the 

regioselectivity of the reaction. The molecular structure and the reaction mechanism to 

produce compound 1t were studied as a representative case using density functional theory 

(DFT).11 The reaction mechanism in Pathway A-1 to produce compound 3t’ was studied as 

shown in Figure 2. The formation of intermediate IV was a strongly exothermic reaction with 

relative energy of -34.5 kcal/mol. This pathway led to the lowest activation energy (14.8 

kcal/mol). The activation energy of Pathway A-2 was highest (30.9 kcal/mol) among the 
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three pathways. Therefore, this was an unfavorable reaction pathway to form 5-

aminotetrazole product. For the formation of compound 3t (minor product, Pathway B), the 

total activation energy of the pathway was 15.4 kcal/mol. The activation energy for TS3 was 

higher than TS1 of 0.6 kcal/mol while the stability of the product VII is less stable than IV 

by 1.0 kcal/mol. Product 3t’ was predicted to be the major product while product 3t was the 

minor product. In summary, the results from computational study of a model system using the 

reaction of compound 1t illustrated that the activation energy of the reaction in Pathway A-1 

is lower than the reaction of Pathway A-2 and B. Therefore, Pathway A-1 became a more 

favorable pathway in term of both kinetic and thermodynamic properties resulting in the 

cyclization of nitrogen on electron-rich aniline unit to give the major product. The results 

from the computational study corroborated well to our experimental results. Therefore, we 

concluded that regioselectivity outcome of 5-aminotetrazoles depended on the difference in 

migratory aptitude of ketone substituents. This implied that the more highly differentiated 

electron density between the two aryl substituents would result in better regioselectivity in 

products as summarized in Pathway A-1.
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■ CONCLUSIONS

We have developed a new method for the synthesis of 5-aminotetrazoles employing 

ketone precusors. This method involved N2-extrusion/aryl migration of ketone compounds to 

generate carbodiimidium ion as the key intermediate, followed by cyclization with HN3 to 

obtain 5-aminotetrazoles in good to excellent yields. The regioselectivity of this conversion 

was controlled by the migratory aptitude of ketone substituents. A good regioselectivity could 

be obtained when both substituents of ketone have a significant difference in migratory 

aptitude. This method has the advantages in the ease of access to starting materials from 

commercially available precursors, metal-free conditions and a broad range of substrate 

scope. 

■ EXPERIMENTAL SECTION

General Procedure. The commercial grade chemicals were used without further purification, 

unless otherwise specified. All solvents used were purified by the solvent purification system. 

The oven-dried glassware (110 °C at least for 2 h) was used for all reactions. Crude reaction 

mixtures were concentrated under reduced pressure by removing organic solvent with the 

rotary evaporator. Column chromatography was performed using silica gel 60 (particle size 

0.06−0.2 mm; 70−230 mesh ASTM). Analytical thin layer chromatography (TLC) was 

performed with silica gel 60 F254 aluminum sheets. The nuclear magnetic resonance (NMR) 

spectra were recorded in deuterochloroform (CDCl3), deuterated acetone (acetone-d6) and 

deuterated dimethyl sulfoxide (DMSO-d6, 2.50 ppm) with 300, 400 and 600 MHz 

spectrometers. Chemical shifts for 1H and 13C NMR spectra were reported in part per million 

(ppm, δ), relative to tetramethylsilane (TMS, 0.00 ppm) as the internal reference. Coupling 

constants (J) were reported in hertz (Hz). Infrared spectra were measured using an FT-IR 

spectrometer and were reported in cm−1. High resolution mass spectra (HRMS) were obtained 

using time-of-flight (TOF).

Page 16 of 31

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



General procedure for the synthesis of aminotetrazole: compound 1a (506.1 mg, 2.7775 

mmol, 1.0 equiv) was dissolved in dry DCM (7.4 mL/mmol) under argon. A solution was 

added TMSN3 (1.10 mL, 8.3324 mmol, 3.0 equiv), followed by TfOH (730 µL, 8.3324 

mmol, 3.0 equiv). The reaction mixture was stirred at room temperature for 5 hr. After 

completion, the reaction was quenched with sat. NaHCO3 and extracted with EtOAc. The 

combined organic layers were washed with brine, dried over Na2SO4, filtered, and 

concentrated under reduced pressure to provide crude product which was purified on silica 

gel (EtOAc/Hexane: 1:1) to yield N,1-diphenyl-1H-tetrazol-5-amine (3a) 617.5 mg. (94%, 

white solid); mp 163-164 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3200, 3052, 2922, 

1605, 1571, 1496, 1317, 1089, 751 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.33 (s, 1H), 

7.69-7.62 (m, 7H), 7.35-7.30 (m, 2H), 7.01 (t, 1H, J = 7.2 Hz); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ 152.3, 139.8, 133.1, 130.0, 129.9, 128.8, 125.5, 122.1, 118.3; HRMS (ESI-TOF) 

m/z: [M+H]+ calcd for C13H12N5 238.1087; found 238.1083.

1,3-Diphenylurea:12 white solid; mp 237-239 °C; 1H NMR (300 MHz, DMSO-d6) δ 8.64 (s, 

2H), 7.44 (dd, 4H, J = 8.7, 1.2 Hz), 7.30-7.25 (m, 4H), 6.99-6.93 (m, 2H); 13C{1H} NMR (75 

MHz, DMSO-d6) δ 152.5, 139.6, 128.7, 121.7, 118.1.

N,1-dip-tolyl-1H-tetrazol-5-amine (3b): Yield 118.1 mg (88%, white solid); mp 207-208 °C 

(1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3180, 3021, 1603, 1562, 1508, 1389, 1231, 1079, 

824, 808 cm−1; 1H NMR (300 MHz, CDCl3) δ 7.43-7.41 (m, 6H), 7.16-7.13 (m, 2H), 6.29 (s, 

1H), 2.48 (s, 3H), 2.31 (s. 3H); 13C{1H} NMR (75 MHz, CDCl3) δ 151.8, 141.0, 135.6, 

133.0, 131.1, 130.1, 129.8, 124.7, 118.2, 21.3, 20.7; HRMS (ESI-TOF) m/z: [M+H]+ calcd 

for C15H16N5 266.1400; found 266.1401.

N,1-dio-tolyl-1H-tetrazol-5-amine (3c): Yield 90.5 mg (92%, pale yellow solid); mp 148-149 

°C (3/7  EtOAc/hexane); IR (neat): υmax 3154, 2985, 2911, 1600, 1564, 1493, 1465, 1086, 

746 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 8.58 (s, 1H), 7.55-7.40 (m, 4H), 7.31 (d, 1H, J = 

7.2 Hz), 7.22-7.06 (m, 3H), 2.16 (s, 3H), 2.14 (s. 3H); 13C{1H}  NMR (75 MHz, DMSO-d6) 

δ 154.2, 137.5, 135.3, 132.4, 132.0, 131.4, 130.7, 130.6, 127.6, 127.3, 126.3, 125.3, 124.7, 

17.8, 17.0; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H16N5 266.1400; found 266.1394.

N,1-bis(4-fluorophenyl)-1H-tetrazol-5-amine (3d): Yield 110.8 mg (88%, pale yellow solid); 

mp 179-180 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3268, 3060, 1617, 1577, 1503, 

1418, 1238, 1222, 1089, 822 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 8.56 (s, 1H), 7.80-7.66 

(m, 4H), 7.48-7.40 (m, 2H), 7.14-7.06 (m, 2H); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 164.1 
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(d, JCF = 246 Hz), 160.7, 155.6 (d, JCF = 296 Hz), 136.9 (d, JCF = 2.3 Hz), 140.4 (d, JCF = 2.4 

Hz), 129.5 (d, JCF = 9 Hz), 120.8 (d, JCF = 8 Hz), 117.7 (d, JCF = 24 Hz), 116.1 (d, JCF = 22 

Hz); HRMS (ESI-TOF) m/z: [M+H]+ calcd for C13H10F2N5 274.0899; found 274.0891.

N,1-bis(4-chlorophenyl)-1H-tetrazol-5-amine (3e): Yield 102.2 mg (83%, pale yellow 

solid); mp 194-195 °C (2/8 EtOAc/hexane); IR (neat): υmax 3267, 3064, 1606, 1563, 1490, 

1089, 802 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.48 (s, 1H), 7.73-7.65 (m, 6H), 7.38 (d, 

2H, J = 8.4 Hz); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.7, 139.2, 135.3, 132.2, 130.4, 

129.1, 128.3, 126.2, 120.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C13H10Cl2N5 (Cl-35) 

306.0308; found 306.0297.

N,1-bis(4-bromophenyl)-1H-tetrazol-5-amine (3f): Yield 91.3 mg (84%, white solid); mp 

175-176 °C (3/7 EtOAc/hexane); IR (neat): υmax 3262, 3190, 3043, 1606, 1561, 1492, 1070, 

824, 804 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.50 (s, 1H), 7.85 (dd, 2H, J = 8.4, 1.8 Hz), 

7.62 (td, 4H, J = 8.7, 2.1 Hz), 7.49 (dd, 2H, J = 9.0, 2.1 Hz); 13C{1H}  NMR (75 MHz, 

DMSO-d6) δ 152.2, 139.2, 133.0, 132.2, 131.6, 128.0, 123.6, 120.3, 113.9; HRMS (ESI-TOF) 

m/z: [M+H]+ calcd for C13H10Br2N5 (Br-79) 393.9298; found 393.9304.

N,1-bis(2-methoxyphenyl)-1H-tetrazol-5-amine (3g): Yield 100.5 mg (97%, pale yellow 

solid); mp 99-100 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3353, 2943, 2843, 1612, 

1574, 1506, 1464, 1249, 1024, 749 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.92 (s, 1H), 7.80 

(d, 1H, J = 7.8 Hz), 7.64-7.53 (m, 2H), 7.34 (d, 1H, J = 8.4 Hz), 7.18 (t, 1H, J = 7.8 Hz), 

7.07-6.93 (m, 3H), 3.89 (s, 3H), 3.80 (s, 3H); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.7, 

152.6, 148.9, 132.1, 128.1, 127.7, 123.6, 121.2, 121.1, 120.6, 119.4, 113.0, 111.0, 56.1, 55.9; 

HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H16N5O2 298.1299; found 298.1309.

N,1-bis(3-methoxyphenyl)-1H-tetrazol-5-amine (3h): Yield 83.4 mg (80%, white solid); mp 

129-130 °C (2/8 EtOAc/hexane); IR (neat): υmax 3078, 2997, 2835, 1608, 1575, 1490, 1158, 

869, 794 cm−1; 1H NMR (300 MHz, Acetone-d6) δ 8.48 (s, 1H), 7.56 (t, 1H, J = 8.1 Hz), 7.42 

(d, 1H, J = 2.1 Hz), 7.26-7.16 (m, 5H), 6.61 (dt, 1H, J = 6.6, 2.4 Hz), 3.91 (s, 3H), 3.78 (s, 

3H); 13C{1H}  NMR (75 MHz, Acetone-d6) δ 161.5, 161.2, 153.1, 141.8, 135.0, 131.7, 130.4, 

118.5, 117.0, 112.0, 111.2, 108.5, 104.9, 56.0, 55.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd 

for C15H16N5O2 298.1299; found 298.1293.

N,1-bis(4-methoxyphenyl)-1H-tetrazol-5-amine (3i): Yield 79.2 mg (87%, pale yellow solid); 

mp 137-138 °C (3/7 EtOAc/hexane); IR (neat): υmax 3259, 3104, 2835, 1612, 1578, 1508, 
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1464, 1244, 1235, 1031, 837 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 8.98 (s, 1H), 7.57-7.52 

(m, 4H), 7.17 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 9.0 Hz), 3.86 (s, 3H), 3.72 (s, 3H); 
13C{1H}  NMR (75 MHz, DMSO-d6) δ 160.3, 154.6, 152.9, 133.0, 127.5, 125.6, 120.1, 

115.0, 113.9, 55.6, 55.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H16N5O2 298.1299; 

found 298.1298.

N,1-dicyclohexyl-1H-tetrazol-5-amine (3j): Yield 12.7 mg (12%, pale yellow solid); mp 182-

183 °C (2/8 EtOAc/hexane); IR (neat): υmax 3313, 3261, 2926, 2852, 1594, 1448, 1101, 894 

cm−1; 1H NMR (600 MHz, DMSO-d6) δ 6.50 (d, 1H, J = 7.4 Hz), 4.16 (tt, 1H, J = 11.5, 3.8 

Hz), 1.95-1.58 (m, 11H), 1.39-1.12 (m, 10H); 13C{1H} NMR (125 MHz, DMSO-d6) δ 154.0, 

53.7, 52.7, 32.4, 31.6, 25.2, 24.7, 24.64, 24.55; HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C13H24N5 250.2026; found 250.2027.

1,5-dicyclohexyl-1H-tetrazole (4j): Yield 80.3 mg (80%, pale yellow solid); mp 171-172 °C 

(2/8 EtOAc/hexane); IR (neat): υmax 2936, 1450, 1265, 733 cm−1; 1H NMR (300 MHz, 

CDCl3) δ 4.16-4.09 (m, 1H), 2.81-2.73 (m, 1H), 2.11-1.72 (m, 14H), 1.51-1.21 (m, 6H); 13C 

NMR (75 MHz, CDCl3) δ 157.5, 57.3, 33.4, 33.1, 31.4, 25.8, 25.4, 25.3, 24.8; HRMS (ESI-

TOF) m/z: [M+H]+ calcd for C13H23N4 235.1917; found 235.1917.

1-(4-tert-butylphenyl)-N-phenyl-1H-tetrazol-5-amine (3k), N-(4-tert-butylphenyl)-1-phenyl-

1H-tetrazol-5-amine (3k’): Yield 129.1 mg (91%, ratio 55:45, white solid); mp 154-155 °C 

(1/19 to 3/7 EtOAc/hexane); IR (neat): υmax 3265, 3053, 2963, 1604, 1567, 1499, 1088, 837, 

751 cm−1; 1H NMR (300 MHz, CDCl3) δ .7.68-7.52 (m, 5H, 4.1H minor), 7.48-7.44 (m, 2H, 

1.64H minor), 7.39-7.32 (m, 2H, 1.64H minor), 7.12-7.06 (m, 1H), 6.35 (s, 1H), 6.31 (s, 

0.82H minor), 1.40 (s, 9H), 1.31 (s, 7.38H minor); 13C{1H}  NMR (75 MHz, CDCl3) δ 154.2, 

151.9, 151.6, 146.7, 138.1, 135.4, 132.8, 130.6, 130.4, 129.95, 129.4, 127.6, 126.2, 124.8, 

124.5, 123.4, 118.2, 118.1, 35.1, 34.3, 31.4, 31.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C17H20N5 294.1713; found 294.1721.

1-(4-fluorophenyl)-N-phenyl-1H-tetrazol-5-amine (3l), N-(4-fluorophenyl)-1-phenyl-1H-

tetrazol-5-amine (3l’): Yield 41.5 mg (90%, ratio 48:52, light yellow solid); mp 180-181 °C 

(2/8 to 1/1 EtOAc/hexane); IR (neat): υmax 2924, 2854, 1618, 1572, 1509, 1499, 1224, 746 

cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.36 (br s, 1H), 9.29 (br s, 0.91H minor), 7.76-7.74 

(m, 1.82H minor), 7.68-7.61 (m, 7H, 1.82H minor), 7.53-7.48 (m, 1.82H minor), 7.35-7.30 

(m, 1.82H minor), 7.20-7.14 (m, 2H), 7.03-6.98 (m, 1.82H minor); 13C{1H}  NMR (75 MHz, 

DMSO-d6) δ 162.7 (d, JCF = 246 Hz), 157.5 (d, JCF = 237 Hz), 152.5, 152.4, 139.7, 136.2, 
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133.0, 130.1, 129.9, 129.4, 128.8, 128.6 (d, JCF = 9 Hz), 125.6, 122.1, 120.2 (d, JCF = 8 Hz), 

118.2, 116.8 (d, JCF = 24 Hz), 115.3 (d, JCF = 23 Hz); HRMS (ESI-TOF) m/z: [M+H]+ calcd 

for C13H11FN5 256.0993; found 256.0995.

1-(4-chlorophenyl)-N-phenyl-1H-tetrazol-5-amine (3m): Yield 37.2 mg (47%, white solid); 

mp 165-166 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3253, 3054, 2921, 2851, 1610, 

1571, 1534, 1496, 1092, 1013, 831, 737 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.31 (s, 1H), 

7.72 (s, 4H), 7.61 (d, 2H, J = 8.1 Hz), 7.32 (d, 2H, J = 7.8 Hz), 7.01 (t, 1H, J = 7.2 Hz); 
13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.4, 139.7, 134.7, 131.8, 129.9, 128.8, 127.7, 

122.1, 118.2; HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C13H10ClN5Na (Cl-35) 294.0517; 

found 294.0509.

N-(4-chlorophenyl)-1-phenyl-1H-tetrazol-5-amine (3m’): Yield 38.2 mg (48%, white solid); 

mp 195-196 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 2925, 1607, 1565, 1490, 1242, 

1089, 804, 771, 691 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.49 (s, 1H), 7.68-7.66 (m, 7H), 

7.38 (d, 2H, J = 7.2 Hz); 13C{1H} NMR (75 MHz, DMSO-d6) δ 152.1, 138.8, 132.9, 130.1, 

129.9, 128.6, 125.7, 125.6, 119.8; HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C13H10ClN5Na 

(Cl-35) 294.0517; found 294.0516.

1-(4-bromophenyl)-N-phenyl-1H-tetrazol-5-amine (3n): Yield 41.5 mg (35%, white solid); 

mp 164-165 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3185, 3030, 2916, 1601, 1563, 

1487, 1068, 834, 746 cm−1; 1H NMR (300 MHz, acetone-d6) δ 8.56 (s, 1H), 7.88-7.83 (m, 

2H), 7.79-7.66 (m, 4H), 7.33 (t, 2H, J = 7.5 Hz), 7.03 (t, 1H, J = 7.2 Hz); 13C{1H}  NMR (75 

MHz, acetone-d6) δ 140.6, 134.0, 133.5, 129.7, 128.8, 124.5, 123.2, 118.96, 118.89; HRMS 

(ESI-TOF) m/z: [M+H]+ calcd for C13H11BrN5 (Br-79) 316.0192; found 316.0206.

N-(4-bromophenyl)-1-phenyl-1H-tetrazol-5-amine (3n’): Yield 57.3 mg (47%, white solid); 

mp 181-182 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3258, 3083, 1606, 1563, 1486, 

1238, 1073, 823, 762, 686 cm−1; 1H NMR (300 MHz, acetone-d6) δ 8.66 (s, 1H), 7.70-7.63 

(m, 7H), 7.51-7.46 (m, 2H); 13C{1H}  NMR (75 MHz, acetone-d6) δ 140.2, 134.2, 132.6, 

131.2, 130.9, 126.7, 120.9, 120.8, 115.0; HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C13H11BrN5 (Br-79) 316.0192; found 316.0206.

1-(4-methoxyphenyl)-N-phenyl-1H-tetrazol-5-amine (3o), N-(4-methoxyphenyl)-1-phenyl-1H-

tetrazol-5-amine (3o’): Yield 123.2 mg (94%, ratio 48:52, orange solid); mp 178-179 °C (2/8 

to 1/1 EtOAc/hexane); IR (neat): υmax 3079, 2836, 1603, 1570, 1511, 1497, 1236 cm−1; 1H 
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NMR (300 MHz, DMSO-d6) δ 9.14 (s, 0.94H minor), 9.06 (s, 1H), 7.60-7.45 (m, 6H, 5.64H 

minor),  7.26 (t, 2H, J = 7.8 Hz), 7.13 (d, 1.88H, J = 8.7 Hz minor), 6.94 (t, 1H, J = 7.2 Hz), 

6.86 (d, 1.88H, J = 9.0 Hz minor), 3.81 (s, 2.82H minor), 3.68 (s, 3H); 13C{1H}  NMR (75 

MHz, CDCl3) δ 160.9, 155.3, 153.2, 153.0, 140.4, 133.6, 133.4, 130.4, 129.2, 128.0, 126.03, 

125.95, 122.4, 122.1, 120.9, 118.6, 115.5, 114.4, 56.1, 55.7; HRMS (ESI-TOF) m/z: [M+H]+ 

calcd for C14H14N5O1 268.1193; found 268.1194.

1-(3-methoxyphenyl)-N-phenyl-1H-tetrazol-5-amine (3p), N-(3-methoxyphenyl)-1-phenyl-1H-

tetrazol-5-amine (3p’): Yield 123.2 mg (94%, ratio 53:47, white solid); mp 157-158 °C (2/8 

to 1/1 EtOAc/hexane); IR (neat): υmax 3078, 2998, 1604, 1571, 1495, 1269 cm−1; 1H NMR 

(300 MHz, DMSO-d6) δ 9.30 (s, 0.88H mimor), 9.27 (s, 1H), 7.67-7.61 (m, 5H), 7.56 (t, 1H, 

J = 8.1 Hz), 7.34 (t, 2H, J = 5.4 Hz), 7.29-7.17 (t, 1H, J = 7.2 Hz), 6.62-6.55 (m, 0.88H 

minor), 3.84 (s, 3H), 3.73 (s, 2.64H minor); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 160.1, 

159.7, 152.3, 152.2, 141.0, 139.8, 133.9, 133.0, 130.7, 130.1, 139.9, 129.6, 128.8, 125.6, 

122.1, 118.4, 117.6, 116.0, 111.2, 110.6, 107.7, 104.1, 55.6, 55.0; HRMS (ESI-TOF) m/z: 

[M+Na]+ calcd for C14H13N5ONa 290.1012; found 290.1018.

N-phenyl-1-(4-(trifluoromethyl)phenyl)-1H-tetrazol-5-amine (3q): Yield 34.0 mg (34%, pale 

yellow solid); mp 155-156 °C (1/9 EtOAc/hexane); IR (neat): υmax 3359, 2921, 2851, 1606, 

1575, 1523, 1422, 1327, 1177, 1107, 1068, 846, 751 cm−1; 1H NMR (300 MHz, DMSO-d6)  𝛿

9.46 (s, 1H), 8.05 (d, 2H, J = 8.7 Hz), 7.95 (d, 2H, J = 8.4 Hz), 7.62 (d, 2H, J = 7.8 Hz), 7.34 

(t, 2H, J = 7.8 Hz), 7.02 (t, 1H, J = 7.5 Hz); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.4, 

139.6, 136.5, 130.0 (q, JCF = 32 Hz), 128.8, 127.1 (q, JCF = 56 Hz), 126.4, 123.8 (q, JCF = 272 

Hz), 122.3, 118.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C14H11F3N5 306.0961; found 

306.0960.

1-phenyl-N-(4-(trifluoromethyl)phenyl)-1H-tetrazol-5-amine (3q’):  Yield 49.5 mg (50%, 

pink solid); mp 184-185 °C (1/9 EtOAc/hexane); IR (neat): υmax 3261, 2926, 1610, 1570, 

1530, 1499, 1325, 1111, 1068, 839, 760, 687 cm−1; 1H NMR (300 MHz, DMSO-d6)  9.80 (s, 𝛿

1H), 7.84 (d, 2H, J = 8.7 Hz), 7.70-7.65 (m, 7H); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 

152.8, 143.4, 132.8, 130.2, 129.9, 126.0 (q, JCF = 4 Hz), 125.5, 124.5 (q, JCF = 269 Hz), 

122.0 (q, JCF = 32 Hz), 117.8; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C14H11F3N5 

306.0961; found 306.0962.

N-(4-methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1H-tetrazol-5-amine (3r): Yield 24.7 mg 

(26%, white solid); mp 176-177 °C (1/9 EtOAc/hexane); IR (neat): υmax 3311, 2925, 2854, 
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1604, 1508, 1325, 1139, 1125, 1071, 1033, 1014, 845, 829 cm−1; 1H NMR (600 MHz, 

DMSO-d6)  9.23 (s, 1H), 8.02 (d, 2H, J = 8.5 Hz), 7.92 (d, 2H, J = 8.4 Hz), 7.50-7.49 (m, 𝛿

2H), 6.92-6.90 (m, 2H), 3.72 (s, 3H); 13C{1H}  NMR (150 MHz, DMSO-d6) δ 155.0, 152.8, 

136.5, 132.7, 129.9 (q, JCF = 32 Hz), 127.1 (q, JCF = 4 Hz), 126.2, 123.8 (q, JCF = 271 Hz), 

120.6, 114.1, 55.3; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H13F3N5O 336.1067; found 

336.1070.

1-(4-methoxyphenyl)-N-(4-(trifluoromethyl)phenyl)-1H-tetrazol-5-amine (3r’): Yield 46.2 mg 

(49%, pale yellow solid); mp 174-175 °C (1/9 EtOAc/hexane); IR (neat): υmax 3260, 2927, 

2854, 1609, 1571, 1514. 1323, 1252, 1112, 1068, 834 cm−1; 1H NMR (600 MHz, DMSO-d6) 

 9.63 (s, 1H), 7.80 (d, 2H, J = 8.5 Hz), 7.66 (d, 2H, J = 8.7 Hz), 7.55 (d, 2H, J = 8.9 Hz), 𝛿

7.16 (d, 2H, J = 8.9 Hz), 3.84 (s, 3H); 13C{1H}  NMR (125 MHz, DMSO-d6) δ 160.7, 152.2, 

143.6, 127.7, 126.2 (q, JCF = 4 Hz), 125.4, 124.6 (q, JCF = 270 Hz), 122.2 (q, JCF = 32 Hz), 

118.0, 115.2, 55.8; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H13F3N5O 336.1067; found 

336.1064.

N-(3,5-dimethoxyphenyl)-1-phenyl-1H-tetrazol-5-amine (3s): Yield 33.9 mg (30%, white 

solid); mp 134-135 °C (2/8 EtOAc/hexane); IR (neat): υmax 3278, 2938, 1608, 1572, 1153, 

692 cm−1; 1H NMR (400 MHz, DMSO-d6)  9.28 (s, 1H), 7.69-7.63 (m, 5H), 6.90 (d, 2H, J = 𝛿

2.0 Hz), 6.16 (t, 1H, J = 2.0 Hz), 3.71 (s, 6H); 13C{1H}  NMR (100 MHz, DMSO-d6) δ 160.6, 

152.1, 141.4, 133.0, 130.1, 129.9, 125.7, 96.6, 94.2, 55.1; HRMS (ESI-TOF) m/z: [M+H]+ 

calcd for C15H16N5O2 298.1298; found 298.1296.

1-(3,5-dimethoxyphenyl)-N-phenyl-1H-tetrazol-5-amine (3s’): Yield 50.8 mg (45%, white 

solid); mp 149-150 °C (2/8 EtOAc/hexane); IR (neat): υmax 3259, 2938, 1570, 1158, 749 

cm−1; 1H NMR (400 MHz, DMSO-d6)  9.27 (s, 1H), 7.65 (d, 2H, J = 8.0 Hz), 7.32 (t, 2H, J 𝛿

= 7.6 Hz), 7.01 (t, 1H, J = 7.6 Hz), 6.84 (d, 2H, J = 2.0 Hz), 6.74 (t, 1H, J = 2.4 Hz),  3.82 (s, 

6H); 13C{1H}  NMR (100 MHz, DMSO-d6) δ 161.1, 152.2, 139.8, 134.4, 128.8, 122.1, 

118.4, 104.0, 102.0, 55.7; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C15H16N5O2 298.1298; 

found 298.1296.

1-phenyl-N-(3,4,5-trimethoxyphenyl)-1H-tetrazol-5-amine (3t): Yield 31.5 mg (25%, white 

solid); mp 185-186 °C (3/7 to 1/1 EtOAc/hexane); IR (neat): υmax 3270, 2924, 2850, 1608, 

1570, 1453, 1226, 1128, 1002, 693 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.19 (s, 1H), 

7.66-7.62 (m, 5H), 7.02 (s, 2H,), 3.74 (s, 6H), 3.61 (s, 3H); 13C{1H}  NMR (75 MHz, 
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DMSO-d6) δ 153.2, 152.7, 136.1, 133.2, 133.0, 130.6, 130.4, 126.0, 96.8, 60.6, 56.1; HRMS 

(ESI-TOF) m/z: [M+Na]+ calcd for C16H17N5O3Na 350.1224; found 350.1228.

N-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-tetrazol-5-amine (3t’): Yield 82.1 mg (66%, white 

solid); mp 172-173 °C (3/7 to 1/1 EtOAc/hexane); IR (neat): υmax 3316, 2926, 2854, 1600, 

1571, 1499, 1232, 1126, 1087, 751 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.21 (s, 1H), 7.66 

(d, 2H, J = 7.8 Hz), 7.32 (t, 2H, J = 7.8 Hz), 7.03-6.99 (m, 3H), 3.82 (s, 6H), 3.76 (s, 3H); 
13C{1H}  NMR (75 MHz, CDCl3) δ 153.6, 152.5, 139.8, 138.6, 128.8, 128.3, 122.2, 118.5, 

104.1, 60.2, 56.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C16H18N5O3 328.1404; found 

328.1401.

1-(2-bromophenyl)-N-phenyl-1H-tetrazol-5-amine (3u): Yield 47.8 mg (50%, pale yellow 

solid); mp 157-158 °C (1/9 EtOAc/hexane); IR (neat): υmax 3169, 3039, 2997, 1615, 1575, 

1530, 1486, 1083, 748 cm−1; 1H NMR (300 MHz, DMSO-d6)  9.36 (s, 1H), 7.96 (d, 1H, J = 𝛿

7.2 Hz), 7.79 (d, 1H, J = 7.5 Hz), 7.70-7.61 (m, 4H), 7.33 (t, 2H, J = 7.2 Hz), 7.01 (t, 1H, J = 

7.2 Hz); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.8, 139.6, 133.7, 133.0, 131.9, 130.6, 

129.3, 128.8, 122.2, 121.8, 118.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C13H11BrN5 (Br-

79) 316.0192; found 316.0195.

N-(2-bromophenyl)-1-phenyl-1H-tetrazol-5-amine (3u’): Yield 26.7 mg (28%, yellow solid); 

mp 137-138 °C (1/9 EtOAc/hexane); IR (neat): υmax 3368, 3065, 2921, 1595, 1562, 1522, 

1448, 1314, 1089, 1024, 748 cm−1; 1H NMR (300 MHz, DMSO-d6)  8.85 (s, 1H), 7.73-7.58 𝛿

(m, 7H), 7.36 (td, 1H, J = 7.5, 1.2 Hz),  7.11 (td, 1H, J = 8.1, 1.5 Hz); 13C{1H}  NMR (75 

MHz, DMSO-d6) δ 152.8, 137.7, 133.2, 133.0, 129.9, 129.8, 128.6, 126.3, 124.7, 124.5, 

117.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C13H11BrN5 (Br-79) 316.0192; found 

316.0196.

1-(2-methoxyphenyl)-N-phenyl-1H-tetrazol-5-amine (3v): Yield 79.4 mg (54%, reddish 

solid); mp 121-122 °C (2/8 to 1/1 EtOAc/hexane); IR (neat): υmax 3396, 3058, 2943, 1610, 

1572, 1489, 1247, 1106, 1022, 745 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 9.10 (s, 1H), 

7.67-7.61 (m, 3H), 7.54 (dd, 1H, J = 7.8, 1.5 Hz), 7.34-7.29 (m, 3H), 7.17 (td, 1H, J = 7.5, 

0,9 Hz), 6.99 (t, 1H, J = 7.2 Hz), 3.79 (s, 3H); 13C{1H}  NMR (75 MHz, CDCl3) δ 154.6, 

153.0, 139.8, 132.4, 128.9, 128.8, 122.0, 120.98, 120.89, 118.2, 113.2, 56.0; HRMS (ESI-

TOF) m/z: [M+H]+ calcd for C14H14N5O 268.1193; found 268.1202.
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N-(2-methoxyphenyl)-1-phenyl-1H-tetrazol-5-amine (3v’): Yield 20.9 mg (14%, brown 

solid); mp 130-131 °C (2/8 to 1/1 EtOAc/hexane); IR (neat): υmax 3251, 3087, 2840, 1612, 

1573, 1499, 1280, 1020, 753 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.24 (s, 1H), 7.75 (dd, 

1H, J = 8.0, 1.6 Hz), 7.68-7.56 (m, 5H), 7.08-6.94 (m, 3H), 3.74 (s, 3H); 13C{1H}  NMR (100 

MHz, CDCl3) δ 152.4,  149.6, 133.2, 129.9, 129.8, 128.0, 124.5, 124.0, 120.6, 120.2, 111.3, 

55.8; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C14H14N5O 268.1193; found 268.1196.

1-(4'-(tert-butyl)-[1,1'-biphenyl]-2-yl)-N-phenyl-1H-tetrazol-5-amine (3w): Yield 70.9 mg 

(77%, pale yellow solid); mp 167-168 °C (1/9 to 1/1 EtOAc/hexane); IR (neat): υmax 3240, 

3038, 2963, 2866, 1602, 1572, 1486, 1271, 1088, 742 cm−1; 1H NMR (300 MHz, DMSO-d6) 

 8.99 (s, 1H), 7.77-7.71 (m, 1H), 7.69-7.62 (m, 3H), 7.29-7.16 (m, 6H), 6.97-6.89 (m, 3H), 𝛿

1.14 (s, 9H); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 152.7, 150.0, 139.4, 138.98, 134.0, 

131.2, 131.1, 130.3, 128.8, 128.5, 128.4, 127.7, 125.1, 121.8, 118.0, 34.1, 30.9; HRMS (ESI-

TOF) m/z: [M+H]+ calcd for C23H24N5 370.2026; found 370.2028.

1-(2,6-dimethoxyphenyl)-N-phenyl-1H-tetrazol-5-amine and N-(2,6-dimethoxyphenyl)-1-

phenyl-1H-tetrazol-5-amine (3x): Yield 68.6 mg (≥99%, white solid); mp 248-249 °C (3/7 

EtOAc/hexane); IR (neat): υmax 3258, 1604, 1575, 1489, 1265, 1114, 1024, 777, 755 cm−1; 1H 

NMR (300 MHz, DMSO-d6)  9.07 (s, 1H), 8.48 (s, 1H), 7.66 (d, 2H, J = 8.1 Hz), 7.59 (t, 𝛿

1H, J = 8.4 Hz), 7.46-7.42 (m, 5H), 7.31 (t, 2H, J = 7.5 Hz), 7.07 (t, 1H, J = 8.4 Hz), 6.98 (t, 

1H, J = 7.2 Hz), 6.91 (d, 2H, J = 8.4 Hz), 6.55 (d, 2H, J = 8.4 Hz), 3.76 (s, 6H), 3.67 (s, 6H); 
13C{1H}  NMR (75 MHz, DMSO-d6) δ 156.4, 155.1, 154.0, 153.3, 139.8, 133.4, 132.7, 

129.1, 128.7, 127.0, 124.2, 121.8, 118.0, 115.6, 109.2, 104.9, 104.2, 56.2, 55.7; HRMS (ESI-

TOF) m/z: [M+Na]+ calcd for C15H15N5O2Na 320.1118; found 320.1116.

1-(4-methoxyphenyl)-5-methyl-1H-tetrazole (4y): Yield 98.1 mg (74%, white solid); mp 91-

92 °C (1/1 EtOAc/hexane) IR (neat): υmax 2924, 2851, 1607, 1523, 1509, 1449, 1273, 1254, 

1021, 830 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.60-7.54 (m, 2H), 7.21-7.16 (m, 2H), 

3.92 (s, 3H), 2.55 (s, 3H); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 161.7, 152.8, 127.8, 127.2, 

115.6, 56.1, 9.5; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C9H11N4O 191.0927; found 

191.0920.

1-(4-methoxyphenyl)-N-methyl-1H-tetrazol-5-amine (3y): Yield 35.7 mg (25%, white solid); 

mp 145-146 °C (1/1 EtOAc/hexane); IR (neat): υmax 3333, 2923, 2853, 1609, 1518, 1463, 

1247, 1017, 835 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.48-7.43 (m, 2H), 7.16-7.11 (m, 

2H), 6.71 (d, 1H, J = 4.8 Hz), 3.83 (s, 3H), 2.85 (d, 3H, J = 4.8 Hz); 13C{1H}  NMR (75 
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MHz, DMSO-d6) δ 159.9, 155.8, 126.5, 125.8, 115.0, 55.6, 30.2; HRMS (ESI-TOF) m/z: 

[M+H]+ calcd for C9H12N5O 206.1036; found 206.1041.

N-butyl-1-(4-methoxyphenyl)-1H-tetrazol-5-amine (3z): Yield 82.6 mg (77%, white solid); 

mp 113-114 °C (2/8 EtOAc/hexane); IR (neat): υmax 3270, 2937, 1605, 1519, 1256, 836, 735 

cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.47-7.42 (m, 2H), 7.17-7.12 (m, 2H), 6.79 (t, 1H, J 

= 5.7 Hz), 3.84 (s, 3H), 3.25 (q, 2H, J = 6.9 Hz), 1.31 (quint, 2H, J = 7.2 Hz), 1.30-1.24 (m, 

2H), 0.88 (t, 3H, J = 7.2 Hz); 13C{1H}  NMR (75 MHz, DMSO-d6) δ 159.9, 155.3, 126.5, 

125.9, 115.0, 55.6, 43.3, 30.8, 19.4, 13.7; HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C12H18N5O 248.1506; found 248.1502.

N-cyclohexyl-1-(4-methoxyphenyl)-1H-tetrazol-5-amine (3ab): Yield 93.5 mg (82%, white 

solid); mp 158-159 °C (2/8 to 1/1 EtOAc/hexane); IR (neat): υmax 3264, 2922, 2854, 1595, 

1577, 1516, 1450, 1251, 1090, 838 cm−1; 1H NMR (300 MHz, DMSO-d6) δ 7.43 (d, 2H, J = 

8.7 Hz), 7.13 (d, 2H, J = 8.7 Hz), 6.59 (d, 1H, J = 7.5 Hz), 3.83 (s, 3H), 3.48 (s, 1H), 1.90 (s, 

2H), 1.71 (s, 2H), 1.6-1.56 (m, 1H), 1.35-1.20 (m, 4H), 1.09-1.06 (m, 1H); 13C{1H}  NMR 

(75 MHz, DMSO-d6) δ 159.8, 154.6, 126.6, 126.0, 114.9, 55.6, 53.2, 32.2, 25.2, 24.9; HRMS 

(ESI-TOF) m/z: [M+H]+ calcd for C14H20N5O 274.1662; found 274.1660.

5-Methyl-6,7,8,9-tetrahydro-5H-tetrazolo[1,5-a]azepine (4ac): Yield 97.7 mg (64%, 

colorless oil); (3/7 to 1/1 EtOAc/hexane); IR (neat): υmax 2937, 1450, 1428, 733 cm−1; 1H 

NMR (300 MHz, CDCl3) δ 4.85-4.75 (m, 1H), 3.15-2.99 (m, 2H), 2.08-1.66 (m, 6H), 1.61 (d, 

3H, J = 7.0 Hz); 13C{1H}  NMR (75 MHz, CDCl3) δ 155.6, 55.9, 33.5, 25.9, 24.5, 24.0, 18.7; 

HRMS (ESI-TOF) m/z: [M+H]+ calcd for C7H13N4 153.1135; found 153.1133.

5-Isopropyl-8-methyl-6,7,8,9-tetrahydro-5H-tetrazolo[1,5-a]azepine (4ad): Yield 87.8 mg 

(59%, colorless oil) (3/7 to 1/1 EtOAc/hexane); IR (neat): υmax 2969, 1523, 1403, 1141 cm−1; 
1H NMR (300 MHz, CDCl3) δ 4.42-4.35 (m, 1H), 3.10 (d, 2H, J = 4.5 Hz), 2.52-2.42 (m, 

1H), 2.17-2.11 (m, 2H), 2.06-1.84 (m, 2H), 1.70-1.60 (m, 1H), 1.10 (d, 3H, J = 6.6 Hz), 0.89 

(d, 3H, J = 6.9 Hz), 0.83 (d, 3H, J = 6.6 Hz); 13C{1H}  NMR (75 MHz, CDCl3) δ 153.8, 65.4, 

31.2, 29.8, 28.5, 28.2, 23.5, 19.6, 18.5, 18.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for 

C10H19N4 195.1604; found 195.1602.

1-(sec-Butyl)-5-methyl-1H-tetrazole (4ae): Yield 117.7 mg (69%, colorless oil) (3/7 to 1/1 

EtOAc/hexane); IR (neat): υmax 2969, 1523, 1403, 1384, 1141 cm−1; 1H NMR (300 MHz, 

CDCl3) δ 4.38-4.26 (m, 1H), 2.56 (s, 3H), 2.14-1.78 (m, 2H), 1.59 (d, 3H, J = 6.9 Hz), 0.84 
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(t, 3H, J = 7.5 Hz); 13C{1H} NMR (75 MHz, CDCl3) δ 150.8, 56.2, 29.4, 20.4, 10.3, 8.9; 

HRMS (ESI-TOF) m/z: [M+H]+ calcd for C6H13N4 141.1135; found 141.1133.
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