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Stereoselective synthesis of α-fluoroacrylonitriles through 
organocatalytic cyanation of gem-difluoroalkenes and TMSCN  
Yu-Chuan Ma, Yang Zhang, Cheng-Zhi Gu, Guang-Fen Du,* Lin He*  

An organocatalytic cyanation reaction of gem-difluoroalkenes was developed. Under the catalysis of 10 mol% DBU, gem-
difluoroalkenes undergo nucleophilic addition-β-elimination reaction with trimethylsilyl cyanide to provide α-
fluoroacrylonitriles in 50%-98% yields with excellent Z/E selectivity. 

Introduction 
The monofluoroalkene is an important structural motif found 
in many agrochemicals, pharmaceuticals and functional 
materials.1 Owing to its unique physical and chemical 
properties, this fluorinated unit has been used widely in the 
synthesis of peptide mimics2 and served as the amide 
bioisosteres3 in medicinal chemistry. Moreover, they can also 
serve as fluorinated building blocks in organic synthesis.4 
Therefore, considerable efforts have been exerted to develop 
new methods for the synthesis of these important 
frameworks.5 Among them, transition-metal and 
organocatalysts catalyzed C-F bond functionalization of gem-
difluoroalkenes with different nucleophiles provides a 
powerful and effective strategy for the synthesis of 
functionalized monofluoroalkenes.6 On the other hand, the 
acrylonitrile is another common structural subunit existing in 
different biologically active compounds and pharmaceuticals.7 
The cyano group can feasibly transfer to other useful 
functional moieties, such as amine, amidine and carboxylic 
acid.8 The significance of this motif has attracted considerable 
attention from organic chemists. In the past decade, 
transition-metal catalyzed cyanation of alkenes and alkenyl 
halides have been extensively developed, which provides facile 
access to different acrylonitrile derivatives.9 Despite numerous 
achievements accomplished in this research field, the 
synthesis of fluorinated acrylonitriles remains far less 
examined. In 2004, Van der Gen and co-workers10 reported a 
Horner-wittig reaction of 
(diphenylphosphinoyl)fluoroacetonitrile and aldehydes, which 
produced α-fluoroacrylonitriles in moderate yield and low Z/E 
selectivity (Scheme 1, eq 1). In 2008, Zajc and co-workers11 

prepared a stable reagent (1,3-benzothiazol-2-
ylsulfonyl)fluoroacetonitrile via multistep reactions. In the 
presence of 4.0 equivalents of DBU, this reagent can undergo 
fluoro-Julia olefination with aldehydes to provide α-
fluoroacrylonitriles in high yields with good Z-selectivity 
(Scheme 1, eq 2). Recently, Rolando and co-workers12 
developed the copper-catalyzed coupling reaction of alkenyl 
halide and potassium cyanide, which gave α-
fluoroacrylonitriles in high yield (Scheme 1, eq 3). Interestingly, 
using benzyl nitrile as a cyanating reagent, Cao and co-
workers13 developed a highly stereoselective cyanation of 
gem-difluoroalkenes (Scheme 1, eq 4). 
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Scheme 1 Different synthesis methods of α-fluoroacrylonitriles 

However, these methods often suffer from some 
drawbacks, such as harsh reaction conditions, the use of highly 
toxic cyanating reagent and the addition of excess of additives. 
Therefore, the development of more convenient and mild 
method for the synthesis of α-fluoroacrylonitriles is still highly 
significnce. In line with our continue interest of the 
functionalization of C-F bonds of gem-difluoroalkenes14 and N-
heterocyclic carbene-catalyzed activation of silylated 
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reagents,15 we envisioned that NHCs or other strong Brønsted 
bases could catalyze the cyanation reaction of gem-
difluoroalkenes and TMSCN to produce fluorinated 
acrylonitriles (Scheme 1, eq 5). And herein, we wish to report 
this result. 

Experimental 
Our initial studies were carried out with the readily 

available gem-difluoroalkene 1a and TMSCN as the model 
substrates. In the presence of 10 mol% NHC A,16 the reaction 
hardly proceeded in THF and only trace amount of fluorinated 
acrylonitrile 3a was observed by GC-MS (Table 1, entry 1). The 
following studies indicated that the reaction media has 
obvious influence on the reaction yield and the polar aprotic 
solvents, DMF and DMSO are suitable for the transformation 
(Table 1, entries 2-5). Basesd on these results, a series of 
organic bases and inorganic bases were then screened for the 
reaction. Both triethylamine and Hunig’s base showed low 
efficiency (Table 1, entries 6 and 7. Strong Brønsted bases, 
such as t-BuOK, DBU and TBD, catalyzed the reaction 
efficiently and DBU gave the highest yield (Table 1, entries 8-
10). Carbonates and fluorides can also catalyze the reaction in 
good efficiency (Table 1, entries 11-13). Reducing the DBU 
loading to 5 mol% or lowering the amount of TMSCN to 1.5 
equivalents led to prolonged reaction time and decreased 
reaction yield (Table 1, entries 14 and 15). Finally, the control 
experiment showed that in the absence of a Brønsted base, 
the reaction was unsuccessful (Table 1, entry 16). The 
configurations of Z- and E-isomers were determined by the 
comparison of their 1H NMR data with literature reports.12 The 
3JH-F coupling constant of the Z-isomer are generally more than 
30 Hz, while the 3JH-F coupling constant of the E-isomer are less 
than 20 Hz.11 

Table 1. Optimization of the reaction conditionsa 

F
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Br
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Br
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Ar

Ar
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Entry                  Conditions                          Time/h   2 (equiv)    Yield(%)b            E/Zc 

1 A (10 mol%), THF 24 2 < 10 / 
2 A (10 mol%), DCM 24 2 18 >20:1 
3 A (10 mol%), CH3CN 24 2 27 >20:1 
4 A (10 mol%), DMF 12 2 53 >20:1 
5 A (10 mol%), DMSO 12 2 66 >20:1 
6 Et3N (10 mol%), DMSO 12 2 34 >20:1 
7 DIPEA (10 mol%), DMSO 12 2 34 >20:1 
8 t-BuOK (10 mol%), DMSO 12 2 70 >20:1 

 

9 DBU (10 mol%), DMSO 12 2 84 >20:1 
10 TBD (10 mol%), DMSO 12 2 67 >20:1 
11 Cs2CO3 (10 mol%), DMSO 12 2 64 >20:1 
12 K2CO3 (10 mol%), DMSO 12 2 59 >20:1 
13 KF(10 mol%), DMSO 12 2 64 >20:1 
14 DBU (5 mol%), DMSO 24 2 70 >20:1 
15 DBU (10 mol%), DMSO 24 1.5 72 >20:1 
16 No base, DMSO 24 2 0 / 

a 1a (0.2 mmol), base (10 mol%), solvent (2.0 mL). b Isolated total yield of two 
diastereomers. c Determined by 19F NMR  analysis of the crude product. 

With the optimized reaction conditions in hand, we then 
evaluated the substrate scope of the cyanation reaction and 
the results are summarized in Table 2. gem-Difluoroalkenes 
with electron-withdrawing substituents on the aryl rings gave 
the corresponding products in higher yields than those bearing 
electron-donating substituents (Table 2, entries 1-4). In 
addition, different positions of the substituents can be well 
tolerated for the reaction (Table 2, entries 5-9). Interestingly, 
when the strong electron-withdrawing nitro group substituted 
gem-difluoroalkene 1j was used for the reaction, the desired 
product was obtained in high yield but with opposite Z/E 
selectivity (Table 2, entry 10). We reasoned that the nitro 
group can stablize the benzyl anion intermediate and facilate 
the β-elimination of fluoride, and as a result, giving the 
thermodynamically favorable Z-isomer as the major product. 
Both α-naphthyl and β-naphthyl substituted gem-
difluoroalkenes performed very well to produce the 
corresponding products 3l and 3m in 70% and 77% yields 
(Table 2, entries 11 and 12). Biphenyl substituted substrate 
was proven to be a good candidate for the reaction, affording 
3p in 85% yield (Table 2, entry 13). Heteroaryl substituted 
gem-difluoroalkene underwent the reaction to provide 3q in 
83% yield (Table 2, entry 14). Electron-donating,-neutral and -
withdrawing groups substituted symmetrical gem-
difluoroalkenes were all suitable for the reaction, giving the 
corresponding products in excellent yields (Table 2, entries 15-
18). 

Table 2. Evaluation of the substrate scope a 

FF
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NC F
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a Reaction conditions: 1 (0.20 mmol), 2 (0.4 mmol), DBU (10 mol%), DMSO (2.0 
mL), 12 h, room temperature. b Isolated total yield of two diastereomers. c E/Z 
was determined by 19F NMR analysis of the crude reaction mixture. 

Based on previous literature report,17 a plausible reaction 
mechanism was proposed as depicted in Scheme 2. The 
Brønsted base attacks the silicon atom of TMSCN to generate 
the reactive hypervalent silicon species I, which might trigger 
the following nucleophilic addition with gem-difluoroalkene to 
form carbanion intermediate II, and after the β-elimination of 
the fluoride anion, to produce the final product. 

Base

Si
NC

BaseBase SiMe3

TMSCN

F

(I)

F

F

H

Ar

CN

FF

Ar H

(II)

F

CN

H

Ar
-F

Me3Si F

 

Scheme 2 Proposed mechanism. 

The rotation of intermediate II would form two possible 
conformational intermediates III and IV (Figure 1). In order to 
minimize the electronic repulsion13 between the fluoride atom 
and the aryl group, the elimination process of intermediate II 
preferentially proceeds via model III and as a result, to 
produce the E-isomer as the major product. 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3 
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Figure 1 Two possible conformational models 

Conclusions 
In conclusion, an organocatalytic functionalization of gem-
difluoroalkenes has been described. The mild and transition-
metal free conditions, simple procedure and generally high 
yield and excellent Z/E selectivity provide a new protocol for 
the synthesis of fluorinated acrylonitriles. 
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DBU-catalyzed cyanation of gem-difluoroalkenes with TMSCN 

highly stereoselective synthesis of α-fluoroacrylonitriles

F

FAr

H
TMSCN

10 mol% DBU
DMSO, rt

CN

F

Ar

H

 transition-metal free  mild conditions

 readily available of starting materials  high Z/E selectivity

18 examples
yield up to 98%
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