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Abstract A concise and efficient aerobic oxidation and oxygenation
approach for the construction of 2-aroylquinolines has been developed
through copper-catalyzed annulation of anilines, acetaldehydes, and di-
oxygen. 2,2,6,6-Tetramethylpiperidine-1-oxyl was employed to direct
the selectivity toward the desired 2-aroyl products. Molecular oxygen
was used in this transformation as an environmentally benign source of
oxygen.
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Quinoline is among the most significant nitrogen-con-
taining heterocyclic moieties that are important structural
fragments in natural products, pharmaceuticals, functional
materials, and have been widely applied in medicinal
chemistry and organic synthesis.! In particular, 2-aroyl de-
rivatives of quinoline are widely present in biologically ac-
tive compounds.? Through conventional quinoline synthe-
ses, including the Combes reaction,® the Skraup reaction,*
and the Friedldnder reaction,” 2-aroylquinolines have gen-
erally been prepared by functionalization of preactivated
quinolines, for example, by cross-coupling reactions of 2-
haloquinolines® or quinoline-2-carbaldehydes®’ [Scheme 1
(a)]. Alternatively, 2-aroylquinolines can also be prepared
by direct C-H functionalization of 2-unsubstituted quino-
lines with aldehydes or a-oxo carboxylic acids [Scheme 1
(b)].8 All these methods require the corresponding quino-
line substrates to be prepared in advance, and these neces-
sitate multiple steps from simple building blocks. In recent
years, much effort has been spent on developing novel
methods for the preparation of heterocyclic molecules by
transition-metal-catalyzed multicomponent coupling and
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Q efficient construction of 2-aroylquinolines from simple building blocks

Q molecular oxygen serves as the environmentally-benign oxygen donor

tandem annulation from simple and readily available build-
ing blocks.®-1! However, to our knowledge, the synthesis of
2-aroylquinolines has not previously been realized through
such a strategy.

Recently, Yan et al. reported a copper-catalyzed aerobic
synthesis of 3-phenylquinolines 1 from anilines 2 and acet-
aldehydes 3 through debenzylation of the corresponding 2-
benzyldihydroquinoline intermediates 4 [Scheme 1 (c)].
In our previous report on the selective construction of 2-
aroylpyridines 8 from acetaldehydes 3 and ammonium salts
6 or azides 5, a similar 2-benzyldihydropyridine intermedi-
ate 7 was also involved in a subsequent oxygenation process
with molecular oxygen [Scheme 1 (d)].’ Inspired by these
works, we surmised that the desired 2-aroylquinoline
might be obtained through a 2-benzyldihydroquinoline in-
termediate if the debenzylation process could be sup-
pressed while an oxygenation process, similar to that in our
previous work, could be promoted [Scheme 1 (e)]. Here, we
report a copper-catalyzed, concise, and efficient aerobic ox-
idative construction of 2-aroylquinolines 9 from simple ani-
lines 2, acetaldehydes 3, and molecular oxygen [Scheme 1
(e)]. To the best of our knowledge, this is the first example
of a single-step protocol for the construction of 2-
aroylquinolines from simple and readily available building
blocks.

Our investigations commenced with the optimization of
the reaction conditions (Table 1). A preliminary trial with
aniline (2a) and phenylacetaldehyde (3a) as model building
blocks under reaction conditions similar to those described
in our previous report'? gave both the desired 2-aroylquin-
oline 9a and the debenzylated byproduct 1a in very low
yields and with poor selectivity (Table 1, entry 1). Adding
30 equivalents of water markedly facilitated the transfor-
mation into 9a, elevating its yield to 44% while slightly in-
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creasing the yield of the byproduct 1a (entry 2). Screening
of the reaction temperature suggested that either increas-
ing or reducing the temperature is detrimental to the yield
of 9a (entries 3 and 4). The yield of the desired product 9a
decreased under air (entry 5). The reaction did not work in
the absence of a copper catalyst (entry 7) or under argon,
even with 1 equivalent of the copper catalyst in the pres-
ence of 30 equivalents of water (entry 6). These results
show that the copper catalyst is required for this transfor-
mation, and that molecular oxygen is essential as an oxygen
source for the generation of the 2-benzoylquinoline. Subse-
quently, our attention was turned to the screening of the
copper catalysts (entries 7-10).14 With Cu(NO;),-3H,0 as
the catalyst, the aniline substrate 2a was completely con-
sumed and the yield of quinoline 9a increased to 58%, al-
though 26% of the byproduct 1a was also generated (entry
10). Subsequent optimization focused on suppressing the
generation of byproduct 1a. To our delight, after screening
of various additives,'# this byproduct was suppressed by the

addition of two equivalents of TEMPO, providing the de-
sired 9a in 71% yield (entry 11). It is reasonable that TEMPO
might inhibit the radical process of debenzylation, as pro-
posed by Yan and Huang,'? while the aerobic oxidation pro-
cess prevailed under copper catalysis. Further screening of
the solvent failed to offer better results. Finally, the reaction
conditions of entry 11were selected for further investiga-
tions on the substrate scope.’”

With the optimal conditions in hand, the scope of the
arylacetaldehyde was first explored, as shown in Scheme 2.
A variety of arylacetaldehydes were investigated for the
construction of 2-aroylquinolines. Generally, both electron-
deficient and electron-rich aldehydes gave the correspond-
ing 2-aroylquinolines in moderate to good yields, although
the yields from electron-deficient ones (9f and 9g) were
slightly higher than those from electron-rich ones (9d and
9e). Meanwhile, the steric hindrance also showed a slight
influence on the yield, since the yields from ortho- or meta-
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(e) This work: copper-catalyzed aerobic oxygenation for the synthesis of
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Scheme 1 Construction of 2-aroylquinolines from simple and readily available building blocks
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Scheme 2 The arylacetaldehyde scope for the construction of 2-aroyl-
quinolines. Reagents and conditions: aniline (2a; 0.25 mmol), arylacetal-
dehyde 3 (1 mmol, 4 equiv), Cu(NO3)2-3H,0 (0.05 mmol, 20 mol%),
TEMPO (0.5 mmol, 2 equiv), DMF (3 mL), under O, (1 atm), 100 °C, 12
h. Reported yields are isolated yields after column chromatography (sili-
ca gel).

substituted aldehydes (9e, 9g, and 9h) were lower than
those from para-substituted ones (9d and 9f).

The reactions of various substituted anilines were then
explored under the optimized conditions (Scheme 3). Un-
like the pattern observed with aldehydes, electron-deficient
3-fluoroaniline provided the corresponding quinoline 9n in
a lower yield than those obtained from electron-rich ani-
lines. Steric hindrance also showed some effect on this re-
action. A sterically hindered ortho-substituted aniline pro-
vided the corresponding product 91 in a lower yield than
the meta- or para-substituted ones (9j and 9k). In addition,
the annulation took place at the less-hindered site on the
aniline substrate. For instance, all meta-substituted anilines
provided the less sterically hindered quinolines predomi-
nantly (9k, 9m, and 9n), whereas no C5-substituted prod-
uct of higher hindrance was generated. Such patterns were
also observed for the polysubstituted quinolines 90 and 9p.

Cu(NOg)2-3H20 (20 mol%)
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Scheme 3 The aniline scope for the construction of 2-aroylquinolines.
Reagents and conditions: aniline 2 (0.25 mmol), phenyacetaldehyde (3a;
1 mmol, 4 equiv), Cu(NOj;),-3H,0 (0.05 mmol, 20 mol%), TEMPO (0.5
mmol, 2 equiv), DMF (3 mL), under O, (1 atm), 100 °C, 12 h. Isolated
yield after column chromatography in silica gel.

During the optimization of the reaction conditions, we
found that molecular oxygen is crucial to this transforma-
tion (Table 1, entries 2, 5, and 6). We therefore conducted
isotope-labeling experiments by using H,'80 and '80,, and
we found that the 80-9a product was detected under both
the H,'80 and 80, conditions (Scheme 4, eqs 1 and 2).
These results, together with the control experiments in Ta-
ble 1 (entries 5 and 6) demonstrate that the molecular oxy-
gen is essential and that the oxygen source participates in
this transformation for the construction of 2-aroylquino-
lines. Isotope exchange between the 2-aroylquinolines and
H,80 occurred, with generation of the '80-product
(Scheme 4, eq 1), which explains the low ratio of the 180-
product in the control reaction under 0, (Scheme 4, eq 2).
These results are in accordance with our previous work on
0-exchange between 2-aroylpyridines and H,0.3

In conclusion, we have developed a copper-catalyzed
concise and selective aerobic oxidation and oxygenation
approach for the construction of 2-aroylquinolines from
simple, inexpensive, and readily available anilines, acetal-
dehydes, and dioxygen. Unlike our previous work, in which
the selectivity was controlled by nitrogen donors,'> TEMPO
was employed in this efficient annulation to suppress the
generation of the debenzylated byproduct, affording the de-

© Georg Thieme Verlag Stuttgart - New York — Synlett 2017, 28, A-E

Downloaded by: University of Colorado. Copyrighted material.



Synlett Z lietal

NH, standard conditions
H,'80 (30 equiv), O (1 atm)

+ Ph CHO

60%

NH; standard conditions S
H20 (30 equiv), "0, (1 atm
. P ScHo O (80 equiv), O, (1 atm) IN/ o
67%
160
9a

Scheme 4

Table 1 Optimization of the Reaction Conditions?
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2 3a (desired product) (byproduct)
Entry Catalyst (20 mol%) Additive (equiv) Gas Temp (°C) Yield® (%) of 9a Yield® (%) of 1a

1 Cu(TFA),-xH,0 - 0, 100 9 7
2 Cu(TFA),-xH,0 H,0 (30) 0, 100 44 10
3 Cu(TFA),-xH,0 H,0 (30) 0, 80 22 trace
4 Cu(TFA),-xH,0 H,0 (30) 0, 120 36 1
5 Cu(TFA),-xH,0 H,0 (30) air 100 32 1
6 Cu(TFA),-xH,0°¢ H,0 (30) argon 100 0 0
7 - H,0 (30) 0, 100 trace trace
8 Cul H,0 (30) 0, 100 trace trace
9 Cu(l, H,0 (30) 0, 100 43 51

10 Cu(NO;),-3H,0 H,0 (30) 0, 100 58 26

11 Cu(NOs),-3H,0 H,0 (30), TEMPO (2) 0, 100 Al trace

3 Reaction conditions: aniline (2a; 0.25 mmol), phenylacetaldehyde (3a; 1 mmol, 4 equiv), copper catalyst (0.05 mmol, 20 mol%), additive, DMF (3 mL), under

0,, air, or argon (1 atm), 12 hours.
b |solated yield after column chromatography (silica gel).
¢ The loading of the copper catalyst was 1.0 equiv.

sired 2-aroylquinolines selectively. Environment-benign O,
was demonstrated to serve as the oxygen donor for the keto
moiety in the products. Further investigation on the mecha-
nism of this chemistry, as well as the applications of this
protocol, are ongoing in our group.
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(15) Phenyl(3-phenylquinolin-2-yl)methanone (9a); Typical Pro-
cedure
To a reaction tube charged with CuNO5-3 H,0 (12.1 mg, 0.05
mmol, 20 mol%) and TEMPO (78.1 mg, 0.5 mmol, 2 equiv) under
0, (1 atm) was added a solution of aniline (2a, 0.25 mmol, 1
equiv), phenylacetaldehyde (3a, 1 mmol, 4 equiv), and H,0 (135
pL, 7.5 mmol, 30 equiv) in DMF (3 mL). The mixture was stirred
at 100 °C for 12 h then cooled to r.t. The mixture was diluted
with EtOAc, washed with sat. aq NaHCO;, water, and brine,
dried (Na,S0O,), and concentrated in vacuo to give dark residue
that was purified by flash chromatography [silica gel, PE-EtOAc
(50:1 to 30:1)] to give an off-white oil; yield: 55 mg (71%).
TH NMR (400 MHz, CDCl,): § = 8.28 (s, 1 H), 8.19 (d, ] = 8.4 Hz, 1
H), 7.86-7.94 (m, 3 H), 7.76-7.80 (m, 1 H), 7.64-7.68 (m, 1 H),
7.52-7.56 (m, 1 H), 7.38-7.41 (m, 4 H), 7.30-7.33 (m, 3 H). 3C
NMR (100 MHz, CDCl;): 6 =195.1, 156.3, 146.1, 137.7, 137.2,
136.2, 134.1, 133.5, 130.5, 130.1, 129.7, 129.0, 128.6, 1284,
128.1, 128.0, 127.9, 127.8. HRMS (ESI): m/z [M + H]* calcd for
Cy,H;gNO: 310.1232; found: 310.1226.
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