ORIGINAL PAPER

DBU-catalyzed expeditious and facile multicomponent synthesis of *N*-arylquinolines under microwave irradiation

Satish Kumar Singh · Krishna Nand Singh

Received: 29 December 2010/Accepted: 2 September 2011/Published online: 5 October 2011 © Springer-Verlag 2011

Abstract *N*-Arylquinoline derivatives are obtained in excellent yields by a rapid, easy, and efficient one-pot multicomponent reaction of aromatic aldehydes, 3-arylamino-5,5-dimethylcyclohex-2-enone, and active methylene compounds utilizing 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst in ethanol under microwave irradiation.

Keywords Microwave-assisted synthesis · Multicomponent reaction · One-pot synthesis · Quinoline · DBU

Introduction

Heteroaromatic rings containing nitrogen atoms often play an important role as the scaffolds of bioactive substances. Quinoline is one of the most popular N-heteroaromatic frameworks present in many pharmaceuticals and exhibits a wide spectrum of pharmacological effects, such as antiplasmodial [1], intrinsic [2], cytotoxic [3], functional [4], antibacterial [5], antiproliferative [6], antimalarial [7], and anticancer activities [8]. Therefore, the synthesis of quinolines has attracted much attention in organic synthesis. The classical methods for the preparation of quinoline derivatives include the Skraup, Doebner-Von Miller, Conrad-Limbach, Combes, and Pfitzinger syntheses [9-13]. Owing to the remarkable potential of these compounds as a source of valuable drugs, various synthetic methods have also been reported [14–19]. Most of these processes, however, suffer from one or other drawbacks

S. K. Singh · K. N. Singh (⊠) Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India e-mail: knsinghbhu@yahoo.co.in such as long reaction times, poor product yields, harsh conditions, high costs, and use of hazardous catalysts. Further, there are few examples of syntheses of *N*-substituted quinoline derivatives in the literature [20–22]. Microwave (MW) irradiation has evolved as a powerful method to perform organic synthesis with great success, particularly in the light of the current paradigm shift to green chemistry [23, 24]. The environmental acceptability of the process is further improved if a multicomponent approach is adopted under microwave irradiation [25, 26]. The multicomponent syntheses of such *N*-arylquinoline derivatives has been recently effected by employing catalysts such as [Bmim]BF₄ (1-butyl-3-methylimidazolium tetrafluoroborate) [27] and TBAF (tetrabutylammonium fluoride) [28].

Results and discussion

In view of the above, we have investigated a 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 5 mol%) catalyzed, onepot, simple, and efficient procedure for the rapid construction of *N*-substituted quinolines via a three-component reaction of 3-arylamino-5,5-dimethylcyclohex-2-enones, aromatic aldehydes, and active methylene compounds such as malononitrile or ethyl cyanoacetate in ethanol under controlled microwave irradiation (Scheme 1).

In order to optimize the effect of catalyst, MW power, and temperature, we investigated the model reaction of 3-phenylamino-5,5-dimethylcyclohex-2-enone (1a), *p*-anisaldehyde (2c), and malononitrile (3a). The reaction was carried out in the presence of different organic bases such as DBU, Et_3N , piperidine, and pyridine under microwave irradiation at different power, temperature, and time in ethanol. It is evident from the results presented in Scheme 1

 $\begin{array}{l} \mathsf{Ar} = \mathsf{C}_{6}\mathsf{H}_{5}, \ p - \mathsf{CH}_{3}\mathsf{C}_{6}\mathsf{H}_{4}, \ p - \mathsf{Br}\mathsf{C}_{6}\mathsf{H}_{4}; \ \mathsf{Ar}' = \mathsf{C}_{6}\mathsf{H}_{5}, \ p - \mathsf{CH}_{3}\mathsf{C}_{6}\mathsf{H}_{4}, \ p - \mathsf{CH}_{3}\mathsf{O}\mathsf{C}_{6}\mathsf{H}_{4}, \ p - \mathsf{CIC}_{6}\mathsf{H}_{4}, \ p - \mathsf{CIC}_{6}\mathsf{H}_{4}, \ p - \mathsf{OH}_{3}\mathsf{C}_{6}\mathsf{H}_{4}, \ p - \mathsf{OH}_{3}\mathsf{C}_{6}\mathsf{C}_{6}\mathsf{H}_{4}, \ p - \mathsf{OH}_{3}\mathsf{C}_{6}\mathsf{H}_{6}\mathsf{H}_{6}, \ p - \mathsf{OH}_{6}\mathsf{C}_{6}\mathsf{H}_{6}, \$

Table 1 that DBU (5 mol%) as catalyst accomplishes the reaction successfully and the use of the microwave irradiation further enhances the yield of the product considerably with dramatic reduction in the reaction time, the best result being obtained using 140 W at 80 °C in 3 min (entry 6).

Under the optimized reaction conditions (entry 6), a number of 3-arylamino-5,5-dimethylcyclohex-2-enones 1 undergo multicomponent reaction with different aromatic aldehydes 2 and malononitrile in a molar ratio of 1:1:1 in ethanol under microwave heating (140 W, 80 °C). When malononitrile was replaced by ethyl cyanoacetate, another series of 4-arylquinoline derivatives 4s-4w were obtained in excellent yields (92–95%) under similar reaction conditions at 120 W microwave power and 80 °C in ethanol. All the reactions were completed in 3–5 min (TLC monitoring) and the results are given in Table 2. Both electronrich and electron-deficient aldehydes afforded excellent yields of the products 4a-4w (92–99%). All products were crystalline and fully characterized on the basis of their

Table 1 Optimization of reaction conditions for the synthesis of 4d

Entry	Base/mol%	Microwa	Yield/%			
		MW/W	Temp/°C	Time/min		
1	-	180	80	10	_	
2	DBU (3)	120	80	5	67	
3	DBU (3)	120	100	5	71	
4	DBU (3)	140	80	5	73	
5	DBU (5)	120	80	3	92	
6	DBU (5)	140	80	3	98	
7	DBU (5)	180	80	3	98	
8	DBU (7)	140	80	3	97	
9	DBU (10)	140	80	3	95	
10	Et ₃ N (5)	140	80	5	56	
11	Et ₃ N (10)	140	80	5	70	
12	Piperidine (5)	140	80	7	45	
13	Piperidine (10)	140	80	5	58	
14	Pyridine (5)	180	80	10	20	
15	Pyridine (10)	180	80	10	28	

The bold entry signifies the best result obtained during the optimization

melting points, elemental analyses, and spectral data (IR, ¹H NMR, and ¹³C NMR).

Conclusion

We have developed a new, facile, and efficient methodology for the DBU-catalyzed rapid preparation of *N*-substituted quinoline derivatives via one-pot three-component condensation of 3-arylamino-5,5-dimethylcyclohex-2-enone, aromatic aldehyde, and active methylene compounds including malononitrile and ethyl cyanoacetate in ethanol. The mildness of the conversion, its experimental simplicity, compatibility with various functional groups, excellent product yields, short reaction times, and the easy workup procedure make this approach attractive for synthesizing a variety of such derivatives.

Experimental

All chemicals were procured from Aldrich, USA, and E. Merck, Germany, and were purified prior to their use. IR spectra were recorded on a JASCO FT-IR-5300 spectrophotometer. NMR spectra were run on a JEOL AL300 FT-NMR spectrometer; chemical shifts are given as δ (ppm) relative to TMS as internal standard. Elemental microanalysis was performed on an Exeter Analytical Inc model CE-440 CHN analyzer. Melting points were measured in open capillaries. The microwave irradiation was effected using CEM's Discover BenchMate single-mode microwave synthesis system using safe pressure regulation 10-cm³ pressurized vials with "snap-on" caps. 3-Aryl-amino-5,5-dimethylcyclohex-2-enones **1** were synthesized according to the procedure described in Ref. [29].

General procedure for the synthesis of N-substituted quinolines **4a**–**4**w

A mixture of 3-arylamino-5,5-dimethylcyclohex-2-enone **1** (1 mmol), aromatic aldehyde **2** (1 mmol), 0.066 g malono-

Table 2 DBU-catalyzed synthesis of N-substituted quinolines under MW

Entry	Ar	Ar′	Х	Product	Time/min	Yield/% ^a	M.p./°C	
							Observed	Refs. [21, 27, 28]
1	C ₆ H ₅	C ₆ H ₅	CN	4a	3	97	223-225	246–247
2	C_6H_5	$4-CH_3C_6H_4$	CN	4b	3	98	231-232	_
3	$4-CH_3C_6H_4$	$4-CH_3C_6H_4$	CN	4 c	3	99	252	252–254
4	C_6H_5	4-CH ₃ OC ₆ H ₄	CN	4d	3	98	245-246	244–245
5	$4-CH_3C_6H_4$	4-CH ₃ OC ₆ H ₄	CN	4 e	3	99	240-241	239–241
6	$4-CH_3C_6H_4$	$4-ClC_6H_4$	CN	4f	4	97	258-260	260-262
7	C_6H_5	$4-ClC_6H_4$	CN	4g	4	96	268-269	268-269
8	C_6H_5	3-ClC ₆ H ₄	CN	4h	4	94	230-232	_
9	$4-CH_3C_6H_4$	3-ClC ₆ H ₄	CN	4i	4	95	232-234	233–234
10	C_6H_5	$4-BrC_6H_4$	CN	4j	4	94	254-256	275–277
11	$4-BrC_6H_4$	$4-BrC_6H_4$	CN	4k	5	93	276–277	276–278
12	$4-CH_3C_6H_4$	$4-BrC_6H_4$	CN	41	4	95	259-261	261-263
13	C_6H_5	$4-FC_6H_4$	CN	4m	3	95	259-260	260-261
14	C_6H_5	$4-NO_2C_6H_4$	CN	4n	5	93	276–277	275–276
15	C_6H_5	$3-NO_2C_6H_4$	CN	40	5	93	267–268	268–269
16	$4-CH_3C_6H_4$	$3-NO_2C_6H_4$	CN	4p	4	94	280	281-283
17	$4-BrC_6H_4$	$3-NO_2C_6H_4$	CN	4 q	5	92	272-274	271–274
18	C_6H_5	$4-OHC_6H_4$	CN	4r	3	96	266–268	267–268
19	C_6H_5	$4-CH_3C_6H_4$	COOEt	4s	5	94	176–178	_
20	C_6H_5	$4-ClC_6H_4$	COOEt	4t	5	93	204-205	204-206
21	$4-CH_3C_6H_4$	$4-ClC_6H_4$	COOEt	4u	5	95	201-203	198-200
22	$4-CH_3C_6H_4$	3-ClC ₆ H ₄	COOEt	4v	5	94	220-222	219–221
23	$4-CH_3C_6H_4$	$3-NO_2C_6H_4$	COOEt	4 w	5	92	236–237	236–237

Microwave heating using 140 W (120 W for entries 19-23) at 80 °C

^a Isolated yield

nitrile **3a** (1 mmol) or 0.113 g ethyl cyanoacetate **3b** (1 mmol), 0.0076 g DBU (5 mol%), and 1.5 cm³ ethanol was placed in a sealed pressure regulation 10-cm³ pressurized vial with "snap-on" cap and was irradiated in the single-mode microwave synthesis system at 140 W/120 W at 80 °C for 3–5 min. After completion of reaction (TLC), the mixture was cooled and the resulting product was filtered, dried, and recrystallized from ethanol to afford the pure products **4a–4w**.

2-Amino-1,4,5,6,7,8-hexahydro-7,7-dimethyl-4-(4-methylphenyl)-5-oxo-1-phenylquinoline-3-carbonitrile

 $(4b, C_{25}H_{25}N_3O)$

¹H NMR (300 MHz, CDCl₃): $\delta = 0.85$ (s, 3H, CH₃), 0.96 (s, 3H, CH₃), 1.80 (d, J = 17.4 Hz, 1H, CH), 2.04 (d, J = 17.1 Hz, 1H, CH), 2.16–2.18 (m, 2H, CH₂), 2.31 (s, 3H, CH₃), 3.99 (s, 2H, NH₂), 4.72 (s, 1H, CH), 7.12 (d, J = 7.8 Hz, 2H, ArH), 7.23–7.58 (m, 7H, ArH) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.2$, 150.1, 149.2, 145.4, 136.2, 130.6, 130.2, 129.8, 128.7, 127.2, 126.4, 120.7, 113.2, 62.8, 49.7, 41.2, 35.9, 32.4, 29.3, 26.7, 21.2 ppm; IR (KBr): $\bar{\nu} = 3,458, 3,334, 3,038, 2,954, 2,178, 1,653, 1,575$, 1,488, 1,411, 1,371, 1,256, 1,147, 1,043, 848, 793, 670 cm⁻¹.

2-Amino-4-(3-chlorophenyl)-1,4,5,6,7,8-hexahydro-7,7dimethyl-5-oxo-1-phenylquinoline-3-carbonitrile (**4h**, C₂₄H₂₂ClN₃O)

¹H NMR (300 MHz, CDCl₃): $\delta = 0.85$ (s, 3H, CH₃), 0.97 (s, 3H, CH₃), 1.82 (d, J = 17.4 Hz, 1H, CH), 2.05 (d, J = 17.4 Hz, 1H, CH), 2.17–2.19 (m, 2H, CH₂), 4.07 (s, 2H, NH₂), 4.74 (s, 1H, CH), 7.16–7.29 (m, 6H, ArH), 7.59– 7.61 (m, 3H, ArH) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.6$, 149.8, 149.3, 144.7, 136.1, 133.5, 130.1, 129.3, 128.4, 127.2, 126.2, 120.4, 112.8, 62.7, 49.5, 41.3, 36.1, 32.3, 29.1, 26.5 ppm; IR (KBr): $\bar{\nu} = 3,461, 3,329, 3,218,$ 3,065, 2,959, 2,180, 1,653, 1,592, 1,566, 1,494, 1,416, 1,372, 1,257, 1,148, 1,044, 879, 758, 699 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.78$ (s, 3H, CH₃), 0.94 (s, 3H, CH₃), 1.22 (t, J = 6.9 Hz, 3H, CH₃), 1.65–1.77

(m, 2H, CH₂), 2.02–2.18 (m, 2H, CH₂), 2.28 (s, 3H, CH₃), 4.04 (q, J = 7.2 Hz, 2H, CH₂), 5.10 (s, 1H, CH), 6.18 (s, 2H, NH₂), 7.05 (d, J = 7.8 Hz, 2H, ArH), 7.26–7.34 (m, 4H, ArH), 7.56–7.59 (m, 3H, ArH) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.2$, 167.4, 149.8, 145.2, 136.1, 130.7, 130.0, 129.6, 128.6, 127.2, 126.5, 113.1, 105.9, 59.8, 50.7, 40.8, 36.5, 32.6, 29.4, 27.1, 19.8, 14.2 ppm; IR (KBr): $\bar{\nu} = 3,464, 3,329, 3,063, 2,963, 1,656, 1,596, 1,505,$ 1,363, 1,275, 1,210, 1,187, 1,074, 1,021, 816, 763 cm⁻¹.

Acknowledgments The authors are thankful to the Department of Biotechnology, New Delhi for financial assistance.

References

- Beagley P, Blackie MAL, Chibale K, Clarkson C, Meijboom R, Moss JR, Smith P, Su H (2003) Dalton Trans 3046
- Sawada Y, Kayakiri H, Abe Y, Mizutani T, Inamura N, Asano M, Hatori C, Aramori I, Oku T, Tanaka H (2004) J Med Chem 47:2853
- 3. Ma Z, Hano Y, Nomura T, Chen Y (2004) Bioorg Med Chem Lett 14:1193
- 4. Denton TT, Zhang X, Cashman JR (2005) J Med Chem 48:224
- 5. Fokialakis N, Magiatis P, Chinou L, Mitaku S, Tillequin F (2002) Chem Pharm Bull 50:413
- Fossa P, Mosti L, Menozzi G, Marzano C, Baccichetti F, Bordin F (2002) Bioorg Med Chem 10:743
- Ryckebusch A, Derprez-Poulain R, Maes L, Debreu-Fontaine MA, Mouray E, Grellier P, Sergheraert C (2003) J Med Chem 46:542

- Morgan LR, Jursic BS, Hooper CL, Neumann DM, Thangaraj K, Leblanc B (2002) Bioorg Med Chem Lett 12:3407
- 9. Skraup H (1880) Chem Ber 13:2086
- 10. Doebner O, Miller VW (1881) Chem Ber 14:2812
- 11. Conrad M, Limbach L (1887) Chem Ber 20:944
- 12. Combes A (1888) Compt Rend 106:142
- 13. Pfitzinger WJ (1886) Prakt Chem 33:100
- 14. Demeunynck M, Moucheron C, Mesmaeker AK-D (2002) Tetrahedron Lett 43:261
- 15. Ali MM, Tasneem KC, Rajanna PK, Prakash S (2001) Synlett 251
- Palacios F, Ochoa de Retana AM, Oyarzabal J (1999) Tetrahedron 55:5947
- 17. Cho CS, Kim BT, Kim TJ, Shim SC (2001) Chem Commun 2576
- 18. Crousse B, Begue J-P, Bonnet-Delpon D (2000) J Org Chem 65:5009
- Hsiao Y, Rivera NR, Yasuda N, Hughes DL, Reider PJ (2001) Org Lett 3:1101
- 20. Assy MG, Abd-Ell Motti FM (1996) Indian J Chem Sect B 35:608
- 21. Wang X-S, Zhang M-M, Jiang H, Shi D-Q, Tu S-J (2007) J Chin Chem Soc 54:1033
- 22. Lichitsky BV, Dudinov AA, Krayushkin MM (2001) Arkivoc ix:73
- 23. Moseley JD, Kappe CO (2011) Green Chem 13:794
- 24. Caddick S, Fitzmaurice R (2009) Tetrahedron 65:3325
- 25. Ganem B (2009) Acc Chem Res 42:463
- 26. Orru RVA, de Greef M (2003) Synthesis 1471
- 27. Wang X-S, Zhang M-M, Jiang H, Yao C-S, Tu S-J (2007) Tetrahedron 63:4439
- 28. Gao S, Tsai CH, Tseng C, Yao C-F (2008) Tetrahedron 64:9143
- 29. Tu S-J, Jiang B, Jia R-H, Zhang J-Y, Zhang Y, Yao C-S, Shi F (2006) Org Biomol Chem 4:3664